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Transient grating in a ferrofiuid under magnetic field: Effect of magnetic interactions
on the diffusion coefficient of translation
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Diffusion processes in a magnetic colloid are studied by a forced Rayleigh scattering technique under
an applied static magnetic field. A periodic spatial modulation of the particle concentration (transient
grating) is induced in the colloid with three different field geometries, B being either parallel or perpen-
dicular to the grating direction. The value of the translational diffusion coefBcient of the particles is

given by the transient grating relaxation time. It depends on the magnetic field strength and on the field

geometry. A theoretical model based on a mean field approximation taking magnetic interactions of par-
ticles under a field into account is given which agrees with experimental results.

PACS number(s): 82.70.Dd, 42.65.Es, 75.50.Mm, 66.90.+r

I. INTRODUCTION

A ferrofiuid [1—3] is a colloidal suspension of magnetic
particles in a carrier solvent. Such magnetic colloids at-
tract more and more interest because of their spectacular
patterns under a magnetic field [4—9] and their numerous
technical applications [1,3,4], in particular, in the syn-
thesis of more complex media such as magnetic liquid
crystals [10—12], magnetic emulsions [13], and magnetic
vesicles [14,15]. In a ferrofluid, the rotational difFusion
coe%cient of particles is easily determined through a
measurement of transient magnetic birefringence relaxa-
tion [16—20]. Up to now, only dilute magnetic media
have been explored by this technique, with volume frac-
tions @ of particles ranging from 10 to 10 . For its
part, the translational diffusion coefBcient of magnetic
particles has been seldom studied [21—23]: the technique
of quasielastic light scattering [21] is not suitable for
large colloidal concentrations of ferrofluids because of
multiple diffusion processes; the technique of spin echo of
neutrons is complex, mixing the contribution [24] of the
Brownian dynamics of the particles with that of the dy-
namics of the magnetic moments inside the particles;
transient grating experiments [25] can also lead to a
determination of the diffusion coefficient. Such a method
has been recently described [26] for ferrofiuids. A spatial
modulation of concentration of magnetic particles is in-
duced inside the suspension which remains stable [27—29]
from a colloidal point of view. The relaxation time of the
transient grating gives access to cooperative mass
diffusion of particles in the solution (gradient diffusion
[30]). One of its main characteristics is that it can be
measured in high concentration colloids: N = 10%.
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If a magnetic field is applied perpendicularly to the
transient grating fringes, the spatial inhomogeneities of
the magnetic medium induce a magnetic force which
enhances particle diffusion. Anyway the diffusion
coeScient, which is proportional to the first derivative of
the osmotic pressure, is always sensitive to interparticle
interactions. In the present paper, we focus on the mag-
netic interactions between particles under an applied
magnetic field. To study this interaction effect, various
configurations of magnetic field with respect to the tran-
sient grating fringes have been used. In particular, if the
field is parallel to the fringes, the dominant effect is that
magnetic interactions slow down the particle diffusion.

After a brief description of the experimental setup, our
results are given for the three different geometries of the
magnetic field. A mean field model is then developed to
account for the variations of the measured diffusion
coeScient as a function of the magnetic field in the vari-
ous geometries.

II. EXPERIMENTAL SECTION

The magnetic Quid used here is an aqueous ferroQuid.
The suspended nanoparticles are magnetic monodomains
of maghemite (y-Pe&03), synthesized through Massart's
method [31]. The colloidal stability of the solution is en-
sured by a screened electrostatic repulsion between parti-
cles: each particie bears a positive superficial density of
charges equal to 0.2 C/m and the carrier medium is an
aqueous acidic solution of pH 2 and low ionic strength.
Colloidal stability is checked through two kinds of exper-
iments: small angle x-ray scattering (SAXS) [32] in zero
magnetic field (Laboratoire pour 1Utilisation du Ray-
onnement Electromagnetique, Orsay) and optical
diffraction [33] under magnetic field up to 160 kA/m.
No intrinsic field-induced or laser-induced agglomeration
is observed. The colloidal volume fraction of particles is
measured by chemical titration of iron: @=10%. The
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magnetic volume fraction, slightly smaller (9%), is de-
duced from the saturation value of the magnetization of
the solution at H= 800 kA/rn. Characterizations of par-
ticle size are performed on a dilute solution (@o-—1%) of
the same magnetic particles. A measurement of its initial
susceptibility yo [34] leads to a magnetic radius value

Rst =6 nm (by using the bulk magnetization ms =4X 10
A/m). The hydrodynamic radius RH = 15 nm is deduced
from a determination of the rotational diffusion
coefficient of the particles by measuring transient mag-
netic birefringence [20].

Some of the parameters of the interparticle interactions
can be evaluated.

The second virial coe+cient Irz. of the osmotic pressure
ir(@) in zero magnetic field and at room temperature is
derived from n(N)=. mo(@)(l+ —,'IrTN), no(@} being the
expression of the osmotic pressure in the low concentra-
tion limit. From a comparison of the SAXS spectrum to
previous small angle neutron scattering measurements
[35] on similar samples of smaller magnetic size, we
deduce the following value for scz-.

t) tI& dp(H =0)
ac kT ae

where p(H =0) is the chemical potential of the solution
in zero field, k the Boltzmann constant, and T the tem-
perature.

The reduced parameter of magnetic dipole dipole i-n

teraction
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FIG. 1. Optical setup of the forced Rayleigh device.

y=p I V =4. 1 . (2)

Using in this expression the magnetic volume fraction
and the magnetic volume V= 37TR~ po being the vacu-
um permeability.

The initial susceptibility of the concentrated sample is
measured by the method of Foner and Macniff [36] in or-
der to evaluate interparticle interactions under field:
y = 1.8.

The experimental optical setup is the same as in Ref.
[26]. It is sketched in Fig. 1. The printing grating is built
up in the sample with two interfering pump beams pro-
duced by a Q-switched, mode-locked, frequency doubled
neodymium-doped yttrium aluminum garnet Nd:YAG
laser. The device provides 80 ps duration, linearly polar-
ized pulses. They are gathered in groups of about 40 with
a 1 kHz repetition rate. The incident mean power is
lower than 200 mW. The incident laser beam at 532 nm
is split into two beams (L„L', } of equal intensities. They
are focused and intersect in the sample (S) cell of 10 pm
thickness to produce an interference pattern; its
geometric extension is about 3 X 10 m with an inter-
fringe A which can be varied from 20 to 65 pm. The in-
terference pattern is controlled by an optical projection
on a distant screen, the interfringe being adjusted
through the angle between the two pump beams. A mag-
netic field ranging from 0 to 120 kA/m is provided by an
electromagnet; it can be applied to the sample parallel to
the grating plane, either parallel or perpendicular to the
fringes [cf. Figs. 2(a) and 2(b)]. A weaker field (up to 14
kA/m) can also be applied perpendicularly to the grating
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FIG. 2. Scheme of the three geometries of magnetic field. (a)
Perpendicular geometry (l); (b) parallel geometry (~~ ); (c) longi-
tudinal geometry (L).
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plane, leading to the experimental situation of Fig. 2(c).
A concentration grating can be directly observed in the

sample by a red light working microscope [26]. But the
precise way to study its evolution is the following. The
induced grating is probed (see Fig. 1) by the difFraction of
a second laser beam 1.2 of lower intensity (He-Ne, 635
nm, 10 mW). The first order diffracted intensity is detect-
ed by a photomultiplier tube, the signal being then digi-
tized and computer processed. When the two pump
beams are switched on, and whatever the direction and
the value of the magnetic field, the difFracted intensity
first grows for a few seconds and then saturates (see inset
of Fig. 1): this corresponds to the formation of the grat-
ing followed by a steady state. When the green pump
beams are switched ofF; the scattered red light intensity
decreases exponentially with time, proving the vanishing
of the transient grating. The process leading to the grat-
ing formation is complex, mixing both thermophoretic
and electrophoretic effects [2,37—39]: the interference
pattern induces a gradient of electric field and a gradient
of temperature. They both lead to a net force on the par-
ticles but the light absorption of the particles is essential
to the formation of the concentration grating. The de-
tails of this process will be studied in a forthcoming pa-
per. In contrast, the relaxation process is simple. The re-
laxation time ~D of the signal is always much larger than
all the thermal typical times of the system (thermal relax-
ation nanoparticle-solvent 1 ps; thermal relaxation of a
30 pm grating 1 ms). It is directly related to the transla-
tional diffusion coefficient of the particles [26]. The mea-
sured scattered intensity [25] can be written as a function
of both a background noise (a contribution), mainly due
to dust inside the sample, and an exponential decay term
(proportional to b) due to the diff'usion of particles:
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FIG. 3. Plots of ~D' as a function of q for various applied
fields in geometries (~~) and (l) of Fig. 2. D~~"~' (or D~*~') is the
slope of the linear best 6t. {~ ) H

ll

= 112 kA/m,
De"P =5.4X 10

—11 m2 s 1 (Q) ~ 28 kA/m De"P =4X 10
Jl

' ~ II
&

li

mz S
—1. (~) H —0 Dexpt 2 7X 10

—11 m2S —1, (+)
kA/m DexPt 1.9X10 11m

I ~(a+be ~ ') (3)
0 4 ——

where D is the difFusion coefficient of the particles,
q =2m. /A is the experimental wave vector given by the
interfringe A, and t is time. Experimentally the detection
is homodyne (a «b) and the relaxation of the signal can
be analyzed with one relaxation time ~D, inversely pro-
portional to q [see Fig. 3(a) and Ref. [26]] which proves
the total lack of recombination processes [40,41] and al-
lows us to define an experimental difFusion coefficient
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It depends on both the strength and geometry of the ap-
plied magnetic field. Figure 3 is a plot of sD' versus q
for various magnetic field strengths in the perpendicular
and parallel geometries [magnetic field direction perpen-
dicular or parallel to the concentration gradient, respec-
tively, and parallel to the fringe plane in both cases, the
geometry of Figs. 2(a) and 2(b)]. The values of the
diffusion coefficients Di"i"(II) and D~~' '(H) are given by
the slopes of these plots from Eq. (4). Variations of Dl'"~'

as a function of H are determined from similar plots in
the geometry of Fig. 2(c).

In zero magnetic field [26], we find Do"i"=2.7X 10
m s ', a value compatible with a hard sphere model with
thermodynamic interactions. For a finite volume fraction
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FIG. 4. Reduced variations of D'""' as a function of applied

magnetic field H. (a) Reduced variation of D ll""' (black dots); (b)
reduced variation of Dz""' (black squares) and of Dl'" ' (open tri-
angles).
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4 of colloidal particles and in the linear regime, the gen-
eralized Stokes formula for the diffusion coefficient is

Do(@)= [p(H =0)]a

kT [1+(aT af—)4&],
6miloRH

f (4)=6miloR~(1+sf 4) being the friction coefficient, iso
the viscosity of the ffuid carrier (here water), and the
coefficients ~T and ~f accounting respectively for thermo-
dynamic and hydrodynamic interactions; for hard
spheres [42], xf =6.55. If we identify Do"i" with Do(C&)
(thus assuming a linear description up to @=10%)we
obtain ~T=16, very close to the former evaluation [cf.
Eq. (1)] vT =20 from Ref. [35].

Reduced variations of the three different diffusion
coefficients Di" '(H), D ~~" '(H), and DL"~' are plotted as a
function of magnetic field strength in Figs. 4(a) and 4(b}.
If D~~"

' is an increasing function of the applied field, on
the contrary both D~" ' and DL"~' are decreasing func-
tions of the field. Within the experimental accuracy of
the diffusion coefficient determination, which ranges from
2% for H=O to 5% for H= 120 kA/m, we do not detect
any difference between D ~"P' and DL" ' values at
equivalent fields. In the next section, we develop a
theoretical model accounting for the field dependence of
these three diffusion coefficients.

M =4m, L(g, ) (10)

with g, given by the self-consistent equation

g, =g+ AyL(g, ),
where y is the reduced parameter of dipolar interaction
[cf. Eq. (2}]and A, the effective field constant. If A, =O, ex-
pressions without interparticle interactions under the
field are recovered. The classical I.orentz value [45] of A,

is 0.33.
To solve Eqs. (6) and (7), it is necessary to calculate

Bp/Bx:

ai. a~(H =0) ae i'H ~+ +
a~ ae ax ae a+

(ii)

ave aH
aH, ax

(iii)

Term (i) is the usual one leading to the generalized Stokes
diffusion coefficient in zero field [see Eq. (5}]. Term (ii) is
related to magnetic interactions in constant fields and ex-
ists whatever the field geometry. The magnetic contribu-
tion pH to the chemical potential can be written in a
mean field approximation [2,3,43,44]

pH = kT 1n(sin—hg', /g, ) .

Thus

III. THEORETICAL SECTION

Decoupling, because of their largely different time
scales, thermal and mass diffusion Auxes, the evolution of
particle volume fraction is driven in one dimension by the
Fick law

with

apH

ae
kT ai(4, H)

AyL (g, )

1 A.yL'(g, )—
8@
at

Jx
ax

(6)

M =4m, L(g) (9)

with /=porn, VH/kT the Langevin parameter and the
Langevin function L (g) =coth(g) —g '. In order to take
into account the magnetic interparticle interactions un-
der the applied field, we use, in a mean field approxima-
tion, an effective field model, and the expression (9) be-
comes [2,3,43,44]

where j is the diffusion How equal to

ap 1

Bx f (4)
with p the chemical potential of magnetic particles.
These two equations (6) and (7) allow a determination of
the diffusion coefficient in the presence of a field, the
chemical potential being written as a sum of two terms
[3,43,44]:

V=V(H =0)+S H .

A dilute magnetic colloid without interparticle interac-
tions is paramagnetic and its magnetization M is given by
the Langevin law

L (g, } being the first derivative of the Langevin function
L (g, ). It must be pointed out that a&(N, H) is equal to
zero for X=O, or for y =0, or for H=O.

Term (iii) basically depends on the magnetic field
geometry with respect to the magnetic grating. In the
geometries (l) and (L) of Figs. 2(a) and 2(c), H is spatial-
ly homogeneous and BH/Ox =0. On the contrary in the
geometry (~~) of Fig. 2(b), there are spatial inhomo-
geneities of H leading to a gradient BH/Bx not equal to
zero [26,46].

A. Magnetic Beld perpendicular to the dift'usion direction
(geometries j.and L)

~ j., L
X

kT ae C a~(H =0)
f (@) Bx kT BN

(14)

Replacing (14) in Eq. (6) and performing an expansion in
the limit of small variations of volume fractions with
respect to the equilibrium one N, we obtain a diffusion
coefficient D~ L of particles perpendicular to the magnet-
ic field equal to

By replacing the three terms (i), (ii), and (iii) in Eq. (7),
we obtain
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FIG. 5. Reduced variation of Dz (or equivalently DI ) as a
function of H, deduced from theoretical expression (15)
with @=4.12, Do(N)=DO*"'=2. 7X10" m s ', kT/f(@)
=Do"~'/2. 6 for A, =O, 0.1, 0.2, and the I.orentz value 0.33.

FIG. 6. Reduced variation of D~~as a function of H, deduced
from theoretical expression (18) with the same values of the
various parameters as in Fig. 5.

Dg L, =Do(c') — a~(@,H) .kT
(15)

B. Magnetic field parallel to the
diffusion direction (geotnetry )( )

In this geometry the term (iii) is not equal to zero. Us-
ing the Maxwell relation (Bp/BH)&= —poV(t)MIB@)H,
we have

Bp
dH

IJoVm, L (g, )

1 —A,yL'(g, )

From the Maxwell equation in the magnetostatic approx-
imation B(H +M)/Bx =0, we can write

m, L (g', )

t)x 1+(1 A. )yL'(g,)—
which leads to

with

dP kT
)

BN
BH @, N

'
Bx

D~ and Dl are, as is observed experimentally, decreasing
functions of the magnetic field. There are plotted in Fig.
5 for various values of the parameter A, with y =4.1 [cf.
Eq. (2)], identifying Do" ' with Do(&b) and.
Do(@)/(I+xT4) with kT/f (N), meaning a numerical
value of Do" '/2. 6. In reality, due to demagnetizing
effects, the term az(@,H) is, for the same applied field,
slightly smaller for the geometry (L) than for the
geometry (l). We neglect these effects in the present
description as the experimental field range of D

p&
is very

small in comparison to the one of D,„,.

D(~
—Do(C&)+ [Pg(@,H) —ag(@,H)] .kT

(18)

Reduced variations of D
~~

as a function of the strength of
the applied magnetic field are plotted in Fig. 6 for various
values of the parameter X with experimental values of
y=4. 1, with Do(C&)=DO""' and kT/f (@)=Do '/2. 6.
As is observed experimentally, D~~ is an increasing func-
tion of H.

IV. MSCUSSION

From the representations of Figs. 5 and 6, it is clear
that interparticle interactions under a field, through the
mean field parameter, lower the translational diffusion
coeKcient whatever the field geometry, parallel, perpen-
dicular, or longitudinal. For the three geometries, the ex-
perimental results of Figs. 4(a) and 4(b) are between the
two theoretical curves for A, =O and 0.33. A best fit of
these experimental values to both expressions (15) and
(18) leads to a value of A, =0.22+0.02. This fit is present-
ed with the two theoretical limits A, =O and X=0.33 in
Fig. 7.

From a comparison of the initial magnetic susceptibili-
ty g of the concentrated sample to the susceptibility yo of
a dilute solution of the same sample (volume fraction No),
it is possible to derive another evaluation of magnetic in-
terparticle interactions. In the limit g'«1 and g, «1,
Eqs. (9)—(11) lead to

Pz(N, H) is equal to zero either for y=0 or for H=O but
is equal [26]to yL (g, )/[I+yL'(g, )] for A, =O. Then
Eq. (14) transforms to

kT t)@ 4& dp(H =0)
f(e) ax kT aC

(17)

and Eq. (15) to

(19)
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FIG. 7. Reduced variations of the various diffusion
coefBcients as a function of the magnetic 6eld strength H. Com-
parison of experiments to the theoretical expressions (15) and
(18). Black dots: experiments in the parallel geometry (II) of
Fig. 2(b). Black squares: experiments in the perpendicular
geometry (L) of Fig. 2(a). Open triangles: experiments in the
longitudinal geometry (L) of Fig. 2(c). Full line: expressions
(15) and (18) with A, =O and experimental values of the other pa-
rameters. Dotted line: expressions (15) and (18) with A, =0.33
and experimental values of the other parameters. Dashed line:
best fit of the experiments in the various geometries to theoreti-
cal expressions (15) and (18) with y =4.1, Do(N )
=Do"~'=2.7X10" m s ', kT/f(4)=DO"~'/2. 6, leading to
A, =0.22+0.02.

From the present forced Rayleigh experiment, we deduce
y=1.95, in rather good agreement with the direct mea-
surement y=1.8. The representation of Fig. 8 definitely
confirms the experimental determination of the A, param-
eter. The initial susceptibility g is plotted as a function
of y for various ferrofluid samples (the present one and
samples from Refs. [35] and [47]); y is proportional to the
concentration 4 of the solution. The ratio y/4 is a con-
stant independent of N, deduced, for each particle size,
from the low concentration behavior of
y/@=porn, V/kT=3g/4 if 4~0 (N(1%%uo). For a
comparison, the theoretical expression (19) is also plotted
for three values of A, , 0, 0.22, and 0.33. The value
A, =0.22, which is deduced from the best fit of diffusion
coefBcients under a field, also fits quite well the g varia-
tions, demonstrating the self-consistency of our theoreti-
cal description.

V. CONCLUSION

A transient grating experiment is performed with a
concentrated ferrofiuid solution (@=10%) in the pres-
ence of an external magnetic field. Various geometries
are explored: in the plane of the transient grating, either
parallel or perpendicular to the fringes, and perpendicu-

FIG. 8. Initial susceptibility as a function of y. ( o )

FerroAuid sample used in the forced Rayleigh experiment; (+)
ferrofiuid sample of Ref. [35]; (~ ) ferrofiuid sample of Ref. [47];
(full line) expression (19) with A, =O; (dashed line) expression (19)
with A, =0.22; (dotted line) expression (19) with A, =0.33.

lar to the transient grating.
Whatever the direction and the strength (up to 120

kA/m) of the magnetic field, the relaxation of the first or-
der diffracted intensity of a probing laser beam is
diffusive, characteristic of a diffusion process. A mean
field model taking into account the magnetic interactions
between particles under a field well predicts the field
dependence of the three different diffusion coefticients.

We have thus demonstrated here that it is possible with
this experiment to measure several parameters of inter-
particle interaction: the second virial of osmotic pressure
~T or the effective field constant A, . In the future, this
powerful technique will be used to determine the effect on
~T or A. of some other parameters of the magnetic colloid,
such as the ionic strength of the solution, the particle
size, or the particle concentration. This knowledge will
be of paramount importance from the point of view of
technical applications.
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