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Exact resummations in the theory of hydrodynamic turbulence. II. A ladder to anomalous scaling
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In paper I of this series on fluid turbulence we showed that exact resummations of the perturbative
theory of the structure functions of velocity differences result in a Gnite (order by order) theory. These
findings exclude any known perturbative mechanism for anomalous scaling of the velocity structure
functions. In this paper we continue to build the theory of turbulence and commence the analysis of
nonperturbative effects that form the analytic basis of anomalous scaling. Starting from the Navier-
Stokes equations (at high Reynolds number Re) we discuss the simplest examples of the appearance of
anomalous exponents in fluid mechanics. These examples are the nonlinear (four-point) Green s function
and related quantities. We show that the renormalized perturbation theory for these functions contains
"ladder" diagrams with (convergent) logarithmic terms that sum up to anomalous exponents. Using a
sum rule that is derived here we calculate the leading anomalous exponent and show that it is critical.
This result opens up the possibility of multiscaling of the structure functions with the outer scale of tur-
bulence as the renormalization length. This possibility will be discussed in detail in a concluding paper
of this series.

PACS number(s): 47.27.Gs, 47.27.Jv, 05.40.+j

I. INTRODUCTION S„(R)-CR " . (1.3)

5u(r+ R, r, t):—[u(r+R, t) —u(r, t) ],'

S„(R)—:( ~5u(r+R, r, t) ~"}, (1.2)

where the symbol ( ) denotes an average over time and
over r The stru. cture functions S„(R)are expected to ex-
hibit scaling behavior for values of R in the "inertial
range" L »R »g where L, and g are the outer scale and
the Kolmogorov dissipation scale, respectively:
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In this paper we clarify, on the basis of an analytic
theory, how anomalous scaling appears in fluid mechan-
ics. The aim of the analytic theory is to reach under-
standing on the basis of the Navier-Stokes equations. We
thus make a clear cut distinction between the analytical
approach and the host of ad hoc models that were em-
ployed to attempt a description of anomalous scaling in
turbulence.

The common wisdom about anomalous scaling in tur-
bulence can be found in a number of recent reviews and
books (see, e.g., [1,2)). In terms of the scaling exponents,
most attention was given to those associated with the
structure functions of velocity differences and to the
correlation function of the fluctuations in the rate of en-
ergy dissipation. In terms of the Eulerian velocity Geld
u(r, t) the structure functions S„(R) can be defined [3] in
terms of the velocity differences 5u(r+R, r, t):

In the 1941 Kolmogorov theory (K41) the exponents g„
equal nl3, whereas experiments and popular belief as-
cribed anomalous values to these exponents. The energy
dissipation rate s(r, t) is the field

e(r, t)—:—[8 uit(r, t) +B&u (r, t) ]2
(1.4)

K„(R)= ( f(r+ R, t)s(r, t) ), (1.5)

where f(r, t)=s(r, t) —E and a is the mean of the dissipa-
tion field. It was found in experiments that K„(R) de-
cays very slowly in the inertial range,

IC„(R)-R (1.6)

with p having a numerical value [4] in the range
0.25+0.05. It was claimed [3] that the K41 theory re-
quired p to vanish. Accordingly, there have been many
attempts to construct models of turbulence (see, i.e.,
[1—3,5 —9] and references therein) to take (1.6) into ac-
count and to explain how measured deviations (g„n/3)—
in the exponents of the structure functions were related
to p.

In this paper we show that the renormalized perturba-
tion theory for correlation functions that include velocity
derivatives (to second or higher power) exhibit in their
perturbation expansion a logarithmic dependence on the
viscous scale g [10,11]. In this way the inner scale of tur-
bulence appears explicitly in the analytic theory. The

where v is the kinematic viscosity. The "centered" corre-
lation function of the fluctuations in this field, K„(R), is
de6ned as

1063-651X/95/52(4)/3858(18)/$06. 00 3858 1995 The American Physical Society



52 EXACT RESUMMATIONS IN THE THEORY. . . . II. 3859

K„(R)=-e (R/L) ' (1.8)

In other words, the critical situation h=h, results in the
disappearance of the inner renormalization scale and the
appearance of the outer renormalization scale in (1.8). In
addition one notes that K«(R) decays as a function of R
(i.e., the correlation is mixing) only if $4 & 2/2 which im-
plies deviations from K41. Thus we will argue in a future
paper that the critical scenario b =6, goes hand in hand
with multiscaling if K«(R ) is mixing and then p is
identified with g4

—2/2.
The quantity that displays the existence of the anoma-

lous exponent 5 in the simplest possible way is the non-
linear (four-point) Green's function. Thus, after reviewing
in Sec. II some essential results from previous work, we
turn in Sec. III to the nonlinear Green's function. We de-
velop its diagrammatic representation and show how all
the diagrams in its expansion can be resummed exactly
into ladder diagrams. We discuss the properties of the
ladder diagrams, and demonstrate in Sec. IV that the
dressing of the ladder diagrams does not change the fact
that they resum to give power laws with anomalous ex-
ponents. In Sec. V we first demonstrate that the
resummed equation for the nonlinear Green's function
indeed has a nonperturbative solution with an anomalous
exponent 6, and then derive a sum rule that allows us to
conclude that h=b, ,=2—g2. Finally Sec. VI concludes
this paper.

II. SUMMARY OF PREVIOUS RESULTS

The starting point of the analysis is the Navier-Stokes
equations for the velocity field of an incompressible Quid

perturbative series can be resummed to obtain integro-
differential equations for some many-point objects of the
theory. These equations have also nonperturbative scale-
invariant solutions that can be represented as power laws
of g to some exponents h. For example, it will be shown
in a future paper that the correlation function of the en-
ergy dissipation field has such dependence:

K„(R)-e'(LiR) ' '(Rlil) (1.7)

where b,, =2—g2. It has been argued [12] that if b, & 6,
(a situation referred to as the "subcritical scenario"), then
K41 is asymptotically exact for infinite Re. Then
2gz=g4= 4 and the outer scale L disappears from (1.7).
In that case the exponent p is identified with 2( —', —5),
and the renormalization length is the inner length g. In
fact, it will be shown here that the exponent 6 can be
computed explicitly, and that it takes on exactly the
value b, =A, . As a result of this the correlation K„(R)
can be shown to depend on R like

with kinematic viscosity v which is forced by an external
force f(r, t):

—vA u+P(u V)u=Pf,
at

(2.1)

where P is the transverse projection operator
P—:—6 VX V. It was explained in paper I that devel-
oping a perturbative approach [13—16] for the correla-
tion functions and response functions in terms of the Eu-
lerian velocity u(r, t) results in a theory that is plagued
with infrared divergences. On the other hand one can
transform to new variables, and after the transformation
(which amounts to infinite partial resummations in the
perturbation theory) one finds a renormalized perturba-
tion theory that is finite, without any divergences in any
order of the expansion (cf. [17] and I). The new variables
are obtained from the Belinicher-L'vov transformation
[»]

v(ro~r, t) =u(r+p(ro, t), t), (2.2)

where p(ro, t) is the Lagrangian trajectory of a fiuid point
started at point r=r0 at time t =t0:

p(ro, t)= u(r+p(ro, r), r)dr .
0

(2.3)

The natural variables for a divergence free theory are the
velocity differences

w(ro~r, t) —=v(roar, t) —v(ro~ro, t) . (2.4)

S„(/r —ro/)=()w(ro[r, t))") . (2.5)

It was shown [17] that these variables satisfy the Navier-
Stokes equations, and that one can develop (cf. I) a per-
turbation theory of the diagrammatic type in which the
natural quantities are the Green's function
G &(roar, r', t, t') and the correlation function
F tt(ro~ r, r', t, t'):

5(w (r, ~r, t))
G tt(roar, r', t, t')=

5hp r', t' 7

h~0
(2.6)

F &(ro~r, r', t, t')=(, w (ro~r, t)w&(roar', t')) . (2.7)

In stationary turbulence these quantities depend on t' —t
only, and we can denote this time difference as t. The
quantities satisfy the well known and exact Dyson and
Wyld coupled equations. The Dyson equation reads

Since the averages of quantities that depend on one time
only can be computed at t =0, it is clear that the average
moments of these variables are the structure functions of
the Eulerian field:

0 t + 0 +vb G p(roar r t) G ti(roar r 0 )5(t)+ dr2G s(roar r2 0 ) dri dtiXsr(roar~ ri ti)G p(ro~ri r t ti)
at 0

(2.8)

where G ti(roar, r', 0+) is the bare Green's function determined by Eq. (3.20) in paper I. We will only need the asymp-
totic properties of this function, given in Eqs. (2.17) and (2.18). The Wyld equation has the form
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F p(roar r r)= fdr&dr2f dr)dh2G y(lo~r r( r) )[D rs( r] r2 r r]+rz)+0 rs(roar] l~ t t)+t2)]Gsp(roar', rz, tz)
0

(2.9)

In Eq. (2.8) the "mass operator" X is related to the "eddy
viscosity" whereas in Eq. (2.9) the "mass operator" N is
the renormalized "nonlinear" noise which arises due to
turbulent excitations. Both these quantities are dependent
on the Green's function and the correlator, and thus the
equations are coupled. The diagrammatic notations for
the Green's function, double velocity correlator, and ver-
tex are presented in Fig. 1. The diagrammatic representa-
tion of X and N is well known, and is reproduced in Fig.
2. In deriving Eqs. (2.8) and (2.9) one assumes that the
driving force of the equation for w(roar, t) is a Gaussian
random force whose covariance is the factor Dz& which
appears in (2.9). For future reference we need to remind
the reader of the existence of a so-called "principal cross
section" in the diagrams for N. This is defined as a sec-
tion of the diagram that divides left and right parts of the
diagrams by cutting through wavy lines of double corre-
lators only. Each diagram in the series for N has a
unique principal cross section (see paper I for more de-
tails).

The main result of I is a proof of the property of "lo-
cality" in the Dyson and Wyld equations. This property
means that given a value of ~r —ro~ in Eq. (2.8), the im-
portant contribution to the integral on the right-hand
side (RHS) comes from that region where ~r&

—
ro~ and

~r2
—

ro~ are of the order of ~r —ro~. Moreover, the dia-
grams in the expansion for X, see Fig. 2, are also local in
the same sense: all the intermediate coordinates in all the
integrals must be of the same order of magnitude, i.e.,
~r —ro~, in order to give an appreciable contribution. In
other words, all the integrals converge both in the upper
and the lower limits. The same is true for the Wyld equa-
tion, meaning that in the limit of large L, and small q
these length scales disappear from the theory, and there
is no natural cutoff in the integrals in the perturbative
theory. In this case one cannot form a dimensionless pa-
rameter like I.lr on rig to carry dimensionless correc-

tions to the K41 scaling exponents. For g « ~r —ro~ &&L
scale invariance prevails, and one finds precisely that K41
scaling exponents:

G &(kro~kr, kr', A,'t)=A, 'G &(roar, r', t),z &Z

E &(Aro~Ar, kr', A;t)=A, 'F f3(roar, r', t) .z &2
(2.10)

One can derive two scaling relations which hold order by
order, i.e.,

2z+g2=2, z+2gz=2 . (2.11)

(a)

zI XX)=~ ~

(b)

The solution is z =$2= —', . It was also shown that

f2 = —3.
Note that nonperturbative effects may change these

scaling relations. In this paper we wiH see that even if we
use the K41 values of these scaling exponents, we discov-
er anomalous scaling in turbulence for higher order ob-
jects. We need to look for them using nonperturbative
methods. The aim of this paper is to present a careful
study of the nonlinear Green's function in which anoma-

Vf ~ N~, w (, ~ rvui
(&)

1/2

g (X,,X2) = +

G ~)
~ RAP

FIG. 1. Basic graphical symbols for w, BL velocity
differences (2.4); I, vertex-amplitude of interaction; F, double
correlation function of the BL velocity differences (2.7); 6,
Green's function (2.6) wp I' p and 6p, corresponding values in
zero order approximation with respect to interaction ("bare
values" ).

FICx. 2. Diagrammatic representation of the renormalized
series expansion for the mass operators. (a) The mass operator
X of the Dyson equation (2.8) and (b) the mass operator N of the
Wyld equation (2.9).
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ious exponents appear in a most transparent way.
Some additional results that were proved in I and that

we need for our analysis below have to do with the time
integrals and time scales of the Green's functions in the
asymptotic regimes r ))r' and r «r'. We find that the
time integral of the Green's function satisfies

J dt G(O~r, r', t)=~(r, r')G (O~r, r', 0+), (2.12)
0

where

r(r, r')-v(r)(r'Ir) for r »r'
with some scaling exponent a ~ 0, and with

y] —i /3 2/3

(2.13)

(2.14)

In the standard phenomenology of turbulence the time
scale r( r) is known as the characteristic turnover time of
an r eddy. We showed that this time scale appears natu-
rally in a scaling relation, i.e.,

7(r) =rl+S2(r) . (2.15)

In the opposite limit, i.e., for r « r', we found that

r(r, r')-~(r)(r'/r)~ for r &&r', (2.16)

where P & 0. The zero-time Green's function
G (O~r, r', 0+ ) which appears in (2.12) and serves as an in-
itial condition for the Dyson equation has the following

asymptotic properties:

(1/r') for r »r'
G (O~rr', 0 )- '

r r'Ir' for r'»r .
(2.17)

(2.18)

Finally, we need to quote also the results for the asymp-
totic properties of the correlator which were derived in I.
For r «r'

F ti(O~r, r', 0)-s (r +rlr'/ ) . (2.19)

The correlator is symmetric in r and r' and therefore in
the opposite limit one just replaces r and r' in (2.19).

III. THE NONLINEAR GREEN'S FUNCTION

(3.1)

where for brevity we use the notation x~ —= Irj, t J. In a

In this section we begin to expose a mechanism for
anomalous scaling which operates in the context of vari-
ous many-point objects which appear in the theory. Such
objects depend on two or more space coordinates. For
pedagogical purposes it is convenient to discuss one of
the simplest objects which display anomalous behavior,
which is the nonlinear Green's function
G2(rplx i »2 x3,x4 ) defined as

5w (rP~x, ) 5wr(rP~x2)

Gaussian theory (which ours is not) this quantity would
be the product of the linear Green's functions,
G ~(rp~xi x3)Gr (rp~x2, x4). In a non-Gaussian theory it
is natural to assume that this quantity is a homogeneous
function of its arguments when they are in the scaling re-
girne. This means that

( rP I
A,r, , X't „A.r2, A,'t2, A, r3 1 .t3 A,r4, A,'t4 )

&4 u SG~~t'rs(rp~x „x„x,,x, ) . (3.2)

From the Gaussian decomposition of this quantity we
would guess that $4=2/2= —6. The proof of locality in I
means that there is no perturbative mechanism to change
this scaling index. On the other hand, this quantity,
which is a function of four space-time coordinates x;, has
scaling properties that are not exhausted by the overall
scaling exponent g4. We will show that when we consider
its dependence on ratios of space-time coordinates in
their asymptotic regimes we pick up a set of anomalous
scaling exponents. Our first objective is to show that in
the regime r, -r2 «r3-r4 the diagrammatic expansion
of this object produces logarithms like ln(r3 Ir, ) to some
power. Next we will prove that the sum of such loyarith-
mically large contributions is given by (r3/ri) with
some anomalous exponent b, . To make the appearance of
anomalous exponents evident we begin with the simplest
object that resums to logarithms, i e., the series of
"ladder diagrams. "

A. The ladder diagrams

The diagrammatic representation of the nonlinear
Green's function (3.1) is obtained as follows. In the spirit
of the Wyld expansion [14,13] one can begin with the dia-
grams for w which are shown in Fig. 3. After
differentiating with respect to a force we get the diagrams
for the unaveraged resPonse 5w ( rp ~

x i ) /5h p(rp I x 3 )

shown in Fig. 4. We recall (see I) that each of these dia-
grams has a principal path of Green's functions connect-
ing an entry denoted by a wavy line to an exit denoted by
a straight line. At this point we can take any combina-
tion of two diagrams, one for 5w (rp~x, )/5hti(rp~x3 ) and
one for 5w (rp~x2)/5hti(rp~x4), glue them together ac-
cording to the Gaussian rules, and then perform the
Dyson-Wyld line resumrnation. Clearly every resulting

diagram has two principal paths, one going from x
&

to x3
and the other from x2 to x4, see Fig. 5(a). Every diagram
begins with two wavy lines and ends with two straight
lines. One infinite sum of contributions results from hav-
ing all the averaging done in each tree separately. Such a
sum results in the first diagram on the RHS of Fig. 4(a),
which is precisely the product of two dressed Green's
functions. Next we have infinite number of diagrams in
which these two principal paths are connected via frag-
rnents that resum to a dressed correlator. This is the sum
that gives rise to the second diagram on the RHS of Fig.
4(a). Following are infinite sums that result in connection
via two, three, etc., dressed correlators. The sum of
terms appearing in Fig. 5(a) is referred to as the sum of
"simple ladder diagrams. " We note that this sum can be
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represented exactly in graphical notation as shown in Fig.
5(b). We used here explicitly the simple topology of the
simple ladder diagrams.

In the simpler case of the passive scalar that was
presented in [18] the simple ladder diagrams tell the
whole story. This is not the case here. There exist an
infinite class of diagrams that decorate the simple ladder
diagrams as shown in Fig. 6. The result of the summa-
tion of all the simple ladder diagrams in Fig. 5 which is
denoted as a thin circle is added to the diagrams that
contain decorations of the vertices, see Fig. 6. These
decorations are identified as contributions that can be
resummed to dress the vertices. In these diagrams there
are two types of dressed vertices that we denote as A and
B, respectively. The decorated vertex 3 has one straight
tail and two wiggly tails like the bare vertex, and there-
fore A can be considered as the dressing of the bare ver-
tex. The vertex B has two straight tails and one wiggly,
and it does not have a bare counterpart.

In the general theory one finds an infinite series of dia-
grams that dress the vertices A and B, and this series is
shown in Fig. 7(b). It is therefore clear that the sum of

1 3

A 2

A4

1 2

4 5

2 3 4

(b)

4 5

A

I/2

2 3

(~)
3 4

(c)

4A
2

FIG. 4. The diagrams for the unaveraged response, up to
fourth order in the vertex.

all the diagrams appearing in Fig. 5 and in Fig. 6 can be
represented as diagrams that have the topology of the
simple ladder diagrams but with dressed vertices. These
diagrams are shown in Fig. 8. We refer to the diagrams
shown in panel (a) of Fig. 8 as the sum of "dressed simple
ladder diagrams, " and denote the result of this summa-

1 2 3 4 1 3 1
4
3

= 2(.")4 Z

(a)

Q 3
— I/2

A B
1

2

4 5
3

~ ~ ~ ~

Q4 + ~ ~ ~

4~O ~ ~ ~

(b)

FIG. 3. The diagrammatic representation of the BL velocity.
Panel (a) shows the equation for the renormalized velocity, and
panels (b) —(e) show the expansion up to fourth order in the ver-
tex.

FIG. 5. The diagrammatic expansion of the four-point non-
linear Green's function (3.1). In this figure we show the simple
ladder diagrams in panel (a) and the resummation of the simple
ladder diagrams in panel (b).
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Xg
lVQl —'VLfl.

X1

Xg
Xd

Xe
X3

X4

X1~
XJUI

A
A

X4

(a)

+ e ~ ~ ~

A 8

Xd

Xg
X1 nnn; —~ &c

Xd
(b)

X2 rnn.
Xd

+ ~ ~ ~ ~

FIG. 6. The diagrammatic expansion of the four-point non-
linear Green's function (3.1). In this figure we show diagrams
that add to those shown in Fig. 5, and that decorate the vertices.
The sum of these diagrams turns the vertices into dressed ones.

FIG. 8. The diagrammatic expansion of the four-point non-
linear Green's function (3.1). In this figure we show the dressed
simple ladder diagrams, panel (a), and the resummed equation,
panel (b), which results from summing all the diagrams in panel
(a).

2

Qwww P: 1
1 2 3

l1/IR

'VVVX R.

B
+ nnn—

1

A
+ VJVR.r Q

1

2

(b)

+ ~ +

~i mii~~~
, r

+
1.-~

1 -(

arvV

FIG. 7. Panel (a): diagrams for triple correlator in terms of
dressed vertices. Panel (b): the diagrams that dress the vertices.
In this paper only vertices of type 2 and 8 appear.

tion with a bold circle. We note that one cannot have two
vertices of type B in one rune of the ladder. Such a rung
will call for a connection via a long straight line, an ob-
ject that does not exist in this theory. Panel (b) of Fig. 8
represents the exact resummation of all the diagrams
having the topology of the dressed simple ladder. Note
that the resummed series which is represented as a heavy
circle appears on both the LHS and RHS of this equa-
tion. This is not yet the fully resummed nonlinear
Green's function since there are additional diagrams with
different topology.

Next we need to discuss the diagrams whose topology
differs from that of the dressed simple ladder diagrams.
Such diagrams are obtained when the connections be-
tween the principal paths intersect, or when there appear
decorations that cannot be absorbed into the dressed ver-
tices. The simplest examples are shown in Fig. 9(a), in
which the vertices have been already dressed by summing
the corresponding decorations of the diagrams shown.

The resummation of all the diagrams for the nonlinear
Green s function is shown in Fig. 9(b), where the series
for the renormalized rung is given in Fig. 9(a). The dia-
grams in the series can be classified into two classes,
which we refer to as "two-eddy reducible" and "two-eddy
irreducible" diagrams. To define these we need first to
define "interior" Green's functions as Green's functions
belonging to one of the two principal paths but not to an
entry or an exit. "Two-eddy reducible" diagrams are dia-
grams that can be cut into two pieces by cutting through
two interior Green's functions belonging to two principal
paths without cutting any other line. "Two-eddy irreduc-
ible" diagrams are diagrams that are not two-eddy reduc-
ible. As examples consider the diagrams in Fig. 5. In
Fig. 4(a) the two first diagrams are two-eddy irreducible,
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A B A A A

A A B

+ ~ ~ ~ ~

+ o ~ ~ ~

~ ~

~ ~ ~
~ ~ ~ ~ ~ ~ ~1~ ~ ~ ~ ~ ~ ~

&~ ~ ~ ~ ~ ~ ~ ~ ~ e'
~ ~ ~ ~ ~

Q~ \ 111 \ gi\
1

~ 1~ ~ ~ ~~ ~ ~ ~
~ ~ ~ ~

~,~ ~ ' ~ ~
~ ~ ~ ~
~ ~, ~ 0
~ ~ ~ ~
~ ~ ~ ~
~ ~,
~ +, ~ ~

~ ~

I ~ ~
I ~ ~
lt ~
) ~ ~
I ~ ~
I ~ ~
I ~
I ~ ~
11~
It \
) ~ ~
I ~ ~
i ~

I ~ ~

I4

+ ~ ~ ~ ~

X3

X4

"NMr-
i ~ ~

~ ~
,

~ ~
,

~ ~
,

~ ~
,

~
~ ~

1(x

2P~E.:::&-48

NVb

NUM

1n ap ca (b)fMR.
+

I t

2|) bV -"

d(3

FIG. 9. The diagrammatic expansion of the four-point non-
linear Green's function (3.1). Here we show the fully renormal-
ized quantity, which is obtained by summing the result of the
summation in Fig. 8 to all the more complex diagrams that ap-
pear in the series. The dark rungs of the ladder are the two-eddy
irreducible mass operator, whose diagrammatic expansion is
shown in Fig. 10.

FIG. 10. (a) The diagrammatic series for the two-eddy irre-
ducible mass operator. (b) The integral equation for the fully re-
normalized nonlinear Green's function.

large terms [10—13,18—21]. To this aim we introduce the
time integral of the nonlinear Green's function defined by

and the next two are two-eddy reducible. In Fig. 9 dia-
gram 1 is two-eddy reducible whereas diagram 2 is two-
eddy irreducible.

The sum of all the two-eddy irreducible diagrams gives
rise to the "two-eddy mass operator" X1(rptx i X3 X3 X4).
This object is given in terms of the infinite expansion
shown in Fig. 10(a). Using this object we can sum all the
diagrams belonging to the nonlinear Green's function, as
shown in Fig. 10(b). This is an exact equation for the non-
linear Green s function, which is the direct analog of the
Dyson equation for the usual Green's function. Note
that the fully resummed nonlinear Green's function is
denoted by a gray circle with bold circumference. Thus
in Fig. 8(a) the bold empty circle which is the sum of all
the dressed simple ladder diagrams is added to all the dia-
grarns that have more complex topology, to yield the
gray circle object. Note that the equation in Fig. 10(b)
reduces to the equation in Fig. 8(b) if we substitute the
first three terms of Fig. 10(a) instead of the two-eddy
mass operator in Fig. 10(b).

B. Logarithmic contributions in simple ladder diagrams

In this subsection we demonstrate that the leading con-
tribution to the ladder diagrams involves logarithmically

&2'(rplxi x2, r3 14)—f dt3dt4&2(rplxi X1 X3»4) .

(3.3)

Cry'p(rplxi x3 13 14) 7(ri r3)r(r2, r4)G0(rptri r3

X Cap(rp t r3, r4, 0+ ) . (3.4)

Consider now the regime r j -rz «r3-r4. We can use
Eq. (2.13) to estimate

' P+1r(r, )r(r, ) 'r, r,
02,0(rplx] x1 r3 r4)

(r3r4} r3r4
(3.5)

Consider now the next term which is the shortest ladder
in Fig. 5 (i.e., the ladder with one rung and two vertices
which is labeled as diagram 2). It is denoted as
Cxz'2(rptx „x2,r3 14) and it is written as

The zero order contribution to this quantity is obtained
from the first term in Fig. 5(a) which is the product of
two linear Green's functions and is denoted as diagram 1.
Using Eq. (2.12) we compute

Cxzz(rptx„xz, r3, r4)- dx;dx G(rptx„x )G(rptx1 x&) F(rptx;, x )f dt3dt4G(rptxj, x3)G(rptx;, X4) .a a
Br; Br

(3.6)

In writing Eq. (3.6) we dropped the tensor indices from Cx and F. The range of integration that is of interest for us is the
range r, —r2 « r;, rj « r3 —r4. In this range we can use Eq. (2.13) and evaluate the integral (3.6) as
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Cxz z(ro(x), xz&r3, r4)

P+1
r(r& )r(rz) r&rz

(r3r4) r3r

~, dr ~4 dr
E Eo P;, T'J. 7 r; 7 I"J-

r. '2 r.l J

(provided r&
—rz «r;, rj «r3 r4) . (3.7)

To proceed we will use the K41 scaling exponents to evaluate the correlators. In other words we evaluate E(roar;, r ) as
minIr;, r~ I according to Eq. (2.19). This is not an exact step, and it is used to demonstrate in the swiftest way the
existence of logarithmic divergences which lead to anomalous scaling. In Sec. VI we will derive an exact sum rule that
will establish the existence of the anomalous exponent and will determine its value.

Consider now separately the two possibilities r,. & r and r, & r . In the former case we find that the r,. integral con-
tributes mostly in the upper limit and the r integral in the lower limit. In the latter case the situation is inverted. In
both cases the integrals have their largest contribution in the regime r; —r . We thus can evaluate (3.7) as

~s
&z'z(rolxi xz r3 r4) +z'o(rolxi xz r3 r4) „=~oG'z'o(rolx~»z r3 r4) ln(r3i r]),

7'.
(3.8)

where b,o is a dimensionless constant of 0 (1). The next order contribution is

az 4(ro~x„xz, r3, r4) —fdx;dx G(ro~x, x )G(ro~xz, x, )

X E(ro~x;, xj )fdx„dx G(ro~xj, x„)G(ro~x;,x )
Br; Brj

X F(ro~x„,x )f dt3dt4G(ro~x„, x3)G(ro~x x4) .
~rn rm

(3.9)

It can be seen in analogy to the situation in (3.7) that the intermediate integrations in (3.9) peak in the regime r; —r and
r„-r . The largest contribution to the integral then comes from the regime r, -r2 «r;-r~ &&r„-r &&r3-r4. In
this regime the integral is evaluated as

P3 dr f3 dp
&z', 4(rolxi xz r3 r4) Gz', o(rolxi xz r3 rr) fPi p. f T

1
Gz, o(rolx 1 xz r3 r4)

2
~0 ln (3.10)

Note that we have asserted here without proof that the
coefficient in front of the logarithm is the square of the
coefficient in (3.8). This is intuitively acceptable because
of the repetitive nature of the ladder structure. It is how-
ever an important point and therefore we will prove it in
Sec. V by analyzing the resummed equation for the non-
linear Green's function.

It becomes believable now that the ladder with n rungs
contains a contribution of order [6 l o(rn/r3, )]"/n!. We
reiterate that there are additional contributions from oth-
er regimes of the intermediate integrations and they will
contribute lower powers of logarithms. One can take
them into account, but this only serves to renormalize the
value of 60, as is proven below. At this level of demon-
stration it is enough to take the leading order contribu-
tion from each n-rung ladder and notice that the summa-
tion of all these contributions will give a term proportion-
al to (r3/r& )

Next we need to prove that the decorations of the sim-
ple ladder diagrams do not change the qualitative picture
of anomalous scaling discussed above.

IV. PROOF OF RIGIDITY

A useful concept in the demonstration of anomalous
scaling is the concept of rigidity, which is an order by or-
der property of diagrams that we are going to use repeat-
edly. We explain the concept with the help of Fig. 11.
Consider the diagram in Fig. 11(a). The fragment within
the dashed circle is a part of the mass operator X. Sup-
pose that x, is smaller than xb, the property of locality
which was proven in I means that all the significant con-
tributions to the diagrams come from the range of in-
tegration in which x&, x2, x3, and x4 are all lying be-
tween x, and xb The property .of rigidity is stronger, and
it relates to fragments of diagrams whose exterior points
are vertices. For the diagram in Fig. 11(a) rigidity says
that if we fix the coordinate x& then for x, «x, and
xb »x, the largest contribution to the diagram comes
from the regime of integration x2-x3-x4 and all these
space-time coordinates are of the order of x&. We call
this property "rigidity" to give the intuitive feeling that
one can stretch at will the diagram such that ~x, —x

& ~
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other words, one can think of the propagators as springs
that are being pulled to stretch the diagram. If it is
sufficient to fix one coordinate of the fragment, in this
case any of the coordinates xi —x6 such that the main
contribution to the diagram comes from the regime that
all the coordinates in this group are of the same order, we
call the diagram rigid. We prove now that the ladder dia-
grams are rigid.

A. Rigidity of the dressed vertices

Xg

FIG. 11. Diagrams used in the explanation of the property of
rigidity.

and ~xb
—x, ~

becomes very large, but because x, was
determined, the positions xz, x3,x4 are rigidly fixed to the
vicinity of x, . We call the diagram rigid if it has this
property with regards to fixing either x& or x2. In dia-
grams that have three external legs to them, like the one
in Fig. 11(b) which belongs to the series of three-point
correlator, rigidity of the diagram implies that the inner
fragment is rigid with respect to fixing either x

&
or xz, or

x 3 Thus if we fix x, then x„xb, and x, can be brought
arbitrarily far away from x „and yet the main contribu-
tion to the integral comes from the regime x2, . . . , x7 are
all of the order of x&, etc. This definition of rigidity ex-
tends to diagrams with an arbitrary number of external
coordinates, like in Fig. 10(c). Such a diagram is called
rigid if fixing any of the coordinates x &, . . . , x 6 results in
the main contribution to the diagram coming from the
regime in which the rest of these coordinates are of the
same order as the fixed one, independently of the posi-
tions of the external coordinates x„.. . , x&.

Lastly we want to clarify the concept of a "stretched"
diagram. A stretched diagram is a diagram in which
there is a definite ordering in the positions of the vertices
that are being integrated upon. Consider, for example,
the diagram in Fig. 11(c). Suppose that the positions
p 2 I 3 p4 of the group of vertices x 2,x 3,x4 are larger than
the positions r„r6, r5 of the group xi,x6,x5. We call this
diagram stretched if all the positions r„r&, and r, are
smaller than any of r&, r6, r5, and the positions rI„r„~&
are all larger than r2, r„rz. Rigidity of a fragment will be
intuitively understood as the resistance to stretching. In

X2
r X3

X2

FICx. 12. Some local geometries about a given vertex that ap-
pear in the proof of rigidity.

The aim of this subsection is to answer the following
question: how should we evaluate a dressed vertex in a
stretched diagram? Every dressed vertex has three coor-
dinate designations, see, for example, Fig. 6, in which
these coordinates are x„xb, and x„respectively. For
fixed coordinates x i to x4 and xb, x& we need to integrate
over x, and x, . We will show here that the main contri-
bution to the integral comes from the region x, -xb -x, .
As a result we will be able to estimate the dressed vertex
as 1/rb. Finally this estimate will allow us to repeat the
argument that rb contributes mostly in the vicinity of r&.
Thus the estimate leading to the logarithmic divergence
will remain unchanged.

We begin by considering the various possible integrals
that depend on the local geometry around a given vertex
in a stretched diagram. These are the local geometries
shown in Figs. 12 and 13. In these figures the dashed line
represents either a straight or a wiggly half line. We think
of these fragments as parts of a bigger diagram in a
"stretched" configuration, meaning that in the larger dia-
gram there are no turn backs in the positions of other
vertices that are not shown in Figs. 12 and 13. In other
words, if we consider Fig. 12(a), the positions of all the
vertices attached to x, are smaller than r„and the ver-
tices attached to x2 and x3 are all larger than r2 and r3.
For Fig. 11(b) it means that all the vertices attached to x,
and x3 have positions smaller than r, and r3, and all the
vertices attached to xz have positions larger than r2.

The question that we want to answer is the following:
when we integrate over t, t2, and t3 where is the dorn-
inant contribution to the integral over r? In order to
answer this question efficiently we decompose the various
integrals to their elements, which are shown in Fig. 14.
Every vertex is a junction of two wavy lines and one
straight line. The Green's function belonging to the latter
is considered together with the vertex as one element,



52 EXACT RESUMMATIONS IN THE THEORY. . . . II. 3867

X2
X3

X2 Xy

Oa

x =r,i

i X3
~ X2

X3

FIG. 13. Some local geometries about a given vertex that ap-
pear in the proof of rigidity.

(a)

Wr 5

(b)
0

shown in panels 14(a) and 14(b). The wavy line can belong
to either a correlator considered in panels 14(c) and 14(d),
or to a Green's function considered in panel 14(e) and
14(f). In panels 14(c)—14(f) the vertex is excluded from
considerations, as is indicated by the dashed line. We
evaluate the time integrals on the basis of (2.13) and
(2.16). For brevity we will take a=P=O. This means
that our results shown in Fig. 13 are bounds, and the ac-
tual situation is always better in terms of the conclusion
where the integral over r contributes most.

The estimate of Fig. 14(a) is r which is obtained
from the estimate of the vertex like 1/r and of the
Green's function like r&/r . The integral over t is re-
stricted by r(ri ) and does not contribute. Figure 14(b) is
estimated as r which stems from the estimate of the
Green's function as 1/r . Figure 14(c) is r because the
correlator is r ~ and the time restriction is r(r ). On the
contrary Fig. 14(d) is r ~ because both the correlator
and the time restriction contribute r each. Figure
14(e) is again r because the Green's function and the
time restriction are determined by r~. On the contrary
Fig. 13(f) gives r due to r/r in the Green's functions
and r from the time restriction.

To evaluate the integral over x in Fig. 12(a) we need to
combine Fig. 14(a) with Fig. 14(d) and Fig. 14(f) in all
possible combinations. Upon performing the integral
over r we see that we always have the contribution com-
ing from the upper limit, i.e., when r is of the order of r2
or r3. To evaluate Fig. 12(b) we combine Fig. 14(a) with
Fig. 14(c) or Fig. 14(e) and with Fig. 14(d) or Fig. 14(f).
Here the resulting r integral contributes mostly in the
lower limit, when r is of the order of r, or r3. Similarly
we find that in Fig. 11(c) the major contribution is in the
lower limit, as is the case for Fig. 12(c). In Fig. 13(a) and
Fig. 13(b) the major contribution is in the upper limit.
This information is summarized in Fig. 1S that shows
where the integral over r contributes to any possible ar-
rangement of propagators. The arrow shows whether the
major contribution is coming from the upper or the lower
limit. We again want to invoke the mechanical analogy of
springs, and point out to the reader that one can guess
where the major contribution comes from simply by
counting how many springs pull in each direction. We
note that the "spring strength" is not the same for a
correlator or a Green's function. But in any combination
two springs are always stronger than any single spring.

These results can be used now to prove immediately
that the simply decorated vertices in Fig. 6 have their
main contribution (in the stretched situation) in the re-
gion of integration x, -xb-x, . Consider for example
the decorated vertex A in the diagram numbered as (1).
Let us stretch the diagram such that r, and r2 are the
smallest positions and r3 and r4 the largest. Fix rb and
realize that the results summarized in Fig. 15 imply that
the main contribution is when r, is of the order of rb.
Similarly, the integral over r, will contribute in its lower
limit, again for r, or the order of rb. Using now the prov-
en locality x, -xb-x„ the scaling relations (2.11) irn-

mediately imply that the evaluation of the decorated ver-
tex cannot be changed from the evaluation of the bare
one, and it is therefore 1/rb.

We could go on to any chosen decoration of the vertex
and reach a similar conclusion. Consider for example the
decoration of the same vertex A shown in Fig. 11(b). Fix
the position x3 for example. Stretch the springs connect-
ed to x, and xb such that r, &rj &r3 &r2 &rb. The
spring analogy which says that two springs are stronger
than a single one implies that the dominant contribution

(e)

dtj « ' dtj«
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FICx. 14. The elements that appear in the local geometries in
Figs. 12 and 13.

FIG. 15. The final relevant geometries in stretched diagrams
and the indication where the main contribution to the integral
comes from.
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omes from ri of the order of the smaller of r4 and r6.
Similarly, r2 will be of the order of the larger of r4 and r5.
Next we repeat the argument at r4 or r6 and r4 or r5 and
conclude that they contribute in the vicinity of r3. When
all the coordinates are of the same order the scaling rela-
tions protect the evaluation of the dressed vertex and
keeps it as I/r3. The spring analogy helps to understand
that when we decorate the vertex further the rigidity is
even more pronounced since there are more springs to
keep it in place.

B. Rigidity of the rungs

&xg xd x6 x7 +

x7 x~ xs~

x11 x12

Xg

)x3

gxs x~

~
&x5 xd

jx4

xlo

x2

Having demonstrated the rigidity of the three-point
vertices, we can proceed now to examine the rigidity of
the four-point rungs. For the case of the dressed simple
ladders, the regiment is immediate. Consider the dia-
gram in Fig. 8(a), and focus for example on the diagram
designated as 1. Suppose that we stretched r, and r2 to be
much smaller than r, and rb, and r3 and r4 to be much
larger than r, and rb. Can we have a significant contribu-
tion from the region in which r, becomes much smaller
than rb or vice versa? The analysis summarized in Fig.
15 or the spring analogy imply that the answer is nega-
tive. Both vertices will contribute in the same neighbor-
hood r, -rb. This is the property of rigidity of the
dressed simple rung.

Next we are going to consider the two-eddy mass
operator &2(ro!x„x2,x3,x4) which is positioned in a
ladder like in Fig. 9(b) (diagram 3) with another such
mass operator above and below. Here "above" means
that the lowest two coordinates of the next mass operator
are much larger than x„xd, and "below" means that the
upper two coordinates of the previous mass operator are
Inuch smaller than x„xb. Consider this object with one
fixed coordinate, say r„and integrate over the other
three coordinates. We wi11 prove now that the main con-
tribution to this integral comes from the regime in which
all the three coordinates are of the order of the fixed one.

To this aim consider Fig. 16(a). We display here a
block representing a dressed rung of the ladder all of
whose coordinates are of the same order of magnitude,
except for the two blobs whose coordinates are much
larger or much smaller than all the other coordinates.
These two blobs must be connected to the rung with at
least two legs, else the diagram would be one-eddy reduc-
ible.

Consider the case that the blob includes just one ver-
tex say x 3 and it is indeed connected via exactly two
legs, say to the vertices x5 and x6. In this case we are in
the situation of Fig. 15(b), and the vertex will contribute
mostly when x3 is of the order max(x~, x6). If the vertex
gets decorated, the proof of rigidity of the three-point ob-
jects guarantees that the dominant contribution to the in-
tegral comes from the regime in which the positions of all
the vertices are of the same order, say, r3-r9-r&o. The
scaling relations imply that this vertex can be evaluated
as, say, 1/r3, exactly like the bare one. Consequently the
blob contributes mostly in the vicinity of max(x ~,x 6 )

again.

FIG. 16. Diagrams used in the proof of rigidity of the rungs
of the ladder.

Next we discuss the effect of adding additional legs to
the connection of the blob to the main block of the rung.
These legs can be either correlators F(ro!x„,xd ) or one of
the Green's functions G (ro!x„,xz ) and G (ro!xd, x„).
Here x„belongs to the upper block x„-x3, and xd be-
longs to the lower block xd-x5. We will discuss the
effect of the addition of one such leg, and show that it
makes the integration over x3 peak more strongly at its
lower boundary. The addition of more legs just enhances
this tendency.

Adding a correlator F(ro!x„,xd ) requires the addition
of two vertices at x„and xd, two Green's functions, and
two space time integrations over x„and xd. This leads to
an additional dimensionless factor (rd/r„)r. To evaluate

y note that upstairs we have r„ from the space integral,
1/r due to the Green's function, and 1/r„due to the
vertex. The time integral upstairs contributes actually
r(rd ) due to the time restriction on the correlator. Down-
stairs we have rd+ ~ from the space time integral, 1/rd
from Green's function and vertex, and rd as an evalua-
tion of the added correlator. Consequently we find in this
case y=1.

If the added leg is G(ro!x„,xd) the situation upstairs
changes since the time integral is now bounded by
r(r„,rd ) (r(r„). The situation downstairs also changes.
We need to insert an additional correlator (instead of
Green's function) which contributes rd

~ . The
G(ro!x„,xd) contributes 1/rz, and the space time in-
tegral rd+ . By power counting we conclude that in
this case y )—,'.

Finally the added leg can be G(ro!xd, x„), which is
evaluated as rd /r„. In this case we add upstairs a corre-
lator which contributes r„, and the space integral over
the vertex gives r„.The time integral upstairs in bounded
by r(rd ). Downstairs we add a Green's function evalu-
ated as 1/rd, and the space time integration over the ver-
tex contributes rd+ . In summary we compute y ) 3.

We see that in all cases y is positive, leading to a
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stronger preference of the integral for peaking down-
stairs, as claimed above. This result is again in conformi-
ty with the intuitive picture that considers the propaga-
tors as springs that pull fragments of a diagram to each
other. Adding more propagators to the detached blob
makes the situation even more rigid.

The analysis of the blob with smaller coordinates paral-
lels the above analysis exactly. Again the blob must be
connected to main rung with at least two propagators,
and the spring analogy works perfectly.

Finally consider the situation in Fig. 16(b), in which
two blocks involving arbitrary resummations of two-eddy
irreducible diagrams which are separated by at least three
legs as shown. The two outer Green's function are parts
of the principal paths, and the dashed line represents at
least one additional connection, which is either
F(ro~x„,xz) or one of the Green's functions 6 (ro~x„,x&)
and G(ro~xz, x„). If all the coordinates were of the same
order, this diagram would represent one rung of the
ladder, and its evaluation would be, according to the scal-
ing relations, just like the evaluation of a bare rung. The
aim of the present discussion is to show that indeed in the
stretched diagram the largest contribution comes from
the regime in which all the coordinates are of the same
order. To show this we will assume that the two blocks
have widely separated coordinates. All the upper coordi-
nates are of the order of x„,and all the lower coordinates
are of the order of x&. We can fix one coordinate at will,
say x j. The claim is that the major contribution to the di-
agram in Fig. 16(b) comes from the regime in which all
the coordinates are of the order of x &.

For pedagogical purposes it is useful to discuss first the
two-eddy reducible topology in which there is no connec-
tion (in addition to the two Green's functions belonging
to the two principal paths) between the two sub-blocks.
If we assert that the coordinates in each block separately
are of the sam. e order, x„and x& respectively, the integra-
tion over all coordinates will result in a term proportional
to J „dr„/r„. Analytically this estimate is understood

d

from the discussion of the bare ladder in Sec. III B and
from the rigidity of the dressed rung. In the spring anal-

ogy we have two springs below and two springs above,
and this results in a neutralization which is a "Inechani-
cal balance. " Analytically this means that the integral is
logarithmic, having no preference to either upper or
lower bound. Adding any one leg that turns these two
sub-blocks into a two-eddy irreducible topology immedi-
ately introduces into this integral a factor (r&/r„)r with

y taking one of the positive values found above. This fac-
tor forces the integral to peak in the regime r„-r&. Any
additional leg connecting the two sub-blocks only serves
to enhance this tendency. The additional spring turns the
whole rung rigid.

One can come up with arbitrarily involved topologies
of sub-blocks, say by introducing additional blobs at vari-
ous coordinates between the two blobs shown in Fig.
16(b). The analysis presented here suffices to show that all
these cases lead to the conclusion that the major contri-
bution comes from the shell in space in which all the
coordinates are of the same order.

C. Dangerous contributions: Ladders in ladders

The procedure outlined above consists of a proof of ri-
gidity in every order of the diagrammatic representation
for the two-eddy irreducible mass operator which appears
as a rung in the ladder. However, the anomalous ex-
ponents discussed above appears in a power law that re-
sults from the resummation of ladder diagrams to all or-
ders. Therefore we need to be doubly careful about the
appearance of resummations to all order within the
blocks that represent the rungs in our ladder. In other
words, we need to examine the possible appearance of
ladders within the rungs of the ladders.

In Fig. 17 we present examples of two dangerous
ladders in the rung of the ladder. In panel 17(c) the inner
ladder has Green's functions oriented in the same sense
as the main ladder. In panel 17(b) the Green's functions
are oriented in the opposite sense. In Figs. 18, 17(a), and
18(b) we present the inner ladders in r, t coordinates, to
stress that the time restrictions on the Green's functions
force the two inner ladders to be oriented in the opposite
direction in time.

The understanding of the situation of Fig. 17(a) is not
difficult. We have learned before that the insertion of a
leg of 6 (ro~x&, x„) results in a reduction factor of the or-
der of (r&/r„) . The inner ladder in Fig. 16(a) starts
with two such legs, and this results in a total reduction of
the order of (rz/r„) . On the other hand, the ladder it-
self will contribute an additional factor of (r„/rz} . We
thus expect that in toto we will have a factor of
( /r )8/3 —b

This calculation shows that if 6 exceeds —,
' we will lose

the property of rigidity and our theory will be in real
danger. In fact we will show momentarily that the bor-
derline of applicability of the theory is actually 6=—,. As
long as we assume that the numerical value of 6 is small-
er than —, we can conclude that the inner ladder still acts
as a spring which is at least as strong as an additional
G (ro~x&, x„)leg. It is in no way dangerous.

The understanding of the role of the second type of
ladder, Figs. 17(b) and 18(b), calls for a different type of
consideration. Suppose that we want to insert the ladder
of Fig. 17(b) between two rungs (say, between the lowest
and the next lowest rungs} of an outer ladder of the type

FIG. 17. Examples of dangerous '"ladders within the ladder"
diagrams.



3870 VICTOR L'VOV AND ITAMAR PROCACCIA 52

FIG. 18. Ladders drawn in r, t coordinates, to show the natu-
ral leaning over that which is dictated by causality.

of Fig. 17(a). However Fig. 17(b) is oriented (by causali-
ty) upward to the right. Since the ladder in Fig. 17(a) is
oriented (again by causality) upward to the left, inserting
Fig. 17(b) between two rungs severely constrains the time
range of the inserted ladder. This time constraint
prevents a logarithmic divergence. In other words we
cannot have a large factor of (r„/rd ) to some exponent in
the inserted ladder. The lesson is that consequences of
causality on the time restriction of the Green's functions
do not allow an insertion of one type of ladder in the oth-
er.

However these are not the only dangerous situations
that need further careful discussion. For example, in Fig.
19 we display yet another configuration of contributing
diagrams in which the bare Green's functions that define
the ladder are replaced themselves by ladders. In this
case the estimate of the case shown in Fig. 16(a) is
corrected by another anomalous factor of (r„/rd ) . One
can still state that for 5 & —', the power ——', keeps the rung
rigid, but we already come closer to a possible breakdow~
of the property of rigidity which would occur if 5=3.
Indeed, we are going to show below that 6 attains pre-
cisely its critical value 2 —

gz which for K41 scaling is ex-
actly —', . This fact means that nonperturbative effects
which appear in infinite resummations are very impor-
tant, and they may indeed lead to nontrivial renormaliza-
tions of the scaling exponents.

D. Radius of the ball of locality

Before continuing our study of anomalous scaling we
pause to make use of the concept of rigidity to improve
our estimate of the radius of the ball locality. The ques-
tion arises in the context of the Green's function
G(O~r, r', t) and the correlation function F(O~r, r', t) when
r and r' are of different orders of magnitude. The result of
this consideration will be that the radius of the ball of lo-
cality is always determined by the smaller of r and r'. The
reader who is not interested in this issue is invited to go
directly to Sec. V.

In the context of the Green's function the question is
I

FIG. 19. More dangerous "ladders within the ladder" dia-
gram.

what is the spatial domain which contributes mostly to
the integration over r, and r2 in Eq. (2.8). Due to rigidi-
ty, in the stretched situation when r «r' or vice versa
the coordinates r& and r2 must be of the same order to
contribute significantly. In this regime the mass operator
X can be evaluated as (cf. paper I) Sz(r, )/r, -e r, '

The integrals over r„rz, and t, are bounded

f r&r(r&)dr&. Next the product of the two remaining
Green's functions can be always estimated as
G(O~r, r', 0+)/r&. The total r& dependence of the in-
tegrand is r

&
and therefore the integral contributes at

its lower limit which is the smaller of r and r'.
In the context of the correlator we need to analyze the

integrals over r„r2, t„and t2 in Eq. (2.9). In the
stretched situation rigidity allows us to restrict our con-
siderations to the regime r& -rz. In this regime the mass
operator @ can be evaluated (cf. I) as Sz(r, )/r, The.
space time integrals contribute to the r, dependence as
before, because one of the time restrictions is
r(min[ r, r'j ). Now the two Green's functions are
differently oriented and can be evaluated as
minI r, r' j /r, In toto . we find the same evaluation of the
integrand in (2.9), namely r, ~ . Again the integral con-
tributes at its lower limit which is the smaller of r and r'.

The conclusion is that due to rigidity, in both Eqs. (2.8)
and (2.9) the relevant domain of integrations over r, and
rz is r& -r2-minIr, r'j. Now we can apply the property
of locality proven in I to see that upon expanding the
mass operators in their infinite series, all the intermediate
coordinates have to belong to the same domain. Conse-
quently, the global ball of locality has a radius min I r, r' j.

V. ANOMALOUS SCALiNG

In this section we discuss the resummed equation for
the nonlinear Green's function, and solve for the anoma-
lous exponent that is associated with this function. The
equation is shown graphically in Fig. 10(b), and in analyt-
ic form it reads

Gz (ro~x„x2,x3,x4) =G (ro~x„x3)G (ro~xz, 4)

+ f dx dxgdx dxdG (rolx) x )G (rolx2»b )&2 (rolx»y» xd )Gp s(rolx xd x3»4) ~
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Equation (5.1) is a closed integral equation for Viz, but the
operator X2 is given in terms of an infinite series which
begins with the diagrams shown in Fig. 10(a).

Equation (5.1) can be considered as a linear inhomo-
geneous equation for G2. If we expand around the inho-
mogeneous term G XG we recover the initial expansion
that was represented diagrammatically above. However,
we can now seek nonperturbative solutions which are the
solutions of the homogeneous part of Eq. (5.1). We will
demonstrate in Sec. VA that this nonperturbative solu-
tion has a power law form in which the anomalous ex-
ponent 5 appears, and that this solution is much larger
than the inhomogeneous solution. In Sec. VB we will
evaluate the anomalous exponent exactly. In order to
define the anomalous exponent 6 precisely we introduce
the following function:

T tI(rI, rz, R) —=f dx3dx~Gz (rolxI»z x3»4)

XD'yq'(x3, x4), (52)

where Drs'(x3, x4) is some function with a characteristic
length scale R and characteristic time scale r(R). The
anomalous exponent is defined via the limit

1
lim VI.Vz T (r, , rz, R ) ~

g(r&, r2 ((R 12

(5.3)

Equation (5.1) is not an easy equation to solve. The
nonlinear Green's function is a function of four space
time variables, and it is a fourth-rank tensor. In order to
gain insight on Cx2 we will reduce it to a function of a
smaller number of variables. Also, we are interested here
in its scaling properties only, and we can simplify the dis-
cussion by dropping the tensor indices. This will allow us
to develop a qualitative analysis that will demonstrate the
power law behavior that is implied in (5.3). The actual
computation of the limit in (5.3) will be done in the next
subsection.

The reduction in number of variables is done as fol-
lows: we integrate Ci2 over the last two time variables t3
and t4, and consider its value at t, = t2 =0 and r& =r2=r,
and r3=r4=R. We choose R »r. Define a new quanti-

ty gz(r, R) via the equation

f dt31t4Gz(rolr t, =O, r, tz

=O, R, t3, R, t4):—[ (r,rR)G (rolr, R, O+)] gz(r, R) .
(5.4)

The function gz(r, R) is a dimensionless function by con-
struction. In general gz(r, R} is a function of r, R, and
the angle between r and R. For R »r the angle becomes
irrelevant. In the regime when r and R are in the inertial
interval, the function g2 can depend on the ratio r/R
only. The notation will be

y =r /R, gz(r, R ) =gz(y) . (5.5)

The reasons for this somewhat cumbersome definition of
6 will become clearer in a future paper.

A. Homogeneous solutions: Qualitative analysis

In the Appendix we show that this function satisfies the
approximate integral equation

gz(y) Cf +(y&ya }gz(yg }
Ia

(5.6)

with some dimensionless constant C, and kernel K(y,y, )

which can be written as

K(y,y, )=
2

g(y/y. )g(y, )

g (y)
(5.7}

Here g(y) and gz(y) are dimensionless functions which
are defined by

g (r /r') = r' G—(rolr, r', 0+ ),
gz(r/r'): gz(r, r') —.

(5.8)

gz(y) = & f " '
&(y y. }gz(y. }

0
(5.9)

In this subsection we examine the solutions of the model
Eq. (5.9).

We note that the known asymptotic properties of
G(rIIlr, r', 0+) imply that

a for y))1
g' y)=

~

by for y «1, (5.10)

with a and b being dimensionless coefBcients. These prop-
erties imply also the asymptotic properties of the kernel
E(y,y, ). In the y, y, plane we display the evaluation of
the kernel in Fig. 20.

In order to understand the type of solutions that are

I

I

I

I

I

I82
I

I

I

I

I ~ y

FIG. 20. The kernel of models A (trajectory Al) and B (tra-
jectories B, and B2).

Equation (5.6) was derived on the basis of the choice of
y «1 and considering y «y, «1. Of course, the equa-
tion for the nonlinear Green s function included addition-
al regimes that we did not study explicitly. To gain in-
sight to the relevance of these regimes we are going to in-
terpret Eq. (5.6) in a more general setting, allowing y and

y, to go between zero and infinity:
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supported by the integral equation (5.9) we turn now to
some simplified models.

231

1. Models

a
g2(y) =&pf g2(y, )

ya
(5.11)

The simplest model that we can think of is the one in
which the constant a in Eq. (5.10) is zero. This leaves us
with g(y) in the regime y & 1 where our model was de-
rived. The asymptotic form of K (y,y, ) is therefore
EC(y, y, )=0 for y, ) 1 and for y, &y. In other words,
E(y,y, )=b in region 2 of Fig. 20, and zero in all the
other regions. We call this model A. In this case the in-
tegration in (5.9) is the trajectory denoted by the dashed
line A

&
in Fig. 20, which is limited to lie within region 2.

The equation for g2(y) reads

Igodel Z-

1/2

FIG. 21. The solution 5 as a function of Ao in model B and
model C.

el A. We seek a solution in the form of (5.12). Substitut-
ing this form in (5.14) we find that the requirement of
convergence of the integrals puts a limit on the allowed
values of h. These limits are

where 60= Ab . The solution of this equation is

g2(y) =C/y b, =hp (models) .

—2&6&2 .

The two solutions for b, are

(5.15)

The coefficient C should be determined from the bound-
ary condition g2(1). In dimensional form this result
reads

fdt, dt4G(rp r, ti =O, r, t2

=O, R, t, , R, t4)

o + p R=C[r(r, R)G (rp~r, R, O+)]
r

(5.13)
This is the same result that we obtained in Sec. III B on
the basis of the resummation of the logarithmic contribu-
tions in the simple ladder diagrams. This is not surpris-
ing since model A represents exactly in resummed form
the nature of the approximation in Sec. IIIB in which
only the dominant contribution was taken from each dia-
gram. The subdominant contributions are not expected
to ruin the anomalous scaling behavior, but since the
anomalous exponent is sensitive to the numerical value of
the coefficients, we expect the subdominant terms to
effect the numerical value of the exponent. To study this
effect we turn to a slightly more complicated model.

2. Model B
The next model, which we refer to as model B, is ob-

tained when we use the asymptotic properties of X (y, y, )

as shown in Fig. 20 up to the boundaries of the regions,
choosing the coefficients a =b. Start with y & 1, and fol-
low the trajectory B& in Fig. 20 in the integration in Eq.
(5.9). This trajectory crosses three regions in Fig. 20,
namely 1, 2, and 3, and accordingly the equation has
three integrals:

y i dya
g2(y) ~p 2 f dy y g2(y. )+f g2(y

y 0

5+e 1+Ql —25p (model 8, y & 1) . (5.16)

The two real branches of solutions as a function of 60
are shown in Fig. 21. For 60«1 the solution 6 of
model B coincides with the solution of model A. Indeed,
for small hp the second integral in (5.13) is dominant
since it is the only one proportional to 1/b, . This contri-
bution is equivalent to considering the ladders in their
fully stretched configuration, which corresponds to mod-
el A. However, in this case there is another branch of
solutions, 5+, which for small 60 is dominated by the
first integral in (5.14) which is proportional to 1/(2 —b ).
For 60= —,

' these two branches coincide. In this model
there is no real solution for 60) —,'.

Since we have two solutions for 6, the general solution
is a sum

C+ C+y' y'- (5.17)

3. Model C

Finally, we discuss for completeness a model C that in-
troduces yet more freedom in the scaling function g (y):

with coefficients C+ and C that are determined by the
boundary condition and the requirement of continuity
across the boundaries of Fig. 20.

We see that in the regime y & 1 the solution (5.17) has a
leading scaling exponent which is 5+, whereas 6 ap-
pears only as a correction to scaling. In our simple model
the leading scaling exponent 6+ takes on values between
2 and 1 before becoming complex. In general we may
have a whole spectrum of exponents that appear as
corrections to scaling.

+,' g, (y.), y & 1 .
ya

(5.14)

The second integral is the one taken into account in mod-

1 for y)1/d
= . V'dy for d &y &1/dg(y)

a
y fory&d .

(5.18)
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with d & 1 (for d = 1 we regain model B). Model C intro-
duces a smoother cross over in the regime y —1. Substi-
tuting (5.18) in the expression for K(y,y, ) (5.7) we find
for y &(d the following expressions:

(y, /y) (reg. 1: y, &dy)

dy, /y (reg. 1-2: dy &y, &y/d)
It (y,y. )

1 (reg. 2: y/d &y, &d)
a

d/y, (reg. 2-3: d &y, &1/d)

1/y, (reg. 3: 1/d &y) .

(5.19)

The expression for E (y, y, ) in regions 1,2,3 corresponds
to the values in model B, cf. Fig. 20. For d =1 the re-
gions 1-2 and 2-3 disappear. Now the integral equation
for g2(y) takes the form

dy
g2(y) =~p, dy.y.g2(y

y 0

d y/d d dye+—f dy g2(y. )+f g2(y. )
dJ y/d y

1/d dyg+df, g2(y. )+f, g, (y. )
d y 1/d y

+ +
2 —6 6 1 —6 (5.21)

(5.20)

The requirement of convergence is again —2(6&2,
since it is coming from regions 1 and 3 which are the
same as in model B. Seeking a solution in the form (5.12)
we find that 6 solves the transcendental equation

5N P(xi, x2)
X2 (rp~x), x2,x3,x4)=

5F(yPs'(x3, x4)
(5.24)

F=G4 [D+N]4 G, (5.25)

where the star operation e means integration over space
and summation over the tensor indices. In the same
schematic representation the functional derivative takes
the form

where the superscript "(pc)" means that the functional
derivative is taken only with respect of the correlators on
the principal cross section of the diagrams of @.

The proof of the identity is available from inspection of
Figs. 2 and 10. By taking the functional derivative of dia-
gram (1) in Fig. 2 we get the first contribution to the first
diagram on the RHS of Fig. 10(a). (The one with two A
vertices. ) The factor of —,

' in Fig. 2 disappears because
there are two identical contributions to the functional
derivative. If we take all the diagrams in N with just two
correlators in the principal cross section, then the func-
tional derivative will yield exactly the first term on the
RHS of Fig. 10(a). Next consider diagram (2) with three
wavy lines at the cross section. This is the first in an
infinite series of diagrams with three wavy lines at the
cross section. Finding the functional derivatives of these
contributions we generate all the terms in X2 with two
wavy lines at the cross section. For example, the diagram
(2) in Fig. 2 produces three terms, the second, third, and
fourth in Fig. 10 with bare vertices. The generalization of
the procedure is clear.

Next we consider the Wyld equation (2.9), and evaluate
the functional derivative 5F &(rp~xi, x2)/5D&Ps'(x3rx4)
where the functional derivative has the same meaning as
Eq. (2.6), but we restrict the variation only to contribu-
tions appearing in the principal cross section in the di-
agrammatic representation of F. Rewrite the Wyld equa-
tion in schematic form

One obvious property of the solution of this equation is
that the symmetry h~(2 —b, ) is preserved, meaning that
the solution is still symmetric around the 6=1 line.
Second, in the regime 60~0 we have again the same two
solutions as in model B, i.e., 5=60 and 6=2—60. The
solution crosses the symmetry line 5=1 just once, exact-
ly when

=GG+Ge eG .
gD (Pc) gD (Pc)

Next observe that

54 54 5F
gD(Pc) gF(Pc) gD(Pc)

(5.26)

(5.27)

b,p= —,'(d +lnd) . (5.22)

B. Exact solution of the anomalous exponent 6,

In this subsection we derive the important exact result

5=2—
g2 . (5.23)

In order to prove this we will first establish an identity
which relates the mass operator @ which is shown in Fig.
2(b) and the two-eddy irreducible mass operator X2 which
is expanded in Fig. 10(a). The identity is

The implication of this result is that the topology of the
line of solutions remains similar to the solution of model
B, as shown in Fig. 21. In particular the leading anoma-
lous exponent is again larger than 1.

rrF x(rrlx„xr) 5 w, (rollx, )wx(rrllxr))
5D s(x3,x4) 5h (x3)5hs(x4)

(5.29)

Here the RHS is another type of nonlinear Green's func-

Using now the identity (5.25) we conclude that 5F/6D'p'
solves exactly the same integral equation (5.1) as the non-
linear Green s function, i.e., the equation displayed in
Fig. 10(b). This means that

5F p(rplXirX2)
(,)

=G2 (rplxi, x2, x3,x4) . (5.28)
5D'Ps') (x3,x4)

One should note that if we were evaluating the full func-
tional derivative of F with respect to D, not restricted to
the principal cross section, we would have derived anoth-
er relation, which is
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Now the physical meaning of the function T p(r„r2, R)
becomes clear. It is the change in the double correlator
F p(ri, r2) due to the existence of an additional random
forcing on the scale R with a correlation D' '. The point
now is that if the coordinates r, and r2 are much smaller
than R, then the double correlator should have its usual
universal exponent g2 and the role of the additional forc-
ing is only in changing the magnitude of F. Accordingly

lim Tap(r „r2,R ) ~ F p(r i, r2) .
rI r2«R

Remember that

F p(ri r2) Sap(11)+S p'(12) S p(rl 12)

S p(R)=(5u (r+R, r)5up(r+R, r)),

(5.31)

(5.32)

(5.33)

where 5u was defined in (1.1). Consequently the deriva-
tive implied in Eq. (5.3) picks up only the last contribu-
tion in (5.33) with the final result which is Eq. (5.23).

VI. SUMMARY AND DISCUSSION

In paper I in this series we presented a proof of locality
in the perturbative theory of the velocity structure func-
tions and the velocity Green's functions. This proof ex-
cluded the possibility of a perturbative mechanism for
anomalous scaling behavior of these quantities. In this
paper we began to explore the nonperturbative origins of
anomalous scaling in turbulence. By examining the non-

tion.
At this point we can use the result (5.28) in Eq. (5.2) to

obtain the relation

5F p(rplx2, x2)
T p(r„r2, R)—:f dx3dx4

( ) DyQ (x3 x4)
5D'~q'(x 3,x4 )

(5.30)

linear Green's function (3.1) we showed that its diagram-
matic series exhibits ladder diagrams that produce loga-
rithmic terms that resum to an anomalous power of the
dimensionless ratio of two separation distances. The re-
sults of Sec. V can be summarized as follows:

V„G2(r, r, R,R) a- r (6.1)
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for their critical reading of the manuscript. This work
has been supported in part by the Naftali and Anna
Backenroth-Bronicki Fund for Research in Chaos and
Complexity, the German Israeli Foundation, and the
Basic Research Fund of the Israeli Academy of Sciences.

APPENDIX: REDUCTION
OF THE INTEGRAL EQUATION

Consider the homogeneous part of Eq. (5.1), integrate
it over t3 and t4, and consider it for t& =t2 =0, r, =rz =r,
and r3 = r4 =R. Dividing the result by
[r(r, R)G (rplr, R, O )] we find the following equation:

The analysis of the resummed perturbation series of the
nonlinear Green's function in Sec. V indicated that 6 has
a critical value which is 2 —

$2 for which nonperturbative
effects may become very important and may lead to a re-
normalization of all the scaling exponents in the theory.
In Sec. VI we demonstrated that 6 attains exactly this
critical value. This result opens up the critical scenario
for the renormalization of the scaling exponents
which will be explored in detail in a future paper of this
series. It will be shown there how the critical scenario
may result in multiscaling with the outer scale of tur-
bulence as the renormalization length. The deep implica-
tions of this type of criticality are explained in [22] and in
a future paper.

ACKNOWLEDGMENTS

1
g2(r, R)=

p + 2 fdx, dxbdx, dxdG(rplr, r„t, )G(rplr, rb, tb)X2(rplx, »b
[r(r, R)G (rp r, R, O )]

X f dt3dt4G2(rplx„xd, R, t3, R, t4) . (Al)

The property of rigidity of X2 implies that the main contribution to the integral comes from the region r, -rb -r, -rd.
Because of the logarithmic situation the largest contribution will come from the region of r, integration in which
r « r, «R. This offers an evaluation of the integrations over rb, r„and rd as r, . We rewrite

g2(r, R)= f dr, r,"fdt, dtbdt, dtdG(rplr, r„t, )G(rplr, r, t&)X2(rplr„t, r„tl„r„t„r„td)
[r(r, R)G (rp r, R, O+)]

x f dt3dt4G2(1plr„t„td, R, t'3, R, t4) . (A2)

Note now that the typical time scale of G (rpl r, r„t, ) is smaller than r(r), whereas the typical time scale of X2 is r(r, )

which is much larger than r(r). Accordingly we can take t, =tb =0 in the expression for X2, and perform the t, and tb
integrals with the help of the relation (2.12). The result is

1
g 2 (r, R ) = f dr, r,' f dt, dtd [r( r, r, )G (rpl r, r„O+ ) ] X2(rpl r„t, =0,r„tb =0,r„t 3,r„td )

[r(r,R)G (rp r, R, O+)]

X fdt3dt4G2(rplr„t„r„td, R, t3, R, t4) . (A3)
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To proceed we note that now Xz is determined by one time scale, r(r, ). On the other hand G2 depends on three time
differences, say, t3 —t„ t4 —t„and td t—, . The time arguments t, and td cannot exceed r(r, ) because of the decay of
Xz. For R »r, this means that t3 —t, = t3, t~ t—, = t~, and td t,—-r(r, ). In the evaluation of G2 we can take td t, t—o
be zero. Using the definition (5.4) and evaluating the integral over t, and td as r(r, ) we have

g2(r, R)=
o + z fdr, r,"[r(r, )r(r, r, )G(roar, r„O+)] Xz(r o~r„t, =O, r„tb =0,r„t,=O, r„t&=0)1

[r(r,R)G (ro r, R, O+)]

X [r(r„R )G (ro~ r„R,O+ ) ] g2(r„R ) . (A4)

Using Eqs. (2.13)—(2.16) we find that cr2=2$2 10—= —6—4z . (A6)

r(r, )r(r, r, )r(r„R )/r(r, R ) = [r(r, ) ]~ .

X2(r)-

where we made use of the scaling relation (2.15), and C is
a dimensionless coefBcient. The last form will be of use in
our calculations below. The scaling exponent of Xz(r) can
be read from (A5):

We need now to evaluate X2. In the preceding section we
showed that all the diagrams in this series are rigid. Con-
sequently the major contribution to the equation (5.1)
comes from the regime in which the four coordinates in
X2 are of the same order. Because of this property of ri-
gidity and the scaling relations each diagram in the series
has the same order of magnitude and represents a homo-
geneous function of its arguments with the same scaling
index that we denote as o.2. We can evaluate X2 from any
one of the diagrams in its series. For example, the first
diagram with two A vertices gives us 1/r from these
vertices, 1/Ir [r(r)] I from two delta functions
5(x; —xj ), and S2(r) from the correlator. In total

Sz(r)
(A5)

r [r(r)]2

One can check that this scaling relation, together with
the fact that the scaling exponent of G (ro~x„x, ) is —3
guarantees that the second term on the RHS of Eq. (5.1)
has the same scaling index as the first term, which is —6.
Using then the evaluation (A5) we find

r,
g2(r, R)- A f K(r, r, R)g2(r„R), (A7)

where K(r, r„R) is the dimensionless function

K(r, r„R)= r, G (roar, r„O+ )G (roa r„R,O+ )

G'(rolr, R, O+ )

When all the scales are in the inertial regime K(r, r„R ) is
a function of two ratios only,

K(r, r„R)=K(y,y, ), y =r/R, y, =r, /R . (A9)

In this regime we can write the final equations (5.6)—(5.8).
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