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Transport properties in a binary mixture under shear flower
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The Boltzmann equation for a binary mixture of Maxwell molecules under uniform shear fiow is
exactly solved. The transport coefficients (shear viscosity and viscometric functions) are nonlinear
functions of the shear rate and the paraineters of the mixture (particle masses, concentrations, and
force constants). The results apply for conditions arbitrarily far from equilibrium. In the particular
case of mechanically equivalent particles, the Ikenberry-Tt. 'uesdell solution is recovered. In the tracer
limit previous results are reobtained and a transition to an alternative state is identified. In this
alternative state, the tracer species has a finite contribution to the properties of the mixture.

PACS number(s): 51.10.+y, 05.20.Dd, 47.50.+d, 05.60.+w

I. INTRODUCTION

One of the most interesting problems in statistical me-
chanics is the study of transport phenomena in fl.uids
far &om equilibrium. Since the general problem is very
diKcult to attack, it is convenient to consider specific
situations which lend themselves to a tractable descrip-
tion. One of the most extensively studied states is the
so-called uniform shear flow (USF) [I]. In this state all
the hydrodynamic gradients are zero, except one (which
is a constant), namely, Ou iOy = a = const, where u is
the How velocity. The relevant transport properties are
the nonlinear shear viscosity rl(a) and viscometric func-
tions @i 2(a). In the case of dense fluids, these quantities
have been obtained by molecular dynamics simulations
[21.

In the low density regime, the essential information
of the system is given by the one-particle velocity dis-
tribution function f (r, v; t), which obeys the nonlinear
Boltzmann equation [3]. In the USF, the transport coef-
ficients are related to the second order moments, namely,
the pressure tensor P. In order to get P as a function
of the shear rate a, one needs, in general, to solve the
infinite hierarchy of moments. Nevertheless, this hierar-
chy can be recursively solved only in the special case of
Maxwell molecules, i.e. , particles interacting via a repul-
sive r potential. For a single gas of Maxwell molecules,
Ikenberry and Truesdell (IT) [4] obtained the time evo-
lution of P for arbitrary a. The hydrodynamic quanti-
ties rl(a) and @i 2(a) are then obtained from the long-
time limit of P. The shear viscosity and the first visco-
metric function monotonically decrease as the shear rate
increases (shear thinning), while the second viscometric
function vanishes. Although the IT solution is restricted
to Maxwell molecules, it shows a good agreement with
computer simulations for other potentials [5]. Recently,
the IT solution has been extended to get the time evolu-
tion of the fourth order moments [6]. It has been shown
that these moments diverge in time for shear rates larger
than a certain critical value, although this singularity
does not have any in8uence on the transport properties.

An interesting problem is the description of transport

phenomena in mixtures. The aim of this paper is to
exactly obtain the transport properties of a binary mix-
ture of Maxwell molecules described by the Boltzmann
equation under USF. We assume that the molar &actions
are constant, so that no mutual diH'usion exists. On the
other hand, no restriction on the masses, concentrations,
and force constants will be considered. Consequently, the
transport coeKcients depend on the shear rate as well as
on the parameters characterizing the mixture. Obviously,
our results reduce to the IT solution in the case of me-
chanically equivalent particles. I'huther, when one takes
the tracer limit, previous results are recovered [7] and a
new phenomenon appears. To the best of our knowledge,
this is the Grst time that the rheological properties of a
sheared mixture are obtained Rom an exact solution of
the Boltzmann equation [8]. A difFerent solution has re-
cently been derived for a nonequilibrium homogeneous
problem generated by a color field [9].

The plan of the paper is as follows. The problem is
described in Sec. II and some peculiar properties of the
Maxwell interaction are presented. In Sec. III, the tran-
sient regime is analyzed and it is shown that the pressure
tensor reaches a stationary form in the long-time limit.
The main results are derived in Sec. IV. Specifically, the
transport coefFicients, as well as the partial contributions
of each species to the pressure tensor, are obtained in
terms of the shear rate and the ratios of mass, density,
and force constants. Finally, we close the paper in Sec.
V with a brief discussion.

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute mixture, f, (r, v; t) being the
one-particle velocity distribution function of species s. In
the absence of external forces, the distributions f, obey
a set of coupled Boltzmann equations:

Here, J,„[f„f„] is the Boltzmann collision term, which
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in standard notation is given by

J-if. f ] = f dvi f dOiv —vii~v. .(v —v&, P)

X s V v Vg s V r V1 (2)

Pyy —P
a2

)
P„—Pyy

a2

(12)

In terms of the first few moments of f„ the number
density and mean velocity of species s are de6ned, re-
spectively, as

n. =fdvf

1
u~ = — dvv fa

AS
(4)

These quantities define the total number density n =
P, n, and the Sow velocity u = P, p, u, /p, where p, —:
m, n, is the mass density of species s and p = P, p, .
The hydrodynamic temperature T is de6ned as

nknT = ) ' /dvV f
S

(5)

P=)'m. J dvVVf
S

(6)

and energy,

g=) ' f dvV'Vf
S

where k~ is the Boltzmann constant and V =—v —u is the
peculiar velocity. The quantities n„u, and T are associ-
ated to the densities of conserved quantities (mass of each
species, total momentum, and total energy). Their corre-
sponding balance equations define the dissipative fj.uxes
of inass, j, = p, (u, —u), momentum (pressure tensor),

In the USF problem, the texnperature increases in time
due to viscous heating, so that the state is not station-
ary. In this context, Eqs. (11)—(13) must be understood
in the long-time limit, where the infIuence of the ini-
tial conditions has disappeared. Usually, a thermostat
force is introduced in computer simulations to control
the viscous heating and keep the temperature constant
[2]. Nevertheless, the presence of the force may not play
a neutral role on the transport properties [10].

At a microscopic level, the USF corresponds to a state
that is uniform when one refers the velocities of the parti-
cles to the Lagrangian frame moving with the fIow veloc-
ity. This means that the distribution functions become
homogeneous under the above transformation, namely,
f, (r, v;t) = f, (V, t) He.nceforth, we will restrict our-
selves to a binary mixture. In that case, Eq. (1) becomes

8 0
~ fi —

g~ a'g&gfi = ~ii[fi fi]+ Ji2[fi) f2]
Ot OV,.

(14)

and a similar equation for f2
We are interested in deriving explicit expressions for

Tl(a) and ilfi 2(a) for arbitrary values of the shear rate
and the characteristic parameters of the mixture. This
does not seem to be possible for a general interaction po-
tential. However, when one restricts oneself to Maxwell
molecules, a complete description can be obtained. The
Maxwell potential for interactions between particles of
species r with particles of species s is of the form V, (r) =

4 The key. point is that the collision rate go„,(g, 8)
is independent of the relative velocity g. Consequently,
the collisional moments of a given order do not involve
moments of higher order. For instance [11]

The uniform shear flow (USF) state is macroscopically
characterized by

dvm„VV J„,[f„,f,]

n, = const,

VT =0,

(8)

(9)

[(p.p. + p.p-) & —p-p. —p. p.]
(m, + m, )m„

A,
(mT + md)m„(m, (15)

u; = a;~r~, a,~
= ab; b~y,

a being the constant shear rate. Equation (8) implies
that there is no mutual difFusion in the system, so that
the shear rate is the only nonequilibrium parameter and
the transport of momentum is the relevant phenomenon.
This transport is measured by the pressure tensor, which
de6nes the main transport coeKcients of the problem:
the shear viscosity

Py
g(a) =—

and the viscometric functions

where we have taken into account that j, = 0. In Eq.
(15),

A, = 1.69~
~

f „,"'mp + ms )

g
1/2

m„+ m, )
P, is the partial pressure tensor of species s,

P, =m, dvVV „
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and p, = 3trP, is the partial hydrostatic pressure. From
it one can define a "temperature" T, associated to species
8 as p, = n, kgyT, .

Equation (14) adinits a nice scaling property in the
special case of Maxwell molecules. Let us introduce the
scaled quantities

A12
A12 —— nl,

ml + m2

%12Bll —All + 2 n2
ml + m2

(24)

(25)

f, (V, t) = e' 'f.(V, t),

A12
B12 ——A12 —2 nl

ml + m2
(26)

where o. is an arbitrary constant. Then Eq. (14) reduces
to

8 — 0
fi —— (&'j—+j + o+&)fi = ~ii[fi~fi]+ Ji&[fi~f2] ~

Bt gQ

This equation can be understood as the Boltzmann equa-
tion for USF in the presence of a nonconservative external
force of the form F, = —m, nV. This shows that in the
particular case of Maxwell molecules, the drag force F,
(with arbitrary n) does not affect the properties of the
system. With no loss of generality, we will choose o. as a
function of the shear rate by the condition that the tem-
perature reaches a constant value in the long-time limit.
Therefore, we will start from Eq. (21), and its counter-
part for fq, with the above choice for n and, for the sake
of simplicity, we will drop the bars.

III. TRANSIENT REGIME

Although the main transport properties are defined in
the long-time limit, it is instructive to analyze the tran-
sient regime from an arbitrary (but uniform in the La-
grangian frame) initial condition. Multiplying both sides
of Eq. (21) by miVV and integrating over the velocity
space, one gets

19

~ Pl, ;~ + 2o'Pl, ,~ + a,yP1 g~ + a~gP1 r„- + B11P1,;~

+B12+2,ij (+llpl + +12p2)~ij g (22)

where use has been made of Eq. (15). In Eq. (22), we
have introduced the coefBcients

A similar equation can be obtained for P2, by just making
the changes 1 ++ 2.

It is convenient to choose a time unit. In general there
are several characteristic times in a binary mixture, so
that the choice of the adequate time unit depends on the
case of interest (tracer limit, disparate-mass mixture, ...).
Since our description applies for arbitrary mass, concen-
tration, and size ratios, we take, for simplicity, an eBec-
tive collision frequency ( given by

( = 2nA'„/(m, + m, ) (27)

and define ( as the time unit. This means that we will
use the dimensionless quantities t* = (t, a' = a/(, and
n* = o./(. Henceforth, we will omit the asterisks. The
corresponding expressions of the coeKcients A„, and B„,
in reduced units are given in the Appendix as functions
of the mass ratio p = mi/mq, the concentration ratio

nl/~2 and the ratios pii = &ii/&iq, peg = &qq/&iq
and pi& = Aiq/Aiz ——0.648. The parameters pii and pqq

depend on the force constant ratios vii/riq and rqz/viq,
respectively.

Equation (22) along with its counterpart for Pq con-
stitute a linear homogeneous set of coupled differential
equations. In fact, Pl, yz, P2 yz, Pl xz& P2, xz& Pl yy

—P].,zz&

and P2 yy P2 are uncoupled to the remaining ele-
ments. They tend to zero as a linear combination of terms
of the form e ~', with characteristic times 8 1 given by
the roots of the quadratic equation

(2 —&)' + (B + B-)(2 —&)

+BiiBgg —BigBgi ——0. (28)

The relevant elements are P—: '(Pi, Pi »,
Pi », Pq», Pq „»Pq»). Their evolution equation is

11 m,
All —— nl + n2

ml ml + m2 ml
(23)

/

—+2
/

P=0,
qBt )

where 8 is the 6 x 6 matrix

(29)

r 2O'+ Bll —3A
—-All

0
1

—
3 A21
0

—
3 All2

2o. + Bll ——All
a

—
3 A21

B21 3 A21
0

2a
0

2o. + Bll
0
0

B12 —-A
1—
3 A12
0

2o. + B22 ——A22
1——A22
0

—
3 A12

B12 —
~ Al

0
—3A22

2

2o. + B22 —3A22
a

0
0

B
2a
0

2 +B„)
(30)



52 TRANSPORT PROPERTIES IN A BINARY MIXTURE UNDER. . . 3815

The solution of Eq. (29) is expressed in terms of the roots
Z of the corresponding characteristic polynomial, i.e.,

1= 2~+ p„— —I'(2I a) .man 2p
(39)

det(E —811) = 0. (31)

Equation (31) is a sixth-degree equation that, in general,
must be solved numerically to get (2a —8) as functions of
a, p, v, pqq, and p22. Nevertheless, there are some limit
cases for which Eq. (31) factorizes into two cubic equa-
tions. For instance, in the case of mechanically equivalent
particles (p = l, pqq ——pzz ——1), Eq. (31) reduces to

These results were already obtained by Garzo and Lopez
de Haro [7] in their study of tracer diffusion under shear
Qow. For small shear rates, 8;„&E';„ for any value of
p. It can be proved that if p is larger than a certain value

po, Z;„ is smaller than 8';„ for any value of a. However,
if p ( po then 8';„(E;„ for a larger than a certain
shear rate ao(p). The threshold value po can be obtained
by the condition E;„=Z';„when a —+ oo, which yields

—(2u —t')[1+ (2n —E)]' = a2, S o(1+ po)&2z = 1. (4o)

—(2n —E + pgz) [1 + 2(2n —I) + 2pg2] = a (33)

Equation (32) coincides with the one obtained in the case
of a single gas [4]. Its smallest root gives the dominant
behavior of the total pressure tensor P and its expression
1S

;„=2n —E(a), (34)

where I"(u)—:s sinh [s cosh (1 + 9az)]. On the other
hand, Eq. (33) is related to the time evolution of the
difference between Pq/nq and Pz/n2. The smallest root
ls now

;„=2n + p~2 ——E(2a) .I 1

2

It can be easily proved that 8';„&E;„for any value of
the shear rate. This means that the relative temperature
difference (Tq —T2)/T tends to zero over a time scale
shorter than the time scale of variation of T(t).

Another interesting limit corresponds to the so-called
tracer limit, i.e., v —+ 0. In this situation, the excess
component is not disturbed by the presence of the tracer
particles, and the collision among tracer particles can also
be neglected. In this limit, Eq. (31) factorizes into

For instance, if we assume K22 ——+~2, the solution is

yo 0.5437. In addition, ao(p, ) has a minimum approx-
imately equal to 10.83 at p 0.145. It is interesting to
understand the physical consequences of the di8'erence
between 8;„and 8';„. For shear rates not too large,
the eigenvalue 8;„ is smaller than the eigenvalue f';„,
so that the ratio Tq/T tends towards a stationary value
with a characteristic time (E';„—E;„) ~. However, if
p ( yo and a ) ao(p), then Tz/T grows exponentially in
time. As a consequence, it is possible that the contribu-
tion of the tracer species to the global properties cannot
be neglected. This possibility will be discussed in the
next section.

Except in the two limit cases just discussed, Eq. (31)
must be solved numerically. Figure 1 shows the real part
of the roots (2n —I) of Eq. (31) versus a for the case

p = 0.2, v = 0.2, and Kq~
——K~2 ——&22. Obviously,

exactly the same curves are obtained in the case p = 5,
v = 5. At a given value of the shear rate, the di8'erence
between the two largest values of (2n —E) gives the inverse

(2 —~)
" + (2 —~)(1+p)p2z 2

(36)

- 2

3p, (2o. —E+pq2) —+ (2n —l) +pq2 = a . (37)
1 2

2p

Equation (36) is associated with the time evolution of
the excess component. In fact, Eq. (36) is equivalent to
that of a single gas, Eq. (32), with the adequate change
of time unit. Its smallest root is 0 2 4 6

(1+&)'Y»
2 g(1+ P)72~

(38)

On the other hand, Eq. (37) gives the transient behavior
of the tracer component. Its smallest root is

FIG. 1. Shear-rate dependence of the real part of the roots
of Eq. (31) for the case y, = 0.2, v = 0.2, and rqq ——r12 —K22.
The solid lines refer to the real roots, while the dashed lines
refer to the complex roots.
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of the relaxation time of the transient regime. It can be
proved that this difference does not vanish if v g 0.

As was said at the end of Sec. II, we take a(a) under
the condition that T(t) reaches a stationary value in the
long-time limit. This is equivalent to choosing o. so that

E = 0 is the smallest root of Eq. (31). In other words, o.(a)
is the largest root of the sixth-degree equation det 8 = 0.
Thus, the upper curve in Fig. 1 represents 2a(a) for the
case p = 0.2, v = 0.2. In the limit of small shear rates,
cx ApG ) where

2 v P(2»2 + P) + v(»1(y, + 1) + y[4»2 + P22(P + 1) —2]) + 2»2P + 1

3(P + 1) 1 'Yll(2 Y12 + P) + 1 (V + 1)(»1y22 + 2 Y12) + Y22(2 Y12P + 1)
(41)

On the other hand, in the limit of large shear rates, o. n a /, where

1
+11 + +22 + Q(+11 +22) + 4+12+21

- 1/3
(42)

IV. TRANSPORT PROPERTIES

This section concerns the derivation of the main trans-
port properties of the problem for arbitrary values of the
shear rate a as well as of the ratios p, v, pqq, and p22.
These properties are related to the elements of the pres-
sure tensor P in the long-time limit, i.e., in the stationary
regime according to our choice of o.. In the USF problem,
the relevant transport coeKcients are the shear viscosity
and the 6rst and second viscometric functions de6ned by
Eqs. (11)—(13). These quantities refer to the properties
of the mixture as a whole (total momentum Qux). It where

pl g/ —1g (43)

is also interesting to study the partial contribution cor-
responding to each species. In particular, we will pay
attention to the temperature ratio T1/T2. It provides
information about how the kinetic energy is distributed
between both species.

The stationary forms of Pz and P2 are obtained &om
Eq. (29) by solving the homogeneous equation 8'P = 0.
This equation has a nontrivial solution since det 8 = 0.
Such a solution can be written as

P1
+»uu

(44)

l 0!—+11 + B11+ +12 —B12

0
0

0
2o. + Bgg

a
0

0

2o. + B22
0
a

3
0
0

2o, + Bgg
B2

0
0

2~+ a„)
(45)

(A» —B»
~

Ag2
A22

0
(46)

The explicit expression for p1/p, P1,»/p, and P1,~„/p
can be found in the Appendix. The corresponding ex-
pressions for species 2 are easily obtained by adequately
changing the indices.

The temperature ratio T1/Tq is a measure of the lack
of equidistribution of the kinetic energy. The behaviors
for small and large shear rates are, respectively,

Tg + 4(v + 1)(pp22 —1 + pv —v»1)
G )

+2 3 Y12 [1 Yll (P' + 2 Y12) + &(P + 1)(2 Y12 + Yll+2 )+2Y22(2P Y12 + 1)]

Tg 1

T2 2 (v + 1)(12n~ —A11)
(48)
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These equations show that the temperature ratio does
not present a monotomic behavior. The ratio Tl/T2
reaches a maximum (minimum) if pp22 —1+pv —vill is
positive (negative). Consequently, both temperatures co-
incide at a certain value of the shear rate, which depends
on the parameters of the mixture. Obviously, Tq ——T2
for any value of the shear rate in the case of mechanically
equivalent particles. For the sake of illustration, we plot
in Fig. 2 Tl/T2 versus a for several values of p, and v. In
this 6gure, we have assumed that the force constants have
a mass dependence of the form e„, oc (m m, )1~2. Such

a dependence has been proposed [12] to model the cross
section observed in disparate-mass binary mixtures. We
observe that, for small shear rates, the kinetic energy per
particle of the solute component is larger than that of the
solvent component if the former is heavier than the lat-
ter. However, the opposite happens for suKciently large
shear rates.

The most important quantity is the shear viscosity g.
Its explicit expression can be obtained f'rom Eq. (A7).
In the Navier-Stokes limit one recovers the well-known
result [13]

~(0) = 2
(1 —vp) + v(p+ 1)(Y11+ p Y22) + 2p(v + 1) 'Y12 J'

(1 + p) [v(p, + 1)(pllp22 + 2p12) + Y22 (1 + 2p'Y12) + v pl 1 (p + 2'Y12)] (.

Figure 3 shows rI(a)/g(0) for v = 0.1, p = 0.05, 0.1, 1, 5, 10, and for r, oc (m m, ) ~ . The known shear thinning
effect for a single gas extends as well to binary mixtures, i.e., rj(a) decreases as a increases. Furthermore, at given
values of the concentration ratio and the shear rate, the relative viscosity decreases as the mass ratio increases for

p & 1, while the opposite happens for p & 1.
The viscometric functions provide information about normal stresses in the system. As seen in the preceding section,

Pzz Pyy tends to zero in the long-time limit. Consequently, the second viscometric function is zero regardless the
values of a, p, , v, p~~, and p22. This property is peculiar of the Maxwell interaction. The expression for 4"z can be
obtained from Eqs. (A5) and (A6) by taking into account that Pl ——3@1 —2P1 „„.In the limit a ~ 0, one gets

1+ v A jle, (0) = -8
(1 + p) [v(1 + p)(Y11Y22 + 2 Y12) + v 'Yll (2'Y12 + p) + Y22(1 + 2p Y12)] C

(5o)

where

p (p + 2'Y12) + v [p' (1 2p) + 4p' Y12(3 Y12 + p 2) + (1 + p) Yll

+2p(1 + p')(2 Yll Y12 'Yll + O' Y22 + 2p Y22 Y12)] + v[p(p —2) + 4p Y12(3p Y12 + 1 —2p) + p'(1 + p)'Y22

+2(1 + p') ( Yl1 + 2p Yl 1 Y12 p Y22 + 2p Y12 Y22)] + (1 + 2p Y12) (51)

I I
(

I I I
(

I I I ( I I I 1.00

O

0.75

0.5 0.25

0.0
0 0, 00

0

FIG. 2. Shear-rate dependence of the temperature ratio
Tl/T2 for (a) v = 1, p = 10, (b) v = 0.1, p = 10, (c) v = 1,
p, = 0.1, and (d) v = 0.1, p = 0.1. The force constants have
been assumed to be of the form ~, oc (m„m ) ~ .

FIG. 3. Shear-rate dependence of the reduced shear viscos-
ity for v = 0.1, e„, oc (m„m, ) ~, and (from top to bottom)
p = 0.05, 0.1, 10, 5, and 1.
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FIG. 4. The same as in Fig. 3, but for the first viscometric
function.

FIG. 5. Shear-rate dependence of pq/p —nq/n for p = 0.1,
Ic] ] —Ic$2 —K/2, and v = 0.1 (- — -), 0.01 (———), and 0 (—).

Notice that 4'q(0) is a Burnett transport coefficient.
We are not aware of any previous derivation of this coeK-
cient for a binary mixture. In Fig. 4 we plot 4q (a)/4q (0)
as a function of a for the same cases as in Fig. 3. As hap-
pens in a single gas, 4q(a) is a decreasing function. In
addition, the dependence of 4q on the parameters of the
mixture is qualitatively similar to that of the shear vis-
cosity.

Before closing this section, let us analyze the proper-
ties of the system in the tracer limit (v + 0). In this
limit, o. has a singularity at a = ao(p) if p, ( po, where
po is the solution of Eq. (40). More specifically, o. is given
by Eq. (38) (with /;„= 0) if a ( ao, while a is given
by Eq. (&9) (with E';„=0) if a ) oo. Consequently, n
is continuous at a = ao, but its 6rst derivative is discon-
tinuous. Prom a physical point of view, the implications
of this singularity are interesting by themselves. Let us
consider the ratio pq/p, i.e. , the relative contribution of
species 1 to the total kinetic energy. By carefully taking
the limit v -+ 0 in Eq. (A5) one ffnds that pq/p ~ 0 if
a ( ao, while pq/p tends to a nonzero value if a ) ao.
This means that, despite the fact that the molar &action
of the tracer particles is negligible, their contribution to
the total energy is relevant if the system is suKciently
far &om equilibrium. This transition only happens if
the tracer particles are sufBciently lighter than the ex-
cess particles. To illustrate this phenomenon, Fig. 5
shows pq/p —nq/n versus a for p = 0.1 and v = 10
10 and 0, in the case ~qq ——~q2 ——+22. We observe
that in the tracer limit, pq/p g 0 if a ) ap 11.37. As a
matter of fact, the tracer contribution is larger than that
of the solvent for a ) 20.7. Of course, the transition at
a = ao(p, ) also occurs for the tracer contribution to the
transport properties of the mixture.

V. DISCUSSION

In this paper we have considered a binary mixture far
from equilibrium. The state is characterized by uniform
density and temperature and a linear profile of the x com-
ponent of the Bow velocity along the y direction. Con-
sequently, the only nonequilibrium parameter is the con-
stant shear rate a. On the other hand, the transport
properties also depend on the parameters of the mixture,
namely the mass, concentration, and size of each species.
In order to oKer a description as detailed as possible, we
have restricted ourselves to the low-density regime, in
which case all the physical information can be obtained
kom the set of two coupled Boltzmann equations. In ad-
dition, we have specialized to the Maxwell interaction,
which lends itself to an exact solution of the problem.
Thus, our results are exact and valid for arbitrary values
of the shear rate and the ratios of mass, concentration,
and force constants. In this sense, our solution extends
the well-known Ikenberry-Truesdell solution [4] for a sin-
gle gas of Maxwell molecules. The generalization to mix-
tures with more than two components is just a matter of
a more complex algebra.

By taking moments in the Boltzmann equations for
Maxwell molecules, one gets a set of coupled equations
for the elements of the pressure tensor of each species.
From its solution, the shear viscosity g and the viscomet-
ric functions 4q 2 are obtained. The second viscometric
function is identically zero. The expressions for g and
4'q contain a parameter o., which is the largest root of a
sixth-degree equation with coefBcients depending on the
parameters of the problem. The qualitative behaviors of
g and @~ are similar to those of a single gas, i.e. , both
quantities decay as the shear rate increases. On the other
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hand, at a given value of the shear rate, q and @q are al-
ways larger than the one of the single gas. In addition
to the transport properties, it is also interesting to study
the temperature ratio, which measures the distribution of
the kinetic energy between both species. Depending on
the parameters of the mixture, its shear-rate dependence
presents a maximum or minimum.

It is worthwhile to analyze the limit in which one of
the species, say 1, is present in tracer concentration, i.e.,
ni/n2 ~ 0. This limit was previously studied. in Ref. [7]
by starting from a closed Boltzmann equation for f2 and
a Boltzmann-Lorentz equation for fi It w. as shown that
the temperature ratio Ti/T diverges if the shear rate is
larger than a certain threshold value ao, which depends
on the mass ratio. Our general results allow us to par-
ticularize to the limit ni/n2 ~ 0. We have found that
pi/p = niT1/nT goes to zero if a ( ao, while it tends to
a finite value if a & ao. The main physical implication
is that, if a & ao, the presence of the tracer particles
has a remarkable inBuence on the properties of the mix-
ture. As a consequence, the efFect on the state of the
excess component of collisions with the tracer particles
cannot be neglected if a ) ao. It must be stressed that
the threshold shear rate ao is rather large in units of an
efFective collision &equency. In fact, ao becomes infinity
if the mass ratio mi/m2 is larger than a certain value.

The problem studied in this paper is interesting by it-
self. Furthermore, it can be taken as a starting point to
analyze mutual difFusion under shear Bow. In the same
way as done in the tracer limit [7], the idea is to per-
form a perturbation expansion in powers of the concen-
tration gradient around the solution obtained here. To
first order, one can get a generalized Fick's law with a
shear-rate-dependent mutual diffusion tensor. Work is in
progress along this line.
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APPENDIX

v @+1 1
2 v+1 p 2p(v+1) ' (A1)

1 v

2v+1 (A2)

y12Biz = &zz+ v+ 1
(A3)

(A4)

The remaining coeKcients are obtained by the adequate
changes (p ++ p, v ++ v, +11 ++ +22).

From Eq. (43) one gets

pg Ka +L
p Ba2+S ' (A5)

Pygmy Ma + N

p Ba2+ S (A6)

The coefFicients A„, and B„„expressed in reduced
units, are
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A12 + 8 ~ (A12 B22 A22 B12) + 2 A12 (B12B21 + B22 ) 2 A22 B12 (Bll + B22)

2I = 3 (A12 —B12) [4a + 2n (Bii + B22) + Bii B22 —B12 B21]

(A8)

(A9)

2 B12(A12 A21 All A22) (AiO)

~ —48 A12 o' + 24 o [ A12 (Bll + B22) B12 (All + A22)]

+~2 ~ [A12 (Bii + B22 + 4 Bll B22) A12 B12 (A21 + B21)
+B12All (A22 —Bll —2 B22) —Bi2 A22 (B22 + 2 Bll) + B12 A21]

+6 ~[Bll B12 (All A22 A12 A21 + A21 B12 A12 B21 2 All B22 ~ A22 B22 A22 Bll)
+B122(A11 B21 + A22 B21 + A21 B22) + B12 B22(A11 A22 A12 A21 A12 B21 All B22)
+2 A12 Bll B22 (Bll + B22)] + 3 (B12B21 Bll B22)[B12(A12A21 All A22)

+Bil (B12 A22 A12 B22) + B12 (All B22 B12A21)]) (A&I)
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2 A12 n + n [B12 (All + 2 A22) A12 (Bll + 2 B22)],
+ n [ 12 (A12 A21 All A22) + A22 B12 (3Bll + B22)

A12 (B22 + Bll B22) + B12 (2 All B22 2 A21 B12 —a12 B21)

+3 A12 A21 12 (Bll + B22) A22 Bll B12 (All Bll) + B12 (All B21 —A21 Bll)
A12 Bll (B12B21 + B22) + All B12B22 (B22 A22) + B12B22 (A22 Bll A21 B12) (A12)

(A12 All) + 8 n [B12 (A21 A22) + B22 (A12 All)]
+2 B12 (A21 A22) (Bll + 22) + 2 (A12 All) (B12B21 + B22 ) (A13)

2 2
S = 3 (2 n —All + A12 + Bll —B12) [4 n + 2 n (Bll + B22) + Bll B22 —B12 B21] (A14)
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