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Nonequilibrium effects in model reactive systems: The role of species temperatures
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The nonequilibrium effects for a model reactive system, A+ B —+ products, that arise from the
perturbation of the distribution function from the Maxwellian are studied. The main objective is
the calculation of the fractional decrease of the nonequilibrium rate coefficient from the equilibrium
value. This effect is examined with the Chapman-Enskog method of solution of the Boltzmann
equation which treats the reactive processes as a weak perturbation. The approach is referred to
as weak nonequilibrium. The reactive process causes the temperatures of the two species to differ
from the system temperature and this effect can play an important role in the determination of
the departure of the rate coefficient from the equilibrium value. A second method is an extension
of the Chapman-Enskog approach and involves the expansion of the distribution functions about
Maxwellians at difFerent temperatures and is referred to as strong nonequilibrium (SNE). A third
approach is a modi6cation of SNE and is referred to as modi6ed strong nonequilibrium. The three
methods are described and departures of the rate coefficients from their equilibrium values are
computed for each case and compared, along with an explicitly time-dependent solution of the
Boltzmann equation.

PACS number(s): 05.20.Dd, 51.10.+y, 47.70.Nd

I. INTRODUCTION

The departure from equilibrium of chemically reac-
tive systems has been of concern for over four decades
[1—10] and continues to be of considerable interest as a
fundamental kinetic theory problem as well as of prac-
tical importance. These nonequilibrium efFects are as-
sociated with the reentry of space vehicles in the ter-
restrial atmosphere [11], plasma processing of materials
[12], molecular transport coupled to chemical nonequi-
librium [13], and other systems. The main objective
is the theoretical description of physical situations that
may be far &om equilibrium. The usual approach to
the description of systems close to equilibrium is based
on the Chapman-Enskog solution for neutral and ion-
ized systems [14,15]. This method is known to be in-
valid for strongly nonequilibrium systems for which the
required separation of length and time scales is not ob-
tained [16—20]. Several groups have considered the de-
scription of transport for such systems far &om equi-
librium; in particular, nonlocal heat transport in plas-
mas [16], hypersonic flows [17], diffusive flows [18,19], as
well as astrophysical applications [20]. For spatially inho-
mogenous systems, the Chapman-Enskog method is valid
when the mean &ee path of the constituents is much less
than the typical length scale [14,15]. For reactive sys-
tems, a Chapman-Enskog method is applicable when the
elastic time scale is much less than the reactive time scale
[8]. Kogan [21] and Alexeev and co-workers [22—24] have
considered extensions of the Chapman-Enskog method
to chemically reactive systems far removed &om equilib-
rium. Aleexev has referred to this method as the gen-
eralized Chapman-Enskog method. The development of
techniques to describe such systems is an important en-
deavor. The present paper, although restricted to a spa-

tially homogeneous reactive model system, is a detailed
study of alternatives to the Chapman-Enskog method in
situations similar to the above when the required separa-
tion of time scales does not exist. This work is also mo-
tivated by the general methods of solution of the Boltz-
mann equation introduced by Pascal and Brun [13] in
their study of transport processes in molecular systems.

The main purpose of this paper is to reexamine the
nonequilibrium efFects associated with a simple reactive
system of the type

A. + B ~ products,

where the reactive process perturbs the distribution func-
tions of both species &om the equilibrium Maxwellian
distributions and the rate coefEcient difFers &om the equi-
librium rate coeffi.cient. If k~ ) and k are the equilib-
rium and nonequilibrium rate coeKcients, respectively,
the &actional decrease of the nonequilibrium rate coeK-
cient &om the equilibrium rate coefBcient defined by,

is the main objective of these studies. The determina-
tion of these nonequilibrium efFects in a model system
based on the Chapman-Enskog method. has been stud-
ied in detail in previous papers [5—8]. Additional ref-
erences to earlier papers are to be found in the papers
referenced. The distribution functions are expressed in
terms of Maxwellians at the same temperature plus a
small correction that arises because of the reactive pro-
cess. The departure of the distribution functions &oin
Maxwellians is then determined with a Chapman-Enskog
type approach [14] that has been described at length in
previous papers [5—7]. We briefly review this approach
in Sec. II of the paper. This approach has been referred
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to as weak nonequilibrium (WNE) by Pascal and Brun
[13] in their recent study of transport processes in molec-
ular systems. In this case the distribution function for
the molecular system is expanded about a single temper-
ature even though the translational and vibrational tem-
peratures may differ. The different species temperatures
in the present paper are somewhat analogous to differ-
ent translational and vibrational temperatures in molec-
ular systems. We show that the WNE method is valid
provided that the elastic cross sections for A-A, B-B,
and A-B collisions are the same order of magnitude and
much larger than the reactive collision cross section. The
usual Chapman-Enskog approach to this problem [1—7]
is based on the treatment of the reactive process as a
small perturbation on the elastic collision processes that
restore the system to equilibrium. This is equivalent to
the recognition that reactive cross sections are typically
much smaller than elastic cross sections.

In Sec. III, we consider a situation for which the elas-
tic cross sections for A-A and B-B' collisions are simi-
lar and much larger than the cross sections for elastic
A-B' and reactive A-B collisions. The different magni-
tudes of these cross sections yield different time scales
and are used to obtain Chapman-Enskog-like solutions.
For this situation, distribution functions are expanded
about Maxwellians at different temperatures and the de-
parture &om equilibrium of these local Maxwellians is
calculated. Pascal and Brun refer to this approach as
strong nonequilibrium (SNE) and in their application ex-
pand the distribution function about equilibrium Boltz-
mann distributions at different translational and vibra-
tional temperatures. There are many difFerent physical
situations far IIrom equilibrium for which the coupling
of different species is weak and thus they are charac-
terized with distribution functions at different temper-
atures. This is most notable in plasma systems where
electron-ion and electron-neutral collision rates are rela-
tively small and electron temperatures can be consider-
ably diB'erent from ion and/or neutral temperatures. The
transport theory of plasmas [27] takes this feature into
account. These phenomena are evident in the ionosphere
where departures &om equilibrium occur owing to the in-
fluence of electromagnetic fields on charged particles and
also because of chemical reactions [25—27]. The transport
theory of the drift of ions in an electric field involves the
specification of different temperatures for the ion veloc-
ity distributions for velocities parallel and perpendicular
to the electric field [28]. For chemically reactive systems
similar to the model systems considered in this paper,
Cukrowski and co-workers [9,10] have discussed at length
the effects of different species temperatures.

In Sec. IV, we present a modification of the SNE ap-
proach and introduce a modified strong nonequilibrium
(MSNE). This was discussed by Pascal and Brun since
their results with SNE do not coincide with WNE when
the vibrational and translational temperatures coincide.
With the MSNE formalism, previously referred to as the
generalized Chapman-Enskog method [13,21—24], the re-
sults for SNE coincide with WNE in the limit of equal
translational and vibrational temperatures. We apply
this MSNE approach to the model reactive systems of

this paper and compare the results with WNE and SNE.
In order to understand the range of validity of the three
methods, we consider a rigorous time-dependent solution
of the Boltzmann equations and investigate the estab-
lishment of the steady states assumed in the WNE, SNE,
and MSNE approaches. A comparison of the three for-
malisms is then discussed and compared with the explicit
time-dependent results in Secs. VI and VII.

II. THE CHAPMAN-ENSKOG
APPROACH —WEAK NONEQUILIBRIUM

(WNE)

The methodology for the study of the nonequilibrium
effects in the reactive process has been presented in ear-
lier papers [5—7]. We present here a brief summary of the
approach and include most of the equations for complete-
ness so that we can compare with the other formalisms in
Secs. III and IV. The distribution functions for species
p = 1 and 2, for this spatially homogeneous system in
the absence of external forces, are assumed to be given
by two coupled Boltzmann equations of the form

&fi
[fif —fi f]oiigdAdc

Ot E

+ 1 2 i 2 oi2gdOdc2

i 2cr*gdOdc2) (2)

&f2
[f2f —f2 f]o22gdAdc

Ot

+ i 2
— i 2 o i2gdOdci

g 2o.*gdOdci)

f, = f,' '[1+e0, ] (4)

and the equations of order 1/e obtained with Eq. (4) in
Eqs. (2) and (3) determine that the zero order distribu-
tion functions,

where o~„and o* are the elastic and reactive cross sec-
tions, respectively. The first collision operators on the
left-hand side (LHS) of Eqs. (2) and (3) are the self
collision terms for A-A and B-B elastic collisions. The
second and third collision operators take account of A-B
collisions and couple the two equations. The A-A and
B-B elastic collisions will be referred to as l-l collisions
while A-B elastic collisions will be referred to as 1-2 elas-
tic collisions to keep them consistent with the notation in
Eqs. (2) and (3). The other terms and the notation used
have been defined in the previous papers [5—7]. These
time-dependent equations are solved with the assump-
tion that the reactive cross sections are small relative to
the elastic cross sections. The parameter e o/cr* has
been inserted into the Boltzmann equations to take this
ordering of collision terms into account. We thus set
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f(0) = n~(t)[m~/2akT(t)] J exp[ —m~c /2kT(t)],

gf~ 8f~ (dn~ ) Bf~ (dT I
Bt c)n~ ( dt J BT (dt J

+ (5)

where the variation with time is determined &om the
Boltzmann equations and we have that

are the Maxwellians characterized by time-dependent
number densities, n~ (t), and the single temperature,
T(t). The term @~ is the perturbation f'rom Maxwellian.

The Chapman-Enskog approach [14] involves the as-
sumption that a steady state occurs in a time short on
the reactive time scale and that the time dependence is
implicit through the variation with time of the number
densities and the temperature. With this assumption we
have that to lowest order,

f dni ) f dn2 )
g dt J q dt J

o gdOdc1dc2)

)dTi"
J

2T (0) (0) m11

2m2C2

2kT
o. gdOdc1dc2.

With the substitution of Eq. (4) into the Boltzmann
equations, Eqs. (2) and (3), and use of Eqs. (5)—(7),
we 6nd the Chapman-Enskog equations for the pertur-
bations g~, by equating terms of zero order in e,

1 + — 1 — o11gdOdc + 1 2 1 1 o12gdOdc2

+ 1 2 2
— 2 o12gdOdc2 —— 1 H1 e1

2 + — 2 — o22gdOdc + 1 2 2
— 2 o12gdOdc1

+ 1 2 1
— 1 12gdOdc1 = 2

where the inhomogeneous terms are defined by and

K~(c~) =
(o)

(, ,
)

~fdTI
T (dt j

(10)

n, (, «J
+ „o*gdOdc„, p = 1, 2,

N

) -
~

2[S(') S(~)]+n n (S(') S(i)) ~a(2)

j=1-

where z2 = m~c2/2kT.
The solution of these coupled linear integral equations

is obtained with the expansion of the unknown functions

@z in Sonine (Laguerre) polynomials, S~' (x ), defined in
previous papers [5,6]. With the expansions

+nin2(S~', S, )a. = nin2n, , (13)

where the bracket matrix elements [S~('), S~ )], the brace
matrix elements (S~', S„),and the coefficients n( are
defined by Eqs. (29)—(33) of [6]. The density is defined

in terins of f~~ ), that is,

n, = f,'dc, ,
(o)

we get the set of algebraic equations for the coefBcients
a given by

N). i'-', [S!',S!']+-.-.(S!',S!'& i.,"
so that f f~ @&dc~ = 0 and hence ao ——0. An im-(o) (o)

portant aspect of this WNE approach is that the single
temperature is de6ned by

3 (o) 1fi 2micidci + f2 2m2c2dc2(o) 1 (15)

+nin2(S, , S2 )a~ = nin2n, . (12)(') (~) (2) (1) where n = n1+ n2. As a consequence of this definition
we have that
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f~ mqc~gqdcq + f2 m2c~@2dc2 ——0f (O) (o)

and hence

n1a, ' +n, g,, = P.(1) (2)

(16)

(17)

E'/kT) is determined in a large part by the departures
of T~ &om T, for *„"' g 1.

It is useful to recognize that the expansion of a local
Maxwellian at temperatures T~ can be expressed as the
Maxwellian at temperature T in terms of Sonine polyno-
mials in the form

2 N
wNE ) ) a('Y) ~('Y) /g

p=1 i=1
(18)

where the A, integrals are defined by

A( = 8 ' o*gdOdc dc

Numerical results have generally been considered for
elastic hard sphere cross sections, cr~„= dz„/4, and the
line-of-centers reactive total collision cross section model,
0~ ~

= md2(1 —E'/E) for E ) E', and zero otherwise,
where E is the relative translational energy. The param-
eter E* corresponds to the activation energy. The details
for the evaluation of collision matrix elements and other
quantities in Eqs. (12) and (13) can be found in [5] and
[6]. Detailed results for the correction to the rate of reac-
tion for this model system were reported in the previous
papers [5—7]. In this paper, we emphasize the role of
di8'erent species temperatures on the nonequilibrium ef-
fects.

The calculation of the mean energy of each species
yields the definition of species temperatures, T~, which
are given explicitly by

(20)

These have been referred to as the Shizgal-Karplus tem-
peratures [9,10]. In this WNE approach, the tempera-
tures of both species are perturbed strongly &om their
value, T, for the equilibrium state. The values of a1
for which the WNE is valid are expected to be small
as demonstrated in Sec. IV. However, this temperature
eKect can vanish for specific choices of the system pa-
rameters for which o.z

) ——p, even for a strong reaction.
The moments o, 1 and o.1 of the inhomogeneous terms
in the Boltzmann equations [6] involve considerations of
energy balance and can be shown to be proportional to
(

' ' —1) and ( ' ' —1), respectively, and hence vanish
for ' ' = 1. The behavior of the nonequilibrium cor-
rection, g, versus the system parameters (m~, n~, and

Consistent with this definition of the temperature is that
the two equations in Eqs. (12) and (13) with i = 1 are
the negative of one another; their sum being equal to
zero is a reflection of conservation of energy when both
species are taken into account. Consequently, the set
of equations that are solved is the set with Eq. (17)
replacing either of the two equations with i = 1 in Eqs.
(12) and (13).

The solution of Eqs. (12) and (13) together with Eq.
(17) as discussed above yields the expansion coefBcients
and the &actional decrease in the equilibrium rate of re-
action and is given by

The ratio I"~ (T~)/ f~ (T) is the generating function for(o) (~)

the Sonine polynomials employed to evaluate the collision
matrix elements [6,7,29]. Using Eq. (20), it can be shown

that the coefBcient &
' is just the first term a1 of

the expansion in Eq. (11).

III. STRONG NONEQUILIBRIUM (SNE)

Since it appears that the species temperatures can play
an important role, it is useful to consider the expansion of
the distribution functions about local Maxwellians char-
acterized by densities n& and different species tempera-
tures, T~, that remain to be specified. This is equivalent
to the assumption that the rate of collisions between un-
like species is very slow relative to the self-collision rate.
This is an approach that is considered in plasma systems
[27], in ionospheric applications [25,26], and is also em-
ployed in the determination of mobility of ions in neutral
gases [28]. The Boltzmann equations, Eqs. (2) and (3),
are rewritten in the form

Bfg 1 [fif' —fif]~iigdfl«

+ 1 2 1 2 012gdOdc2

20 gdOdc2 ) (22)

cr22gdOdc

+ 1 2
— 1 2 ~12gdOdc1

1 2e'gdOdc1 ) (23)

where the term in 1/e multiplies only the self-collision in-
tegral term. The collision term between unlike species is
considered to be much smaller than the like species colli-
sion term. The exchange of energy between components
is slow owing to a small o~„cross section or a disparate
mass ratio.

The distribution function is now written in the form

f~ = +,"[1+ed~1 (24)

where E~ =n~(t) [m~/2vrkT~(t)) ~ exp[ —m~c /2kT~(t)]
is the local Maxwellian, the solution to the equation of
order 1/e that results with the substitution of Eq. (24)
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into Eqs. (22) and (23). The local Maxwellians are characterized by different temperatures, T~(t). The time
dependence of the species densities and temperatures to lowest order is given by

(o)
(o) (o) l(0)(0) 3

(dt) 3n, F& I"& (yz —y&)oqzgdOdcqdc& + +1 +2 [ z yl lo gdfld c&d c2! (26)

) (o)

( dt )
2Tz (

! Fz (yz —y2)o.gzgdQdcgdcz + I', E2 [- —yz]o gdOdc~dcz !

(o) (o) (o) (o) l
3n, ( ~

where y2 = m~cz/2kT~. Equations (26) and (27) include the energy exchange between components owing to elastic
collisions as well as that due to reactive collisions. With the substitution of the expansion, Eq. (24), into the
Boltzmann equations, Eqs. (2) and (3), we get the uncoupled set of integral equations to zero order in e,

E~ )E() ' + ' — — dnd =E~ )t, =1, 2, (28)

where

G (~ ) = —
~

~
~

——(~ —y~)
~ ~

—ff [El Il ' —F ' F ]~„gdAd + JLf F a'gdBdc„,

N

j=2
(30)

where yz = m~cz/2kT~ The i.nhomogeneous terms,
G~(c~), involve the unlike elastic collision terms evalu-
ated to lowest order. These terms vanish only when the
two temperatures are equal; T1 ——T2. These terms do
not appear in the corresponding inhomogeneous terms,
H~(c~) [see Eq. (10)] in the WNE approach.

%'e employ the expansions
we have that

(33)

(34)

in Eq. (28) and get the set of algebraic equations for the

coefBcients b. given by

and

where the square bracket matrix elements [S~', S~ ] are
the one-component matrix elements employed in a pre-
vious paper [5]. The coefBcients P; ) depend on the two
temperatures T1 and T2 and are de6ned by

(32)

The integrals in Eq. (29) involve the lowest order matrix
elements of the unlike species collision operator that were
evaluated elsewhere [30]. These are discussed again in the
next section. With the de6nition of the species densities
and temperatures

so that bo
——61 ——0. For the SNE, the &actional

decrease in the equilibrium rate of reaction is given by

9=1i=2
(36)

The set of equations, Eq. (31), is coupled to the time-
dependent equations for n~ and T», Eqs. (25)—(27). The
solution of Eq. (31) requires specifying an initial condi-
tion, integrating Eqs. (25)—(27), and inverting Eq. (31)
at each time. This is very similar to WNE, for which the
correction gwN@, Eq. (18), varies implicitly with time
through n~(t) and T(t). However, the matrix equations
(12) and (13) can be inverted for chosen values of n~,
m~, and e' = E'/kT and the variation of gwNK can
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be studied [5—7]. In the SNE case, the matrix equation,
Eq. (31), can. be inverted for a set of values n~, m~,
and e' = E*/kT, ~, where T,~ represents the "efFective"
temperature (mqT2+ m2Tq)/(mq + m2). We have chosen
to set the T~ values to those that result &om the WNE
solution and given by Eq. (20). In Sec. V, we show the
variation of g versus the system parameters for this
choice of T~.

In the work of Pascal and Brun [13], the results with
the SNE do not correspond to the results with the WNE
when the vibrational and translational temperatures are
equal. The reason for this is that the collision operators
that are inverted are not the same in the two formalisms
owing to the assumptions of the model. This can be
understood by comparing Eqs. (28) with Eq. (8) and
(9), where in the former case, only the self-collision (1-
1 and 2-2 collisions) operators are inverted, whereas in
the latter case, both self-collision and unlike-collision (1-2
and 2-1 collisions) operators are inverted. For the spe-
cial case where the two species are identical and T» ——T2,

I

the WNE and SNE coincide. The two unlike-collision op-
erators add and are equal to the self-collision operator,
so that Eqs. (12) and (13) are equivalent. The num-
ber of collisions in the WNE is thus twice the number
of collisions in the SNE because in the former case one
effectively counts the number of self-collisions twice [6].

IV. MODIFIED STRONG NONEQUILIBRIUM
(MSNE)

Pascal and Brun [13] introduced a modification to SNE
in order that the results would agree with the WNE re-
sults in the limit T;b ——Tt,, „,. This involves including
a higher order term in the perturbative analysis of the
Boltzmann equations leading to Eqs. (28). If the terms
linear in e are retained on the LHS of the Boltzmann
equations, Eqs. (22) and (23), then in place of Eq. (28)
we get

F» F»+» o.»gdOdc + E» E2» F» F2» o.»gdOdc

+ F» F2 2
—F» F2 2 o»2gdOdc2 = F» G» c», 37

» + ' —
»

— 022gdOdc + F» E2 2
—E» F2 2 0»2gdOdc

+ F» F2» —F» F2» 0»2gdOdc» = F2 G2 c2

i=2
(39)

in Eqs. (37) and (38), we get the set of algebraic equa-

analogous to Eqs. (8) and (9) in WNE but with the

important distinction that E& E2 g E~ E2 be-(o)' (o)' (o) (0)

cause the species temperatures dier. The inhomoge-
neous terms are as defined by Eqs. (29) in the SNE
approach. The unlike species collision operators on the
LHS of Eqs. (37) and (38) are not self-adjoint in contrast
to the situation for WNE. This aspect of this approach
has been discussed at length by Pascal and Brun follow-
ing the original work by Kogan et aL [21] and Alexeev et
aL [22]. An important consideration is that the solution
of the homogeneous equation with the adjoint collision
operators, corresponding to Eqs. (37) and (38), must be
orthogonal to the inhomogeneous terms F~ G~ in order
for unique solutions to exist [13,14]. Consequently, it has
been assumed [13,21,22] that one can neglect the non-
self-adjoint part of the collision operators in Eqs. (37)
and (38). We adopt this procedure in the present pa-
per and provide the justification later in connection with
specific applications.

With the expansion

tions for the coefBcients c given by

N

) ~

2[S(~) S(2)] + n n (S( ) S(2))s
~

c( )

i=2-

+n, n, (S,"',S,"')"(" = n, n, P,", (40)

and

N

) ~

2[S(') S(i)) + (S(') S(i))s
~

( )

i=2-

+nqn2(S2, S~' ) c = ngn2P, . (41)

The angular bracket matrix elements (S~('), S„) are the
self-adjoint part of (Sz('), Sz )) and depend on the two
temperatures T» and T2. The non-self-adjoint part of
these matrix elements vanishes for T» ——T2. If the diA'er-
ence between the temperatures is small, then the neglect
of the non-self-adjoint part of the operators is justified.
The expression for g is identical to the expression
Eq. (36).
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As discussed in Sec. III, the set of equations, Eqs.
(40) and (41), is coupled to the time-dependent equations
for n& and T~, Eqs. (25)—(27). Their solution requires
specifying an initial condition, integrating Eqs. (25)—(27)
and inverting Eqs. (40) and (41) at each time. However,
we avoid this time-dependent problem by using the T~
values &om the WNE calculated from Eq. (20). In the
following section, we discuss a comparison of the results
of the WNE, SNE, and MSNE formalisms and the choice
of T~ in SNE and WNE.

15

10

WNE, SNE, MSNE

V. COMPARISON OF NONEQUILIBRIUM
EFFECTS WITH WNE, SNE, AND MSNE

FORMALISM S

0
0

15 I
f

I
/

I
/

I
/

I

10

In this section, we present and compare the results
for the three methods described in Secs. II—IV for
the model line of centers reactive cross section, ot t =
vrd2(1 —E*/E), and elastic hard-sphere cross section,
o~„= d~„/4. The required matrix elements of the elas-
tic collision operators have been evaluated in previous
papers for equal temperatures [5,6] and unequal temper-
atures [30]. The moments of reactive collision terms have
also been described elsewhere [5,6].

For SNE and MSNE, the species temperatures must
also be specified and we proceed as follows. Consistent
with the assumption that the elastic cross section is much
larger than the reactive cross section, the time scale for
elastic collisions is very short relative to the time scale for
reactive collisions and the species temperatures quickly
attain quasistationary values. In this way, Eqs. (12) and
(13), (31), and (40) and (41) are inverted for the calcu-
lation of g in the WNE, SNE, and MSNE formalisms,
respectively. The results depend critically on the species
temperatures used in the SNE and MSNE. The species
temperatures Tq and T2 used in the SNE and MSNE are
those obtained &om the inversion of the WNE equations,
Eqs. (12) and (13), and calculated with Eq. (20). The
values of T~ are then used in Eqs. (31) and Eqs. (40)
and (41) for the SNE and MSNE calculations, respec-
tively. We justify this approach in Sec. VI by integrating
the system of hydrodynamic equations, Eqs. (25)—(27),
demonstrating the equivalence with the solution of the
Chapman-Enskog system of equations (WNE).

The nonequilibrium corrections to the reaction rate, g,
are shown in Figs. 1(a)—l(d). For WNE, there is only
one temperature, T, the system temperature, and

(T) = [k(T) —k )(T)]/k (T)

10

0
0

20
SNE

15

10

0 I

0

30

25

20

15
C)

10

SNE (b)

10

10

and the reduced reactive activation energy is
E*/kT. In the case of SNE and MSNE, the species tem-
peratures Ti and T2, are used to obtain rj(Ti, T2) defined
as the &actional change &om k( &(T) given by

0 i I i I

0 2 4 6 8 10

rl(Ti, T2) = [k(Ti, T2) —k( )(T)]/k( )(T), (42)

where T = [niTi + n2T2]/(ni + n2). Note that the frac-
tional decrease in the reaction rate coefBcient, Eq. (42),
is expressed relative to the one-temperature system equi-

FIG. 1. Variatiou of g versus e' computed from the SNE,
WNE, and MSNE methods for the mass ratio, mi/m2, equals
(a) 1, (b) 1.5, (c) 3, and (d) 5. crii/o'' = ops/rr* = o'ig/o' = 1
and ni/n2 —— l. (a) shows a one component system,
A + A ~ products ( ), and a two component system,
A + B -+ products (—————).
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librium rute coe@cient. This serves for the purpose of
comparison with the WNE. Equation (42) differs from
the values for gsNE and rl in Eq. (36). Writing Eq.
(42) in terms of expansion coefficients, we get

(k (o) (T~, T2) —Ao l
o )

2 N

1 5

1 0

SN E
(a)

) ) bI
i AI ) (T„T,)/A. .

p= 1 i=2
(43)

For SNE and MSNE, e ' is expressed in terms of the
component temperatures and is equal to E'/kT, fr, where
T g = (mqT2+m2Tq)/(mq+m2). For all of the numerical
calculations, five to seven terms were retained in expan-
sion of the distribution functions in Sonine polynomials
and provided values of g to three signific ant figures .

Figures 1(a)—1(d) show the variation of rl versus e' for
WNE, SNE, and MSNE for a set of mass ratios, mq /m2
with the density ratio nq/n2 ——1, and oqq/cr' = o22/o'
Ilq2/o* = 1. The rl value for the WNE is calculated with
Eq. (18) and for the SNE and MSNE with Eq. (43).
Figure 1(a) shows the case for which nq/n2 ——1, and
mq/m2 ——1, that is for A = B, and the reaction reduces
to A + A ~ products. In Fig. 1(a), the corrections
obtained with the WNE, SNE, and MSNE methods are
al1 equal, and shown with the solid curve . The dashed
curve in Fig. 1(a) is the result that is obtained with the
WNE and MSNE for a two-component system, A +B
products, in limit A -+ B The soli.d curve in Fig. 1(a) is
the result that is obtained for a one-component system,
A + A ~ products. For WNE and MSNE in the limit
A ~ B the 1-1 and 1-2 collisions are indistinguishable,
and hence the number of collisions is twice the number of
co1lisions for a one-component system A +A ~ products.
This gives a value of g for the one-component system
that is twice the g value for the two-component system
in the limit of identical species for the WNE and MSNE
methods. For the SNE method, only 1-1 collisions are
included in the collision operator that is inverted, Eq.
(31).

For Figs. 1(b)—1(d) the mass ratios are 1.5, 3, and 5,
respectively, and we observe difFerences in the behavior
of rl obtained from WNE, SNE, and MSNE. Figure 1(b)
shows the case where the masses are slightly diferent
(mq /m2 ——1.5) . The SNE curve shows similar behavior
to the solid curve in Fig. 1(a), but the WNE and MSNE
curves are closer to the dashed curve corresponding to the
two-component system. As the mass ratio increases, we
observe an increase in g values, especially for e* ( 2 . This
is the result of increased temperature split between T~
and T2 caused by the disparity between the masses of the
two components. This temperature splitting increases
the departure of the system &om equilibrium. Figures
1(b)—1(d) show that for e' ) 2, the SNE result does not
agree with the WNE and MSNE results. At larger
values (e' ) 4), there is good agreement between the
WNE and MS NE results, whereas the SNE result agrees
with the MSNE result for small values of e' 0.

Figure 2 shows the change in g versus e* for a set of
density ratios with mq jm2 ——1 and crqq/o

' = o'22 jo'*

0
0 1 0

1 5

SN E (b)

1 0

C)

0
0 1 0

1 0

0
0 1 0

20

1 5

bl
C)

0 I

0 1 0

FIG . 2 . Variation of g versus e' for the SNE, WNE, and
MSNE methods for the reaction A + B ~ products for the
density ratio, nI /n2, equals (a) 1.5, (b) 2, (c) 3, and (d) 5.
o j/ Io0 Q/ 2oogg/o' = 1 and mq/mq = 1.
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ox2/o' = 1. The density ratio between the two com-
onents, nx/n2 increases f'rom 1.5 o i 'g .to 5 in Fi s. 2(a)—

2(d), respectively. As the density ratio increases, xl in-
creases. The behavior is similar to that observed by
varying the mass ratios in Fig. l. As nx/n2 increases
from Figs. 2(a)—2(d), the difference between the two-
component temperatures increases and larger g values
result. The increase in g is particularly large for
due to the large infjuence of the difFerent species temper-
atures. As the density ratio nx/n2 departs from uxuty
and ' ' becomes very difFerent &om 1, we observe t e
etc t of the larger temperature separation that results

the WNE and MSNE are in agreement. One notable di

for e' 0.

in F' 1(a)—1(c), respectively. The agreement improves
as o.&2/ o. increases, as isases as is clear &om the behavior in ig.
3; Fig. 3(c) shows exact agreexnent on the reactive time
scale. It is important to notice the difFerent time an
temperature scales in Figs. 3(a)—3(c) which depend on

two species is not equal since the density ratio nx/n2 ——5

~ ~

A coxnparison of the results with the WNE, that ls,
Eq. (44), with the long time asymptotic, quasistea y
results, &om the numerical integrations in Fig. 3, de-

6 I
I

I
I

& I,
I

g

(a)

VI. TIME-DEPENDENT SPECIES
TEMPERATURES; COMPARISON WITH WNE

2

CO

The WNE approach involves the expansion of a dis-
tribution function about the Maxwellian at one temper-
ature, although difFerent species temperatures are calcu-

d from E . (20) with the solution of the Chapman-
Enskog equations, Eqs. (12) and (13). or e

texn temperatures, T, to lowest order is determined by
retaining only the ax coefficients in Eqs. (12) and (13),
and also using Eq. (17). The result for component 1 is

I

0 2 4 6 8
t E

I
I

l
I

I
I

I
I

1

(b)

10

(T —Tx1 ni M x (,.+ 1/2)eT ) n 4MxM2 n

(44)

The hydrodynamic equations, Eqs.
& 25~~—

~
~~„g'lve the

tixne-dependent behavior of the temperatures and densi-
ties of each component. We deduce the conditions un er
which the WNE method gives a good approximation of

cou led setthe hydrodynamic result by integrating the coup e se
of difFerential equations, Eqs. (25)—(27), and comparing
them with the results of the Chapman-Enskog solution.
This provides an estimate for the range of validity of
the Chapman-Enskog method. We show in Fig. 3, or
d'ff t choices of' the time scale parameter 7R/7R
o'exp[ —c']/o. x2 and initial condition Tx(0) = 2( ), e
results of the integration of the hydrodynamic equations,
E s. (25)—(27). The results shown in Figs. 3(a)—3(c) are
for an increasing separation in the elastic and reactive
time scales. After a brief transient, the temperatures ap-
proach an asymptotic dependence which varies on a much
onger ime sca

the steady solutions of Eqs. (26) and (27) comcx e wi
WNE to the lowest order, Eq. (44). As the separation
between the elastic and reactive time scales increases,

and the WNE results (dashed curves) ixnproves. The
ratio of elastics to reactive hard sphere collision cross-

/
' = /o' = ox2/o' are 1, 10, and 100sectloxls G'yy/ c7 = egg y

0' = 0 l2

I

0.0 0.2 0.4 0.6 0.8
tE

1.0

I
'

I

(c)

2
I

0.00 0.02 0.04 0.06 0.08 0.1 0
t E

FIG. 3. Time dependence of the hydrodynamic 1 —T T
( ) and the corresponding Chapman-Enskog values,
ax (—————). The elastic collision cross sectxons
o' /o' = ozg/o' = oxq/o' are (a) 1, (b) 10& and (c) 100,~11 —~22
with & /AT(0) = 3, nx(0)/n2(0) = 5, and mx/ms ——1.
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TABLE I. Comparison of asymptotic temperature values, ( ~ '), calculated from integration
T T1 WNE

of hydrodynamic equations and corresponding one-term Chapman-Enskog values,
The mass ratios for components 1 and 2, mi/rn2, is 0.5, the density ratio ni/n2 = 1.0, and
c7 cT = ops & = og2 & = Qyg cT

E'/kT
1
2
4
1
2

1
2
4

1
1
1

100
100
100

1000
1000
1000

TE

3.68[-1]
1.35[-1]
1.S3[-2]
3.6S[-3]
1.35[-3]
1.83[-4]
3.86[-4]
1.35[-4]
1.83[-5]

3.355 [-2]
1.919[-2]
5.529 [-3]
5.129[-4]
3.125 [-4]
7.651 [-5]
5.167[-5]
3.165[-5]
7.721 [-6]

4.484 [-2]
2.529 [-2]
6.502 [-3]
5.157[-4]
3.140[-4]
7.668[-5]
5.171[-5]
3.168[-5]
7.721[-6]

T T y T T WNE

0.748
0.759
0.851
0.995
0.995
0.995
0.999
0.999
1.000

(cr/cr*) e

[
—n] = x10 here and in following tables.

noted by ( & ') ", is shown for a range of difFerent
system parameters in Table I. As the ratio of elastic to
reactive time scales becomes sufBciently large, the ratio

Z T asy Z T, WNE
( T

'
) / ( T

'
) approaches unity. This aspect of

the Chapman-Enskog approach has been discussed before
[8,31,32]. The basic conclusion is that the separation of
elastic and reactive time scales must be of the order of
1O to 10 for the Chapman-Enskog approach to be
valid. For this situation, the depar ture &om equilibrium
will be correspondingly very small.

We have employed the WNE species temperatures to
de6ne the two-temperature matrix elements for calculat-
ing g and g as discussed in Secs. III and IV. It
is useful to mention that the study of similar nonequilib-
rium efFects by Cukrowski and co-workers [9,10] used the
solutions of the lowest order hydrodynamic equations,
Eqs. (26) and (27), and an estimation of the rI with the
first order terms in Eq. (43). E,(x, t) = Ei'l [1+g, (x, t)], (45)

mal solutions that describe the quasistationary perturbed
system. In this section we consider an explicit time-
dependent solution of the Boltzmann equation that does
not assume very different reactive and elastic cross sec-
tions.

We are interested in the validity of the WNE, SNE,
and MSNE methods versus the four time scales given in
terms of o qq, o 22, a q2, and o *. If o qq and o 22 are large it
is expected that initial non-Maxwellian distributions will
become Maxwellian at different temperatures on a short
time scale. On a longer time scale defined by o.q2, the
two components will equilibrate. Finally, the reactive
process, considered generally as the longest time scale,
perturbs the distribution function &om the Maxwellian.

The time-dependent distribution function is expressed
as

VII. TIME-DEPENDENT SOLUTION

The Chapman-Enskog-type solutions discussed in Secs.
II—IV give the long-term behavior on the reactive time
scale. The solutions obtained are a special set of nor-

where the local Maxwellians, F&, vary implicitly in
tiine, t, through the number density, n~(t), and tem-
perature, Tz(t), and also g~(x, t), the time-dependent
perturbation &om the Maxwellian. This method is anal-
ogous to the study of temperature relaxation in binary
gases [32] and the application to hot atom reactions [33].

The substitution of Eq. (45) into Eqs. (2) and (3) with
1 gave s

dr" ~1 + y'l'l'S'l'l' —Zl'lS'l'i] u dOdc — El l El l go*dOdc
dt n

+ P~ ~'E~ ~'[@,+ 4„]—E'~ ~P~ ~[@» —4.] ga,.dAdcq —f fP~'P~ 'g, ga oddc. n'
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The perturbations kom the local Maxwellians are ex-
panded in Sonine polynomials 1.0

I
'

I
'

I
'

IMSNE ~
(a)

N

g, (x„t) = ) b,". (t)s(*)(x,'),
i=2

(47)
0.8—

0.6—

WNE

where the expansion coeKcients are explicitly time de-
pendent. The set of Boltzmann equations, Eq. (46), is
thus reduc'ed to the set of coupled equations of the form

0.4—

0.2

SNE

1 db; (~) + [~(~)b(~) + ( (g) b(g)]
(~)

¹ dt
2 2

pp ' I ~ I

000 002 p04 pp6 pp8 p10
tE

i = 2, 3, . . . , N, (48) 1.0
MSNE ~ I

I
I

where 0.8— (b)

A,
"= n„(S('), S(')) — A,". ,

JP(&) —n [S(') S(i)]+n (S(') S(i)) D(~)

1 dT~ 1 dn~

T~ dt n~ dt

c(") = n (s(') s('))+z(".) . (49)

I= O.6

0.4—
SNE

0.2—

I I I i I I I

0.00 0.02 0.04 0.06 0.08 0.10

The angle integrals, (S~', S„),in Eq. (49) are the two-
temperature matrix elements of the collision operators
as defined in reference [30], and evaluated for the hard
sphere cross section. The integrals A; are the moments(~)

of the equilibrium reactive collision &equencies, evalu-
ated as in Ref. [6]. The quantities H;~k are the integrals
of products of three Sonine polynomials and the terms
that occur in Eq. (49) arise from dJ'~ /dt and ds~ /dt.(o) (&)

These details of the calculation have been discussed in
previous papers [30,33]. The quantities D; and E;(~) (&)

are the matrix elements of the reactive coliision opera-
s (~)tor. The matrix elements H;~ and C,~ and quantity A;

are implicitly time dependent through the density, given
by

1.0
MSNE~

0.8 SNE (c)

& o.6

0.4

0.2—

I i I i I i I

0.00 0.02 0.04 0.06 0.08 0.10
tE

dni/dt = dn2/dt = —Ao + ) b (t)A.
i=2

~b( ) (t)A( )

and the temperature, given by

(50)

1.0

0.8

& o.6

0.4—

MSNE ~ I
I

I

(d)

dT.
dt

S() S()) 1A()
1

Y

N

+ ) ~

[(S( ) S( )) D( )]b(. )

0.2— WNE

00 ~
0.00 0.02 0.04 0.06 0.08 0.10

+[(s,",s.")—D!",)]b,'")
I

~ ~ ~

Hence, the set of equations, Eq. (48), are linear but with
nonconstant coefBcients. The explicit time-dependent
scheme is a rigorous solution of the Boltzmann equation

MSNE WNEFIG. 4. Time dependence of the ratio r)(t) to r), r)
and g for T (0)i/Tg(0) = 1. The ratio of elastic to re-
active hard sphere collision cross section oui/cr' = 1000
while ozq/o' equals (a) 1000, (b) 200, (c) 20, and (d) 1.
The ratio oui/cr22 = 1, E'/kT(0) = 10, mi/mq = 3, and
n, (O)/n. (O) = 2.
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TABLE II. Comparison of time-dependent, WNE, SNE, and MSNE values for g for vari-
ous 0 i i /cr* = cry' /cr' and o i2 /o *. The mass ratio mi /mq ——3.0, the initial density ratio
n i(0) /n 2(0) = 2.0, and R'/kT(0) = 10.

Figure
4(a)
4(b)
4(c)
4(d)

1000
1000
1000
1000

CTy2 0
1000

200
20

1

asy

2.89[-5]
6.74[-5]
9.77[-5]
2.89[-5]

asy WNE

1.000
0.931
0.633
0.082

asy SNE

0.278
0.649
0.943
0.994

asy MSNE

1.00
1.00
1.00
1.00

and there is no assumption about the ordering of the var-
ious terms. This scheme is used to test the validity of the
WNE, SNE, and MSNE approaches.

For the numerical integration of Eqs. (48)—(51)
a dimensionless time variable, t~, is defined given

by td, ni (0)/[2vrkT, 6(0)/mi] / . The initial distribu-
tion functions are assumed to be Maxwellian [that is,

b; (0) = 0] with speciFied initial densities, n~(0). The
system of coupled equations, Eqs. (48), (50), and (51),
were integrated over time with a fourth-order Runge-
Kutta procedure. For each time step in the numerical
integration of Eqs. (48), (50), and (51), values of Ti, T2,
ni, and n2 were calculated and used to evaluate the ma-
trix elements in Eqs. (12) and (13), Eq. (31), and Eqs.
(40) and (41). The matrix equations were then solved
and the &actional changes in the equilibrium reaction
rate constant for each of the three formalisms, g

, and g are computed. The fractional change
in the reaction rate constant at each time step was com-
puted from rl(t) = —P r g, 2

b( l(t)A, /Ao, where

the collision integrals A,- also vary with time through
the species temperatures, Tz(t). The time-dependent so-
lution to rl(t) eventually attains an asymptotic value, de-
noted by g '~. As for the time-independent calculations,
five to seven terms were retained in the Sonine polyno-
mial expansion of the distribution function, providing a
value of g to three significant figures.

The Chapman-Enskog approach of Sec. II assumes
that the reactive and elastic time scales are very well
separated. This is inherent in the assumption that the
time dependence is implicit in the time dependence of the
densities and the temperature, as given by Eq. (5). This
assumption has been studied in previous papers [8,31,32]
and it was shown from explicit time-dependent calcula-
tions that the ratio of time scales should be of the order
of 10 to 10 5 for this approach to be valid. Since
the nonequilibrium effects scale as the ratio of reactive
to elastic cross sections, the corrections &om equilibrium
obtained with the WNE method are expected to be very
small.

The efFect of difFerent 1-2 time scales was studied for
the time evolution of rl(t)/rl, where rl is the value obtained
from the WNE, SNE, and MSNE methods [Eqs. (18)
and (36)). Figures 4(a)—4(d) show the time evolution of
systems with decreasing values of the 1-2 elastic collision
cross section ratio, cri2/0 . Both components are initially
described by Maxwellians at the same temperature, that
is, Ti(0) = T2(0), with the reduced activation energy,
R'/kT(0) = 10. The ratio of the elastic collision cross

TABLE III. Comparison of time-dependent, WNE, and
SNE values for q, where o/o' = a.ii/o' = a22/o' = oi2/rr'.
The mass ratio mi/m, 2 ——3.0 and the initial density ratio
ni(0)/n2(0) = 2.0.

R*/kT(0)
2

2
10
10
10

cr/cr" r@/7.R rl
'"

1 1.35[-1] 2.196[-2]
20 3.37[-4] 4.182[-3]

1000 1.35[-4] 1.600[-5]
1 4.54[-5] 2.283[-2]

200 2.67[-7] 1.441[-4]
1000 4.54[-8] 2.900[-5]

asy WNE

0.100
0.648
0.748
0.767
0.991
1.000

asy SNE

0.222
0.265
0.283
0.220
0.278
0.278

section to reactive collision cross section for the result in
Fig. 4 has been chosen sufFiciently large so that the ratio
of time scales, ws/w~, is small and the Chapman-Enskog
type solution of the Boltzmann equation is valid. There is
a clear separation of time scales in Fig. 4 with a very fast
initial transient followed by a steady asymptotic result,
which can differ &om unity depending on the method
used. Figure 4(a) with mi/mq ——3 and n (i0)/n (20) = 4
shows the case for which cross sections for 1-1 and 1-2
collisions are equal, trii/cr' = cr22/0* = cri2/cr' = 1000.
After the initial transient, one obtains identical results
for @AN@ and rlMsNE equal to rl '" In Fig.s. 4(b), 4(c),
and 4(d), the ratio orr/oi2 is 5, 50, and 1000, respec-
tively. With increasing oui/ai2 the results with MSNE
remain in agreement with q '~, however the WNE re-
sult does not agree when the SNE result approaches

In Fig. 4(d), we hand virtually exact agreement
between rl '" and rj for oui/012 ——1000. The results
in Fig. 4 are summarized in Table II. We show that when
o12/ir = &11/~r = &22/0, the variable 'g is ln agree-
ment with results obtained with WNE and MSNE. As
012/o' decreases, there is disagreement with the WNE
result while agreement with the SNE result improves.
There is uniform agreement with the MSNE result for
all values of cri2/ir*. The elastic and reactive time scales
in Fig. 4 and Table II differ by more than a factor of
10 and are therefore suKciently well separated to en-
sure that MSNE and the time-dependent results agree as
shown in Table II.

Table III illustrates the variation of g '~ with decreas-
ing 7~/v~ with all elastic cross sections equal, analogous
to the situation of Fig. 4(a). We observe that when
the separation of elastic and reactive time scales is large,
'r@/'r~ = 10, there is good agreement between rI '~ and

When there is only one elastic relaxation time
scale, and the reactive time scale is long, we anticipate
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TABLE IV. Comparison of time-dependent, WNE, and SNE values for g for various
oqq/o' = o22/o' and oqz/O''. The mass ratio mz/mq ——3.0 and the initial density ratio
nq(0)/n 2(0) = 2.0.

E'/kT(0)
2
10
2
5

10
10
10

011 O'

200
1000
200
200
200
1000
200

10000

0
200
200

20
20

1
20

1
1

T11 TR

6.77[-4]
4.54[-8]
6.77[-4]
3.37[-S]
3.37[-S]
4.54[-8]
2.27[-7]
4.54[-8]

6.77[
2.27[
6.77[
3.37[
6.74[
2.26[
4.54[
4.s4[

4]
-7]
-3]
-s]
-3]
-6]
-s]
-s]

~i~/&m& b asy

1.953[-4]
6.74[-5]
2.718[-4]
1.2s2[-a]
1.684[-3]
2.897[-5]
5.167[-4]
1.osa[-s]

asy WNE

0.174
0.931
0.279
0.362
0.035
0.082
0.311
0.001

asy SNE

0.256
0.649
0.800
0.868
0.972
0.994
0.996
0.999

O11 O 8
O1g O 8

that the WNE result will become valid whereas the SNE
result is inapplicable. This behavior is verified in Table
III. We show that rI '"/rlwNE approaches unity with de-
creasing va/w~, whereas q '"/rl remains significantly
less than 1.

If on the other hand, o qq
——o22 g o q2 and we have two

elastic time scales which difFer &om the reactive time
scale, we expect the WNE results to be inappropriate
and the SNE results to be correct. This behavior is illus-
trated in Table IV, where T]y/7~ and 7y2/7~ are varied
by changing the values of E'/kT(0), oqq, and o22 appro-
priately. In Table IV, with E'/kT(0) = 10 and crqq/o' =
1000 and oq2/o' = 200, rI '~/rlwNE = 0.931, whereas for
oqq/o* = 1000 and oq2/o' = 20, rl '~/rI = 0.082.
When the separation of the time scales for 1-1 and 1-2
elastic collisions increases with o'qq/oq2 becoming large,
the ratio rl '"/rlsNE is close to unity. In Table IV, where
oqq/o' = 1000 and crq2/o' = 1, rl '~/qsNE = 0.999. Note
that the g '~ and g values are close only when the
time scales elastic and reactive collisions are suKciently
well separated and the ratio of elastic time scales, aqua/7q2,
is of the order of 10

Table V compares g '~ and g
NE over a series of

different time scales for 1-1 elastic, 1-2 elastic, and re-
active collisions. Table V shows disagreement between

ri '" and rIMsNE when E'/kT(0) = 2 and o'qq/o' = 1
and oq2/cr' = 1. In this case, the separation of collision
time scales for elastic and reactive processes is small, with
'ryy/'r& = 7r]2/'rz ——0.135, and rl '"/rl = 0.686. We
show in Table V that the ratio rl '~/gM NE approaches
unity when the reactive time scale is long compared to
the 1-1 and 1-2 elastic time scales. Table V shows that
g '~ and g agree when both 1-1 and 1-2 elastic colli-
sions and the reactive collision time scales are well sepa-
rated. The MSNE result agrees with the time-dependent
result over a range of oqq/o' and o'q2/o' values. The
MSNE method is accurate so long as the elastic and re-
active time scales are well separated, and in contrast to
the WNE and SNE method, its applicability is not de-
pendent on the relative length of the 1-1 collision and 1-2
collision time scales.

It is interesting to note that the initial transient behav-
ior in Fig. 4, which occurs on the elastic time scale, is not
strongly affected by the change in the 1-1 elastic and 1-2
elastic collision time scales. Figures 4(a)—4(d) evolve on
the same general time scale, with a sharp rise in g on the
elastic collisional time scale due to the perturbation &om
the chemical reaction followed by a slow relaxation on the
reactive time scale. In order to observe a pronounced ef-
fect due to changing the 1-2 collisional time scale, we

TABLE V. Comparison of time-dependent and MSNE values for rt for various crqq/o
' = oqq/o'

and ozz/o '. The mass ratio mz/mz = 3.0 and the initial density ratio nz(0)/nz(0) = 2.0.

Z /kr(0)
2
2
2

5
10
10
10
10

O11
1

1000
200

20
200
200
200
200

1000
1000

10000

1
1000
200

20
20
20

1
200

20
1000

1

T11 TR
1.3S[-1]
1.as[-4]
6.77[-4]
3.37[-4]
6.77[-4]
3.37[-5]
3.37[-S]
2.27[-7]
4.54[-8]
4.S4[-8)
4.S4[-9]

T11 TR b

1.35 [-1]
1.35 [-4]
6.77[-4]
3.37[-4]
6.77[-3]
3.37[-4]
6.74[-3]
2.27[-7]
2.26 [-6]
4.54[-8]
4.s4[-s]

asy

-2]
-s]
-4]
-3]
4]

-3]
-3]
4]

-s]
-5]
-5]

2.196[
1.600[
1.953[
4.182[
2.718[
1.252[
1.684[
1.441[
2.897[
2.9OO[
1.053[

asy MSNE

0.686
0.834
0.891
0.946
0.971
0.980
0.986
0.997
1.000
1.000
1.000

O11 O 8
01' O 6



3810 DUNCAN G. NAPIER AND BERNIE D. SHIZGAL 52

examine a system in which the two component temper-
atures are initially different, that is, Tz(0) g T2(0). The
resulting temperature equilibration perturbs the distri-
bution function &om the Maxwellian in addition to the
reaction. Temperature relaxation in the absence of a re-
action has been studied previously [31,32].

Figure 5 shows the time evolution of systems with pa-
rameters identical to to Fig. 4, except the initial temper-
ature condition, Tq(0)/T2(0), is 1.5. The rate of temper-
ature relaxation between the two components is governed
by the 1-2 collision cross section. The temperature per-
turbation results in an overshoot of g(t)/ri above unity
followed by relaxation to the steady result, which is close
to the MSNE result in all cases. The 1-2 elastic collision
parameter, crq2/o*, is 1000, 200, 20, and 1 in Figs. 5(a)—
5(d), respectively, with oqq/o* = 1000. The time scales
and the magnitudes of the overshoot for Figs. 4(a)—4(d)
are diferent and are determined by the 1-2 elastic col-
lision cross section. The sharp initial slopes that give
rise to the large overshoots in Figs. 5(a)—5(c) arise Rom

large values of the collision matrix elements, (S~,S„),(') (~)

of Eqs. (47)—(51). The collision matrix elements are large
in magnitude when the species temperatures are signi:f-
icantly difFerent and the 1-2 collision cross section, oq2,
is large relative to the reactive cross section. Physically,
this represents rapid temperature relaxation driven by
collisions between particles of two components at very
difFerent temperatures. Agreement between the asymp-
totic steady state and the three nonequilibrium methods
appears to be similar to the comparisons shown in Ta-
ble II and Fig. 4. We observe agreement between values
of rl 'v and rlwNE when oqq/oq2 ——1 [Fig. 5(a)] and
disagreement when oqq/o. q2 is large [Fig. 5(d)]. Fig-
ures 5(b), 5(c), and 5(d) show the time evolution of rl(t),
rj g

N and gM where oqq/o. ~2 is 5 50,
1000, respectively. The steady state values of rI(t) show
progressively poorer agreement with rlwNE in Figs. 5(a)—
5(d). In contrast, the values for g(t) in the steady state
are closer to gsNE when oqq/oq2 )) 1. The value of gsNE

disagrees with that for rI '" in Fig. 5(a) and agreement
between g

' and rl improves when o qq/o q2 ——1000
in Fig. 5(d). Figures 5(a)—5(d), also show the ratio
rI '~/rIMsNE is very close to unity. This is because the
elastic and reactive time scales are suKciently well sepa-
rated to ensure that MSNE and the time-dependent re-
sults agree as in Table II.
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VIII. SUMMARY OF RESULTS

The perturbation of the distribution function &om
Maxwellians for reacting species of the reaction A+ B —+
products has been studied. For elastic collisions, a hard
sphere elastic collision cross section was used while a
line-of-centers reactive cross section with activation en-
ergy e* was used as a model for reactive cross sec-
tions. The perturbation to the distribution function was
computed using three formalisms, the WNE, SNE, and
MSNE methods. These three formalisms are based on
Chapman-Enskog type solutions of the Boltzmann equa-
tion. The WNE method assumes the distribution func-

0.6—

0.4—

0.2 WNE

p p I I & I i I I I & I I I I I & I

0 1 2 3 4 5 6 7 8 9 10

FIG. 5. Time dependence of the ratio q(t) to ri, g
and g for Tq(0)/T2(0) = —.The ratio of elastic to reac-
tive hard sphere collision cross sections is 1000 for aqua/o.

'
and cr&2/o' equals (a) 1000, (b) 200, (c) 20, and (d) 1.
The ratio oqq/ops —1 R /kT(0) = 10, mz/mz ——3, and
n, (0)/n, (0) = 2.
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tions of all species are characterized by one system tem-
perature while the SNE and MSNE methods specify a
temperature for each species of the system.

Unlike the system studied by Pascal and Brun [13],
WNE and SNE agree in the limit in which the distri-
bution functions of all components are characterized by
perturbed Maxwellians at the same temperature. The
results of WNE, SNE, and MSNE methods do not, in
general, agree and an explicitly time-dependent solu-
tion of the Boltzmann equation was used to validate
the solutions obtained by the three methods. The time-
dependent method makes no assumptions about the or-
dering of the terms of the perturbation expansion of the
Maxwellian and is considered a reliable check of the so-
lutions produced by the WNE, SNE, and MSNE meth-
ods. We showed that the WNE method is appropriate
for systems characterized by two time scales, the elastic

and reactive time scales, when both difFer by a factor of
greater than 10 . The SNE method is accurate when
there are three distinct time scales, and the 1-1 or self-
collision, the 1-2 or non-self-collision, and reactive colli-
sion time scales are all well separated. We also show that
the MSNE method is more widely applicable than either
of the previous two methods and is accurate when the
reactive time scale is much longer that the elastic time
scale. The formalisms in the present paper should find
useful applications to nonequilibrium effects in spatially
nonuniform systems and the study of nonlocal transport.
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