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Multicomponent turbulence, the spherical limit, and non-Kolmogorov spectra
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A set of models for homogeneous, isotropic turbulence is considered in which the Navier-Stokes equa-
tions for incompressible Quid How are generalized to a set of N coupled equations in N velocity fields. It
is argued that in order to be useful these models must embody a new group of symmetries, and a general
formalism is laid out for their construction. The work is motivated by similar techniques that have had
extraordinary success in improving the theoretical understanding of equilibrium phase transitions in
condensed matter systems. We consider two classes of models: a simpler class (model I), which does not
contain an exact Galilean symmetry, and a more complicated, extended class (model II), which does.
The key result is that these models simplify when N is large. The so-called spherical limit N —+ Oo can be
solved exactly, yielding closed sets of nonlinear integral equations for the response and correlation func-
tions. For model I, these equations, known as Kraichnan s direct interaction approximation equations,
are solved fully in the scale-invariant turbulent regime. For model II, these equations are more comph-
cated and their full solution is left for future work. Implications of these results for real turbulence
{N=1) are discussed. In particular, it is argued that previously applied renormalization group tech-
niques, based on an expansion in the exponent y that characterizes the driving spectrum, are incorrect
and that the Kolmogorov exponent g has a nontrivial dependence on N, with g(N~ OD ) = 3 for both sets

of models. This value is close to the experimental result g= 3, which must therefore result from higher-

order corrections in powers of 1/N. Prospects for calculating these corrections are briefly discussed:
though daunting, such calculations might provide a controlled perturbation expansion for the Kolmo-
gorov, and other, exponents. Our techniques may also be applied to other nonequilibrium dynamical
problems, such as the Kardar-Parisi-Zhang equation for interface growth, and perhaps to turbulence in
nonlinear wave systems.

PACS number{s): 47.27.Gs, 64.60.Ht

I. INTRODUCTION

A. The energy cascade

Perhaps the most basic issue in the theory of homo-
geneous turbulence is the nature of the so-called Kolmo-
gorov energy cascade [I]. To describe the problem in the
simplest possible terms, consider a three-dimensional
Quid that is being stirred on some length scale lo much
larger than any dissipative length scale I . The stirring
force causes (kinetic) energy to be input into large-scale,
long-wavelength hydrodynamic Aows. If the Quid equa-
tions of motion were linear, the energy would remain in
these long-wavelength modes for all time. However, the
equations are, in fact, nonlinear and energy will gradually
be transferred to shorter- and shorter-wavelength modes
via the interactions between them. Eventually this cas-
cade process will input energy into small-scale modes, of
size I, which are strongly damped by viscosity. At this
point the energy is dissipated irreversibly and Gnally ap-
pears as heat. A steady state is then achieved in which
energy is dissipated at the same rate that it is generated
and there is a kind of momentum-space Aux of energy
from small wave vectors k =0 (lo '

) to large wave-

The exponent g is called the Kolmogorou exponent and,
crudely, the question of its value is the fundamental issue
in the theory of turbulence.

To state the problem in more formal terms, consider
the Navier-Stokes equations for a three-dimensional in-
compressible Quid

Bv 1+Ac(v. V)v= — Vp+vcV v+f, V v=0,
Po

(1.2)

where v(r, t) is the velocity field, p(r, t) is the pressure
(determined completely by the incompressibility condi-
tion), f(r, t) is the external driving force (without loss of
generality, we take V.f=0), po is the mass density, vo is
the kinematic viscosity, and the coupling constant Xo,
physically equal to unity, is included for convenience.
Since we assume the stirring to be large scale, the Fourier
amplitudes f(k, co ) of the driving force vanish rapidly for

vectors k =O(l '). In the intermediate inertial range
lo ' «k « l ', the equations of motion are essentially
scale invariant and one expects power-law behavior of the
energy spectrum,

E(k)=2k &, l, ' «k«l. ' .
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1
l = =( 3/e)l/4

v g p (1.4}

A well defined inertial range clearly requires some com-
bination of small viscosity, large energy input, and large
stirring length.

The energy spectrum is obtained from the velocity-
velocity correlation function

U(r —r', t t') = — (v(r, t) v(r', t') ),1

d —1

with Fourier transform

0(k, co) = f d "rf dt ei(i r+~~)U(r

(1.5)

The meaning of the average ( ) will be made clear below.
The (angular integrated) energy spectrum is then defined
by

E(k) =Bdpok ' f 0(k, co), (1.7)

where the angular factor Bd =(d —I)/(2n)" ~ '"I ( —,'d) is
chosen so that E = jo dk E(k)= —,'po(v ) is the total en-

ergy density, and for later convenience we have kept the
spatial dimension d as a free parameter. It is useful to
define a characteristic velocity vo via (d/2)vo
=(v )=2E/po. In the inertial range, the power-law
form (1.1) is expected to hold.

B. The Kolmogorov argument

In 1941, Kolmogorov [1] presented a simple argument
for determining the value of g. The argument was based
on two fundamental assumptions. First, the cascade pro-
cess was assumed to be local: in a sense, to be made pre-
cise in Sec. IVF, the Quid equations lead mainly to ex-
changes of energy between modes with wave numbers of
the same order of magnitude. This allows one to define a
momentum-space energy Jeux, which is the rate at which
energy is transferred "through" wave vectors of rnagni-
tude k. Locality postulates that this Qux is independent
of k in the inertial range and must therefore be precisely
equal to ppe. Second, the energy spectrum was assumed

k ))pl p lp ~ In the absence of the nonlinear convective
term A,o( v.V )v, we would have

v(k, co) = f(k, co)/( i—co+vok ) (1.3)

and only those velocity Fourier modes v(k, co), for which
k 5 mp would be substantially excited and no small-scale
motions would result. However, the nonlinearity leads to
interactions between modes and energy will gradually be
transferred to shorter wavelengths.

We may naively estimate the length scale l at which
the viscosity becomes important using dimensional
analysis [1]. If energy is input into the system at a rate
ppF per unit volume and is more or less conserved in the
inertial range, then it must be dissipated at the same rate
at the length scale l . The Kolmogorov estimate for the
simplest viscosity-dependent quantity (with the correct
dimensions of length} intrinsic to the dissipation process
is

to be independent of the length scales lo and 1,. This
turns out to be the more questionable assumption. It ba-
sically postulates that as the stirring length lp diverges,
with e fixed, the energy spectrum at any given fixed k in
the inertial range remains unchanged. The larger-scale
motions therefore do not affect the details of the local
cascade process. Through simple dimensional analysis
these two assumptions together determine E(k): the
unique combination of e, pp, and k that yields a quantity
with the same dimensions as E (k) is

E(k)=Cxpoe'~'k '~', mo «k «A, (1.8)

with exponents independent of the dimension d. The di-
rnensionless Kolmogorov constant Cz is postulated to be a
universal number (for given d).

There seem to be two schools of thought on the validi-
ty of (1.8). The Kolmogorov prediction, and its deriva-
tion, would probably not receive the attention it does to-
day if it did not fit the experimental data so well [2]. One
school takes this agreement as strong evidence that (=—',

is exact, and this has led to numerous attempts, based, to
varying degrees, on the actual Quid equations themselves
[3] to put the result (1.7) on a firmer theoretical footing.
Unfortunately, all of these derivations contain uncon-
trolled approximations and the inherent danger
(demonstrably present in many cases) is that they may all
simply be more complicated rephrasings of
Kolmogorov's original argument.

The second school (which includes the present authors)
takes the view that turbulence is a strongly interacting,
nonlinear problem and that it would be very surprising (if
not disappointing) if the answer were indeed so simple.
Given the failure of all attempts to date to prove its ex-
actness, the proximity of experimental reality to the

3

law should tentatively be viewed as coincidental [4] and
some systematic means sought to distinguish g from —', .

It is simple enough to parametrize such a distinction.
If we relax the condition that E(k) be independent of the
outer scale lp, the energy spectrum may then depend on
the dimensionless combination klo=k/mo and Eq. (1.8)
may be generalized to

E(k)=C'p e k (k/m ) (1.9)

and thus g= —', +p/9. This definition of the exponent p
seems standard in the literature, originating from the
Kolmogorov-Oboukhov- Yaglom log-normal theory [2]
in which p is proportional to the variance of
(i}/Bk)ln[e(k)], where e(k) is the (fiuctuating) energy fiux
at scale k (no longer equal to the constant e }. Experimen-
tally one finds p=0. 2—0.5. Within the theory, this ex-
ponent may also be interpreted in terms of the fractal
codimension d —Df of the dissipation region via
p=3(d Df). Of course, deviat—ions from the Kolmo-
gorov —,

' law need not rely on the validity of this theory,
nor its interpretation. Our own analysis will, in fact,
confirm locality and the constancy of e (see Sec. IVF).
Deviations result instead from large-scale sweeping
effects.



3740 CHUNG-YU MOU AND PETER B. WEICHMAN

C. Renorinalization group approach

The most modern approach to the theory of turbulence
is based on renormalization group ideas [5]. The renor-
malization group method has proven extraordinarily suc-
cessful in the treatment of strongly interacting, highly
nonlinear problems in equilibrium statistical mechanics.
One might hope that the method would be equally suc-
cessful in treating the problem of turbulence and hence
resolve the differences between the two schools of
thought. This hope turns out to be unfounded, as we
shall detail below. However, the method does yield exact
results for related problems, which can then serve as a
basis for comparison with appropriate limiting cases of a
more general theory. For this reason we summarize the
renormalization group results in fair detail.

In applying the renormalization group method to tur-
bulence one begins by modeling the stirring force f as a
stochastic variable, usually taken to be Gaussian with
zero mean and Fourier transformed variance

(f; (k, co)fi(k', co') ) =8(k, co)~ J(k)5(k+k')5(co+co'),

(1.10)

where ~;.(k)=5;.—k;k. /k is the transverse projection
operator arising from the choice V' f=0. The 5 func-
tions reAect the basic assumption that the turbulence is
homogeneous. Within this model, true turbulence is ob-
tained when the driving spectrum 8(k, co) vanishes rapid-
ly for k &)m0. One may well question whether this mod-
el yields the same Kolmogorov spectrum as one with a
more deterministic stirring force, i.e., whether or not
they lie in the same "universality class. " Clearly for a
very weak deterministic force, the Aows will also be
deterministic. However, as the strength of the forcing
grows, the onset of turbulence is expected to occur, first,
through various routes to temporal chaos. Eventually,
through as yet ill understood means, as the driving
strength increases, Aows that are both temporally and
spatially chaotic will be generated [6]. Once the flows are
chaotic, the behavior in the inertial range is expected to
be insensitive to the detailed structure of the forcing and
the stochastic model is probably appropriate. This ques-
tion will not be addressed any further in this work; from
now on we simply work with the model (1.10). The
meaning of the average in (1.5) is now clear: the velocity
field is to be averaged over all realizations of the stochas-
tic driving force.

In addition to the velocity correlator 0'(k, co), there is
another crucial two-point correlation function, namely,
the response function C(k, co), which measures the aver-
age response of the velocity field to an infinitesimal forc-
ing field:

~ ~ ~ ~ ~

~ ~

5u;(k, co)
=C(k, co)~~i(k)5(k+k')5(co+co') . (1.11)

5f) (k', co')

With the Gaussian stochastic driving (1.10), one has the
more explicit relation

(u;(k, co)fl(k', co') ) =C(k, co)8(k, co)v; (k)

X5(k+ k')5(co+ c0') . (1.12)

The response function is causal, so that in the time
domain G(k, t) =0 for t &0, while

C(k, t ~0+ ) = 1 for all k . (1.13)

The renormalization group method is based on a form
of the driving spectrum that has completely opposite
characteristics from that required for turbulence.
Specifically, the driving spectrum is assumed to grow
stronger as k increases:

D,k4"
8(k, co) =D(k—) = (1.14)

where the parameter y is assumed to be either negative or
positive but smalL

When y =2 d, D(—k) =Dak and the model is that of a
thermally driuen fiuid (for this case it is certainly safe
to take m0—=0). The fluctuation-dissipation theorem
then requires that Do =kii Tva/pa and the relation
0(kco), (=DD/v0)ReC(kco) , holds. The model was origi-
nally proposed by Forster, Nelson, and Stephen [5(a)] in
order to study the effects of small-scale thermal Quctua-
tions on large-scale hydrodynamics. By using a
momentum-shell renormalization group technique, in
which short length-scale fluctuations are successively in-
tegrated out, these authors were able to derive recursion
relations for the length-scale-dependent effective viscosity
v(l) and nonlinearity coefficient (essentially a scale-
dependent Reynolds number) A, (1)=A,(l)[D(l)/v(l) ]'
where l is the renormalization group Aow parameter. For
d &2 they showed that limi „v(l)=v~ is finite, while
limi „A,(1)=0, indicating that linear hydrodynamics,
with a renormalized (eddy) viscosity vz, appropriately
describes large-scale Aows. Generally, vz is larger than
vo (and is, in fact, positive even when va =—0), indicating
enhanced diffusive transport by small-scale eddies. The
energy spectrum obeys the equipartition principle
E(k)-k" '. In contrast, for d &2 nontrivial large-scale
behavior results: in an expansion in y =2—d, A,(l) flows
to aconite fixed point value Az =O(y) and v(l) diuerges as
l ~~. However, the energy spectrum still obeys
E(k)-k" ', a consequence of the fluctuation-dissipation
theorem.

These authors also considered the case y =4—d, and
hence D (k) =DD, in which all wave numbers are driven
equally ("uniform" driving). In this case, linear hydro-
dynamics is valid on large scales only when d &4. Once
more, when y =4—d &0, A.(l) flows to a nontrivial fixed-
point value A~ =O(y) and now the energy spectrum ex-
hibits nontrivial power-law behavior E (k) -k "~ "
Note that in both cases the borderline between the two
different kinds of behavior occurs at y =0.

A short time later, DeDominicis and Martin [5(b)] for-
malized and generalized these results using field-theoretic
methods. From Ward identities and the general form
(1.14) for the driving spectrum, they showed that for
y &0 linear hydrodynamics results on large scales, while
for y &0, A,z =O(y) is finite. Furthermore, they showed
that under the implicit assumption that the limit m0~0
may be taken safely, to all orders in y, the energy spec-
trum takes the power-law form
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(1.15)

with no further explicit dimensionality dependence in g.
The renormalization group picture implies much more

than power-law energy spectra. The existence of fixed
points implies scaling of the correlation functions. Thus,
for example, in the inertial range the correlation and
response functions are predicted to take the forms

C(k, a))= A, k 'g(co/vk'),

0(k, co) = A2k u (co/vk'), k, co~0,
(1.16)

(1.17)

where the exponents b, and z and the scaling functions
g (s) and u (s) are universal, while Ai, Az, and V are
nonuniversal scale factors T.he dynamical exponent z
provides a connection between length scales and time
scales. The fact that it appears also in the prefactor of
(1.16) is a consequence of the normalization (1.13).
DeDoininicis and Martin [5(b)] show that, again to all or-
ders in y, these exponents are given by

D. Analogy to spin models with long-range interactions

In order to place the renormalization group results in a
clearer context, the following analogy is useful [8]. Con-
sider the standard ferromagnetic phase transition in an
Ising model with long-range interactions. The Hamiltoni-
an is

HI —
—,g J,js;sj,

lAJ
(1.21)

infinite number of relevant Galilean invariant perturba-
tions to the linear hydrodynamical fixed point. This, un-
fortunately, says nothing about the stability of the long-
range fixed point and neither establishes that y0=4 nor
that yo=y„though a great deal of work has been based
on precisely these assumptions [7]. What makes them so
compelling is that, as first noticed by DeDominicis and
Martin [5(b)], these assumptions yield precisely the Kol-
mogorov result for the energy spectrum g= —,'.

z =2—Tty, b, =d+ —,Iy (y &0) .

Notice that this implies the "hyperscaling" relation

(1.18) where s;=+1 is the Ising spin at d-dimensional lattice
site i and the exchange constants have the power-law
behavior

6+z =d+2, (1.19) J; =JOUR;
~

' + ', i', Jo&0, (1.22)
which will be significant later on. The relation (1.7) gives
E (k) =Bd uopovk ~' ",where

in contrast to those for the standard Ising model, which
vanish when i and j are not nearest neighbors. In Fig. 1

g(h, z) =b.—z —d +1 (1.20)

and uo= f" (ds/2m. )u (s). Together with (1.18) this im-
mediately yields the result (1.15). It should be em-
phasized that (1.20) is a general scaling relation, whereas
(1.18) and (1.19) are valid only within the y expansion.

Now, what connection, if any, do these results have
with turbulence? Clearly, what we will call the "short-
ranged" driving problem, in which D(k) efFectively van-
ishes for k & mo, corresponds, in some sense, to the limit
y ~ 00 of the "long-ranged" driving problem. If we
blindly take this limit in (1.15), g diverges to positive
infinity, which is clearly nonsensical. This is our first hint
that the y expansion must have a finite radius of conver-
gence yo.

From theories of critical phenomena one knows that
"input" exponents, such as y, need not actually be infinite
to recover short-range behavior. Rather, for sufBciently
large values y &y„oneexpects long-range driving (1.14)
to become technically irrelevant and give rise only to
lower-order corrections to the leading short-range (i.e.,
turbulent) behavior. In the simplest, most optimistic
scenario, the value of y at which this happens is precisely
the radius of convergence of the expansion around y =0,
i.e., y, =yo. In the renormalization group picture, this
corresponds to a continuous coalescence of the long-
range fixed point with the short-range one and the ex-
ponents, correspondingly, merge continuously with their
short-range values. We would conclude, in this case, that
g= —2y, —1, z =2—

—,Iy„and b, =d =2+ —,Iy, .
Unfortunately, within the y expansion there is no

direct way of ascertaining either yo or y, . DeDominicis
and Martin [5(b)] have shown that for y & 4 there is an

ra= d
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FIG. 1. "Phase diagram" for the Ising model with long-range
interactions. Solid lines separate different universality classes of
critical behavior. Dashed lines are guides to the eye. As indi-
cated by the arrows, the renormalization group e and e expan-
sions allow one to access perturbatively the behavior near the
gaussian phase boundaries. Of special interest is the nontrivial
boundary o =2—

go (where qo is the short-range critical correla-
tion decay exponent) between the 1ong-range critical and short-
range critical phases.
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we show the boundaries between various types of critical
behavior in the d-o. plane. For o. & —,'d or d &4 a Gauss-
ian model controls the critical behavior. For sufficiently
large o. and d & 4 the usual short-range critical behavior,
characteristic of the nearest-neighbor Ising model, re-
sults. For d &4 there is an intermediate range of o. for
which nontrivial long-range critical behavior results. We
make an analogy between Gaussian behavior in the spin
model and linear hydrodynamic behavior in the Quid
model, between short-range Ising critical behavior and
real turbulence, and between nontrivial long-range criti-
cal behavior and the long-range driven Quid. Analogous
to the y expansion in the Quid problem is the e expan-
sion [9], with E =2cr —d, which penetrates upward into
the long-range critical region from the line o.=—,'d. In ad-
dition, an analysis equivalent to that of DeDominicis and
Martin [5(b)] shows that for a )d there are infinitely
many relevant perturbations to the long-range Gaussian
fixed point (corresponding to long-range multicritical
behavior of all orders). It is clear from Fig. 1 that this
line has no significance whatsoever, as long as d & 2.

In the spin problem one has the advantage that the
short-range critical behavior may be accessed directly
through the usual e expansion [10] about d =4. Thus
one can check directly the relevance of long-range in-
teractions at the short-range Ising fixed point. This, as
well as more general arguments, allows one to fix precise-
ly the boundary between short-range and long-range crit-
ical behavior [11], which occurs when o =2—g0, where
g0(d) is the short-range value of the critical decay ex-
ponent g. In addition, the long-range value of g is given
exactly by qLR =2 —o., much like the exact results
(1.15) and (1.18) for the fiuid problem. Note that this
immediately implies continuity of q across the long-
range —short-range boundary.

We may now address, by analogy, the question of the
position of the equivalent long-range —short-range bound-
ary in the Quid problem. There is no information in the
e expansion about the value of g0 and therefore no hint
that the value o.=2—

g0 is special. Only by locating both
fixed points and seeing when they merge, or, equivalently,
seeing when the long-range fixed point becomes unstable
to the short-range one, can this boundary be located.
Naively, one might have expected this boundary to occur
at o. =2, for this is when the k and k terms in the
Fourier transform J(k)=J0+J2k +J k +O(k ) of J;
exchange dominance as k~0. For subtle reasons, in-
volving the nontrivial rescaling of the k term under re-
normalization [11],this expectation is false. There is no
reason not to have similar doubts about the y0=y, =4
conjecture in the turbulence problem.

It is basically the existence of the point 3 in Fig. 1,
near which all of the four possible fixed points are simul-
taneously perturbatively accessible (both e and e are
small), that allows one to infer the detailed characteristics
of the short-range —long-range boundary. The apparent
absence of such a point in the d-y plane for Auids is what
leads to the failure of the renormalization group method
in turbulence. We are therefore forced to seek an alterna-
tive approach in order to make progress on this problem.

E. The 1/W expansion and the spherical limit:
Motivation and results

In the theory of equilibrium phase transitions there are
actually two analytic techniques that have provided many
of the fundamental insights into the nature of critical
phenomena: the e expansion [9,10] and the 1/N expan-
sion [12]. The first, as we have seen, corresponds most
closely to the y expansion and is based on the fact that
the critical behavior is simple in sufficiently high dimen-
sion d & d, . One can then perform a systematic expan-
sion in e=d, —d when d (d, (here d, =4 for the short-
range Ising model and d, =2o for the long-range Ising
model when cr & 2).

The second technique involves analytically continuing
the problem to one with a larger number of degrees of
freedom 1V. Thus the Ising Hamiltonian is generalized to
the O(N) model H' '= —

—,'g;~ Jjs;-s~, where s; is an
¹omponent unit vector ~s,. ~=l. If taken in an ap-
propriate fashion, the so-called spherical limit N~ ~ is
often analytically tractable and a systematic expansion in
1/N may be developed for the exponents [12]. The e ex-
pansion has generally proven the more definitive of the
two in understanding critical phenomena, mainly because
it transpires that the dimensionality of interest, namely,
d =3, is usually, in some sense, closer to d, =4 than are
physical values of X, say, X =1,2, or 3, to N = ~. How-
ever, the 1/X expansion has the advantage that the
dimensionality d is a completely free variable and is
therefore useful in the study of physics in lower dimen-
sions where e is not small.

In turbulence, as described, the analog of the e expan-
sion is uncontrolled in the region of interest. We seek,
therefore, an approach in which the variable y [or, more
generally, the entire driving function D(k, co)], like the
dimensionality d in the spin problem, may be taken as a
free parameter. This paper, then, is concerned with the
construction of a 1/N expansion for turbulence. Our first
aim is to appropriately generalize the Na vier-Stokes
equation to N coupled equations in N (d-component) ve-
locity fields v'(x, t), i = 1, . . . , N, in such a way that an
analytically tractable spherical limit exists and then to
elucidate the dependence of the Kolmogorov spectrum
(1.1) on y. In particular, we wish to understand the
analyticity properties of g(y) and by what mechanism
true turbulence is recovered in the limit of large y. By
analogy with the 0 (N) symmetry that lies at the heart of
the spherical limit for the spin model, we argue that in
order to be useful these equations must be invariant un-
der a new group G of symmetry transformations. This is
necessary in order that the diagrammatic perturbation
theory have certain desirable invariance properties. We
will discuss in detail in Sec. II how such a group of sym-
metries can be properly incorporated. Our second aim is
to understand, as best we are able, the extent to which
these generalized equations embody the physics of the
usual (N = 1) Navier-Stokes equations. The essential re-
sults of our study are summarized below and in Figs. 2
and 3.
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1. Models I and II: Integral equations and scaling

We consider two classes of models, which differ in their
treatment of Galilean invariance. Most of our detailed,
explicit results are obtained for the simpler class, which
we call model I. This class has an exact Galilean invari-
ance only when N= 1 (corresponding to the original
Navier-Stokes equations). Partial results are obtained for
a more complicated, extended class, which we call model
II. This class is obtained by coupling one extra velocity
field (which we call the zero mode) to model I in just such
a way that an exact Galilean invariance is preserved for
all N. The original Navier-Stokes equations then corre-
spond to the limit in which only the zero mode remains,
i.e., to N =0.

In the spherical limit, model I yields a pair of coupled,
nonlinear integral equations for the functions G(k, co) and
0(k, co) [see Eqs. (3.17)—(3.20)], which turn out to be pre-
cisely Kraichnan's direct interaction approximation
(DIA) equations [13]. Although they have been studied
for more than 35 years, these equations have never been
fully solved. Kraichnan [13], through a series of scaling
arguments, concluded that

z =1, b, =d+ —', , (1.23)

for short-range driving. We shall show that these results
are, in fact, correct and in Sec. IV we will present com-
plete solutions for the scaling functions g(s) and u (s).
Note that these exponent values violate the hyperscaling
relation (1.19) and therefore do not correspond to any
Value ofy. We are also able to compute explicitly the en-
ergy Aux 5, which is derived from a three-point correla-
tion function, verifying that it is indeed constant in the
inertial range. In addition, we explicitly confirm locality
of the energy cascade.

The existence of scaling allows for stringent tests of nu-
merical and experimental data. Dividing the correlation
function and frequency by appropriate powers of the
wave number should, up to overall nonuniversal scale
factors, collapse the data onto a single universal curve.
These overall scale factors depend on details of the driv-
ing spectrum and therefore vary from system to system.
To completely specify such universal curves it is there-
fore important to know how many independent scale fac-
tors there are. Within the Kolmogorov theory there is
only one, the energy Aux F, in terms of which all others
may be expressed. For example, A 2

= I /3
&

=v= F' . It
is precisely this that leads to the universality of the am-
plitude Cx in (1.8).

As discussed in detail in Sec. IV G, the DIA equations,
on the other hand, predict two independent scale factors.
Aside from the energy Aux 5, there is a second velocity
scale U~ [which in the spherical limit is precisely the total
root mean square velocity fluctuation Uo defined below
(1.7), but in general might be different], which diverges as
mo ~0 and directly determines the properties of the iner-
tial range. These two parameters are independent and
universal amplitudes are now generated by constructing

certain ratios in which all dependence on them cancels.
The main shortcoming of the Kolmogorov theory is,
then, that this second parameter has been left out: intui-
tively, the velocity scale v and the steady state energy
Aux e scale independently with the amplitude and shape
of the driving spectrum and both are needed to fully
specify the scaling in the inertial range.

From F and U one may construct a length scale I,
which is of the same order as io, via @=A,OU /i and thus
a time scale t~ —= I/co =l /v . It is precisely the dimen-
sionless combinations kl and mt that appear in the scal-
ing forms and it is then easy to reconstruct all other scale
factors once the exponents are known. Motivated by
similar results for critical amplitudes at second-order
phase transitions [14], we propose that these statements
hold also for finite X, in particular %=1. We do not
have a general theoretical definition of v, but for a given
experimental or model system it may be inferred from a
single well defined inertial range measurement. An im-
portant consequence of this is that by using I in place of
1/mo in (1.9), the dimensionless constant Cz is in fact
uniuersal. For the DIA equations one has p= —

—,
' and

Cx —-314 [denoted by cz in (4.81)].
The spherical limit of model II may also be solved in

closed form. It transpires, however, that the fundamental
objects are five three-point functions, with five corre-
sponding coupled nonlinear integral equations [see Eqs.
(3.37)—(3.39)]. These describe the correlations of the zero
mode with each of the other X modes and the two-point
functions (1.5) and (1.11) may then be derived from them
[see Eq. (3.35) along with (3.17) and (3.18)]. The kernels
of these integral equations turn out to involve the solu-
tions to model I, which therefore serve as inputs to model
II. We have not yet obtained explicit solutions to these
equations; however, we are able to confirm the scaling hy-
potheses (1.16) and (1.17). We thereby find that the ex-
ponents are still given by (1.23). Put another way, the
model II solutions represent finite renormalizations of the
model I solutions.

Since we do not obtain explicit forms for the scaling
functions, we have not yet been able to verify within this
model the proposed results for the scale factors. In par-
ticular, since the energy Aux is a significantly more com-
plicated quantity, its connection to the two-point func-
tion scale factors remains untested in this model. We are
actively continuing to pursue these questions.

More importantly, perhaps, are fundamental questions
about the role of Galilean invariance. It has long been
proposed that since large-scale sweeping should not affect
the breakup dynamics of a small eddy, energy transfer be-
tween scales should significantly reflect Galilean invari-
ance. As we shall discuss further in Sec. V, the DIA
equations are known to suffer certain deficiencies in their
modeling of energy transfer. It would be of great in-
terest, then, to investigate the detailed physics of energy
transfer processes within model II. Unfortunately, the
present partial results for model II do not permit us to
make a detailed study of the effects of generalized Galile-
an invariance. This will be left as important work for the
future.
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2. Long-ranged versus short-ranged driving
and the breakdown of the renormaiization group y expansion

The solution of the DIA equations is intimately related
to the interplay between long-ranged and short-ranged
driving. Although of intrinsic interest due to its role in
renormalization group calculations, it transpires that
keeping the exponent y as a free parameter also provides
a numerical device for solving the DIA equations in the
presence of short-range driving. This will be explained in
Sec. IV C. Thus, even if our main purpose here is to un-
derstand short-ranged driving appropriate to real tur-
bulence in the spherical limit, it turns out that an under-
standing of long-ranged driving is required first anyway.

If one examines the solutions to the DIA equations in
the presence of long-range driving one discovers some
amazing things. First, as long as the integrals converge
in the scaling limit mo —+0, one finds precisely the hyper-
scaling relation (1.19). If, furthermore, it is assumed that
D (k) controls the scaling (i.e., that the driving term is of
the same order as the interaction terms in the inertial
range), then (1.18) and (1.15) hold and the y-expansion re-
sults are reproduced exactly. In fact, it can be shown
that the DIA equations are an exact resummation of the
O(y) renormalization group recursion relations (see Sec.
III). The limit N~ oo therefore reproduces the proper-
ties of the original Navier-Stokes equations exactly to
0 (y). However, the DIA equations also extend these re-

cursion relations to arbitrary driving D(k, co) and allow
us to see where the y-expansion results break down.
Specifically, when y ~ 3 the DIA integrals no longer con-
verge and the limit mo~0 becomes subtle. The radius of
convergence of the y expansion is then yo=3 (at least
when N ~~; we shall argue later that this is also correct
for general N). By careful asymptotic analysis one can
show that the dynamical exponent sticks at z =1 and,
again, as long as the driving still controls the scaling, one
finds

(1.24)

Finally, to connect these with the Kraichnan [13] /= —',
result, one must determine the value of y at which the
driving ceases to control the scaling. This occurs at
y =y, =4: for y &4 long-range driving becomes techni-
cally irrelevant and except for lower-order corrections to
scaling is equivalent to the short-range driving problem.
For y & 4 all exponents then stick at values determined by
(1.24) with y =4, i.e., precisely the values (1.23) predict-
ed by Kraichnan [13].

In Fig. 2 these results for the exponents in the spheri-
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FIG. 2. Turbulent spectral exponents as a function of driving
exponent y. Heavy lines denote the behavior in the spherical
limit; light lines denote the behavior predicted by the naive ex-
trapolation of the renormalization group results. Dashed lines
are guides to the eye.

FIG. 3. "Phase diagram" for power-law driven incompressi-
ble turbulence. Solid lines separate different universality classes
of behavior. The dashed line at y =4 denotes the true turbulent
phase boundary in the spherical limit N~ Qo. The hatching in-

dicates that this line may be a nontrivial function of N. The
boundaries at y =0 and 3 are claimed to be exact. As indicated
by the arrows, the renormalization group y expansion allows
one to access perturbatively the behavior for small y )0. The
dotted lines are physical trajectories in parameter space for par-
ticular forms of the driving spectrum. Of special interest is the
new universality class, in the interval 3 &y &4, that intervenes
between the region of validity of the y expansion 0&y &3 and
the region of true turbulence y )4. It is the existence of this re-

gion that causes the exponents in Fig. 2 to break away from
their renormalization group counterparts.
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cal limit, which we argue to be valid also for the spherical
limit of model II, are contrasted with those obtained
from the yo=y, =4 conjecture. In Fig. 3 we show a
"phase diagram" analogous to that for the Ising model,
Fig. 1. Our basic prediction is then that a new type of
long-range driven turbulence intervenes between the
boundary of convergence for the y expansion yo =3
(which we believe to be exact for finite N as well; see
below) and the onset of effectively short-range driving ap-
propriate to true turbulence, which in the spherical limit
occurs at y, =4 (and will likely have corrections for finite
N). Thus, although effectively short-range driving indeed
occurs for y &y, =4, the different behavior in the inter-
mediate interval 3 &y &4 changes completely the values
of the turbulent exponents. In renormalization group
language, a new stable fixed point bifurcates away from
the now unstable long-range driving fixed point and only
later coalesces with the short-range driving fixed point.
In more physical terms, sweeping effects become impor-
tant before power-law driving becomes effectively short
ranged. This scenario is clearly even more involved than
that for the Ising model, where the analogs o.o and o., of
yo and y„though nontrivial, are at least equal,
oo=o c 2 '9o

3. Relevance to N=l

The physics behind the conjectured y =3 borderline is,
in fact, well known, corresponding to the oft-quoted
effects of sweeping of smaller eddies by larger ones (this
will be discussed in more detail in Sec. V). The dynami-
cal exponent value z = 1 then confirms the Taylor "frozen
in" hypothesis: small-scale turbulent structures are
swept past a fixed observer at a speed that fluctuates, but
remains more or less constant in order of magnitude.
This speed basically determines the shortest time scale in
the problem and the small-scale structures change very
little in the time it takes them to be swept by. Therefore,
the measurement of the temporal velocity fluctuations at
a single point is nearly equivalent to the measurement of
spatial velocity fluctuations along a one-dimensional line
at a single time. Inertial range frequency spectra and
wave-number spectra should then be the same, up to a re-
scaling factor that depends on the large-scale velocity vo.
The fact that the spherical model equations are proven to
reAect this physics is heartening and leads us to believe
that yo =3 and z = 1 are exact results, independent of X
for models I and II. It is not clear to us at this stage
whether the subsequent y dependence (1.24) of the ex-
ponents is different for general N or whether only the
boundary y, shifts.

Another interesting feature of the y =3 borderline is
that the Kolmogorov exponent passes through unity at
this point. This means that the energy spectrum goes
from being ultraviolet dominated to infrared dominated.
Thus for y & 3 most of the energy resides at small wave
numbers, which then gives rise to the sweeping effects on
the high wave numbers (this then indicates that the fact
that g=l and z=1 occur simultaneously is not a coin-
cidence). Therefore, in order to obtain a finite total ener-
gy for y & 3, one must regularize the driving spectrum at

short distances and look for universal power laws at large
distances: this is the usual case in critical phenomena
(where a lattice spacing plays the role of the short-
distance ento+ and lies at the basis of the original renor-
malization group approach to the Navier-Stokes equa-
tions [5]. However, for y)3 one must regularize the
driving spectrum at large distances (this is the role of lo)
and look for universal power laws at short distances, the
opposite of the usual case in critical phenomena. From a
renormalization group point of view this means that the
fixed point is conjectured to go from being infrared stable
to ultraviolet stable as y increases through 3 [15].

In a nutshell, it is attempts to remove the boundary at
y =3 that motivates many of the attempts to show that
the Kolmogorov —,'law is exact [see especially [3(b)]. At
the level pf the DIA equations, these efforts focus on pro-
ducing, in some natural way, extra terms that cancel the
divergent parts of the integrals when y ~ 3 (this will be al-
luded to at the end of Sec. IV E). One problem with such
procedures is that if these same terms are produced when

y &3, there will be large-k divergences in the region de-
scribed (presumably correctly, even for the original
Navier Stokes-equations) by they expansion. The theory
will then fail to encompass the known exact results.

The second problem is connected with the entire philo-
sophy of the large-X approach. The limit N —+Do pro-
duces an exactly soluble model. Any alterations in this
model can come only from finite-N corrections; the DIA
equations, not their subtracted versions, are fundamental.
The same realizability problem occurs in more sophisti-
cated Lagrangian history versions of the direct interac-
tion approximation [16]. Although the exponents take
the Kolmogorov values, there is no known limiting model
for which the equations provide an exact solution. On.
the other hand, in our approach the differences between
the value g= —', we establish at N~ oo and the experimen-
tal result g= —', at N =1 are now accounted for in a very
natural way: we propose that, just as for the O(N) spin
model, the exponents b, and g (and most likely the bound-
ary y, ) vary continuously with N, interpolating between

g( ao )=—,'and g(1)=—,'. The fact that g( oo )A —,'is strong
evidence that g(1) is a nontrivial exponent, not obtainable
through any simple argument. A real test of our ap-
proach would be to compute the first correction, in
powers of I /N, to g( 0D ). As will be seen in later sections,
this is a daunting task, but seems a necessary step in or-
der to confirm our ideas.

4. Turnover times

Finally, we discuss efforts to define internal "I.agrang-
ian" turnover time scales that differ from the sweeping
time scale. Although only the latter appears in the scal-
ing of the two-point functions, this leaves open the ques-
tion of whether other longer time scales, associated in
some sense with dynamical time scales of moving inertial
range eddies, can be defined and calculated. We do not
know the general answer to this question, but in Sec. V B
we describe one possible way of defining such a time
scale, yielding an associated "internal dynamical ex-
ponent" z;„,& 1, even in the spherical limit.
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The definition involves the scaling of the relative size of
the inertial range lo/l =A/mo with Reynolds number
Re—=Aou l /vo-Aouolo/vo. The idea is that, since the lo-
cal dissipation rate is a Galilean invariant quantity, at the
boundary k —A between the inertial and dissipation
ranges, the dissipation time scale w~

=—1/co& =voA 2

should also reAect the intrinsic eddy dynamics. We
Z

therefore define z;„,via co&to —(Alo) '"', where to=lo/uo
is the outer sweeping time scale. The Kolmogorov theory
yields z;„,=—', , while the DIA equations yield z;„,= —,',
which are indeed different from z =1. We also give a
general scaling argument, valid for general 1V, which im-
plies the scaling relation z;„,=g—1, completely con-
sistent with these two special cases.

The existence of an extra time scale is a feature special
to turbulence and arises from the fact that z —+1 as y —+3.
Since energy transfer involves a three-point correlation
function, this time scale cannot be obtained from the
two-point correlation functions alone and there is there-
fore no contradiction with the previous conclusion that
z =1. We do not know at this stage whether this argu-
ment can be generalized to obtain explicit inertial range
scaling functions for more complicated quantities based
on a scaling variable co/k '"'.

F. Outline

This completes our survey of the results described in
detail in later sections. The remainder of this paper is or-
ganized as follows. In Sec. II we generalize the Navier-
Stokes equations (1.2) to N equations for N d-dimensional
velocity fields. We discuss in detail how the new group G
of symmetries can be properly incorporated. We find
that incorporation of an exact Galilean symmetry is non-
trivial and requires an extension of the simplest, irreduc-
ible, representations of the symmetry group to reducible
representations that include the zero mode.

In Sec. III we discuss the spherical limit N~ ~. We
outline the general methodology for analyzing this limit
and then, using a particular choice for the symmetry
group 6, derive the spherical limit integral equations.
For model I, which does not possess an exact Galilean
symmetry, the DIA equations result. For model II,
which does possess an exact Galilean symmetry, there re-
sults a more complicated set of equations, which actually
demand the solutions to the DIA equations as input.

In Sec. IV we solve the DIA equations, deriving the
key results shown in Figs. 2 and 3. In so doing we exhibit
full solutions for the scaling functions g (s) and u (s) and
derive the physical scales l and U . Following Kraich-
nan [13], we are then able to give a detailed demonstra-
tion of locality and derive the various universal ampli-
tudes, generalizing, for example, the Kolmogorov con-
stant Cx in (1.8). Locality has long been proposed as a
property of real Navier-Stokes turbulence and we there-
fore conjecture that similar universal amplitudes exist at
N = 1. In Sec. IV H we outline partial solutions to model
II, confirming Figs. 2 and 3 for this model as well, but
leave detailed analysis of the inertial range properties for
future work.

In Sec. V we conclude by reviewing previous theories

of turbulence, and some of their shortcomings, in the
light of our own results. In particular, we attempt to
reconcile Lagrangian coordinate viewpoints of the local
cascade process, eddy turnover times, etc., with our own
more Eulerian viewpoint. For example, the common no-
tion of an intrinsic eddy turnover time, different from and
much longer than the sweeping time, is at the heart of the
Taylor hypothesis, but would seem to require two (or
more) difFerent dynamical exponents. We illustrate one
way of extracting a second time scale by discussing the
scaling of the dissipation length with Reynolds number.

Finally, we discuss open questions and work for the fu-
ture. For example, it has been known for a long time that
the DIA equations possess certain unphysical features
that are directly connected to the problem of Galilean in-
variance (this was alluded to in Sec. I E 1 and is discussed
at the end of Sec. V A). A high priority, then, is to exam-
ine this same physics in the context of model II. Other
work will include the calculation of finite-N corrections
and applications of large-X techniques to other nonequili-
brium dynamical problems.

The Appendixes are devoted to more technical deriva-
tions. In Appendix A we discuss Ward identities and the
status of Eqs. (1.15) and (1.18) for general N. In Appen-
dix B we generalize the von Karman-Howarth result for
the third-order velocity moment to general X. In Appen-
dix C we summarize a failed attempt to use the adjoint
representation of SU(N) to construct a large-N theory.
In Appendix D we give a simpler analysis, parallel to that
of the full DIA equations given in Sec. IV, using a set of
simplified DIA equations. Finally, in Appendix E we
give details of the numerical techniques used in Sec. IV to
solve for the scaling function u (s) and related universal
amplitudes. A preliminary report of our results has ap-
peared previously [17].

II. GENERALIZATION TO N VELOCITY FIELDS

A. Analogy to spin models

The most straightforward generalization of the
Navier-Stokes equations (1.2) to N velocity fields v',
l=1, . . . , X, is

av' N

+ko g A~ "(v .V)v„=— Vp'+voV v'+ f',
Bt i po

V.v~=0, l =1, . . . , N, (2.1)

where f' are independent random forces. The only ques-
tion one must address is that of the choice of the tensor
A& (for later convenience, a distinction, to be defined
below, has been made between upper and lower "isospin"
indices l, m, and n).

Here we again appeal to the spin model analogy [8].
The generalization of the Ising Hamiltonian (1.21) to N
component spins s; = (s; &, . . . , s; & ) is

N
H' '= —

—,'gJ; g Cz s zs, fs /
=N, (22)i' 1 m =1

where one must choose an appropriate NXX positive
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definite matrix CN (the normalization ~s, ~

=N is chosen
by convention and yields the correct large- and small-N
limits). Since CN is symmetric one may perform a rota-
tion in spin space to diagonalize it, obtaining

tion [19]

(2.7)

N
H' '= ——'g J"g A, 's, ,s, , ~s, ~

=N,i' I =1
(2.3)

where A. are the eigenvalues of CN. Clearly, any state
with long-range magnetic order will energetically prefer
to align along the component of s with largest eigenvalue,
say, A, '. If A,

' is unique one can, in fact, show that the
critical behavior is completely dominated by this "easy
axis" [18]and lies in the same universality class as that of
the Ising model (1.21). We have therefore gained nothing
by giving s,- extra components. Gnly if A. is not unique
does the critical behavior change. Thus if

=A,~, M~N, are the largest eigenvalues,
then the model has O(M) symmetry and the critical
behavior depends on the value of M. Again, however, the
N —M components with smaller eigenvalues are redun-
dant and do not effect the asymptotic critical behavior.
Clearly, then, in order to obtain the simplest possible
model, one should take M =N (i.e., CN =5i ) and

If the representation is unitary (which we assume, unless
stated otherwise), then vi —=v' and DN'(g ')=DN™(g)'.
If the representation is orthogonal (in which case all
quantities are real), there is no distinction between upper
and lower indices. If the representation is not unitary, it
differs from unitary only by a similarity transformation
and v& is then an appropriate linear combination of the
v '. Substituting (2.6) and (2.7) into (2.1) we obtain now
the condition

" = g DN'(g»N ™(g»N"(g)~N " &g &G
1, m, n

(2.8)

i.e., that A& be invariant under the group of transforma-
tions G. The questions to be addressed, then, are, given a
group 6, which irreducible representation should we
choose and, given a representation, how do we construct
appropriate cubic invariants A&.

H( N)i—

EPJ
(2.4) B. Diagrammatic formalism

This is the so-called ¹ ector model. Special cases are
N = 1, Ising; N =2, XY; and N =3, Heisenberg. The cru-
cial property of H' ' is its invariance under the group of
rotations 0 (N) in spin space and this is what allows the
universality class of the transition to vary with N [18].

By analogy, if we seek a generalized model for tur-
bulence in which Kolrnogorov-type exponents depend
continuously on N, it seems likely that one must build
into the equations an extra group of symmetries. Thus,
by analogy with the set of rotations

Before addressing these questions it is useful to outline
the perturbation-theoretic formalism for the Navier-
Stokes equations, including its generalization to N &1.
The formalism was developed by Martin, Siggia, and
Rose [20], extending the earlier Wyld [21] diagrammatic
theory, and was used by DeDominicis and Martin [5(b)]
in their renormalization group calculations.

First we include the incompressibility condition
T.v=0 explicitly by realizing that the gradient of the
pressure in (1.2) simply cancels the longitudinal part of
the nonlinear term. Thus if we define the k-space trans-
verse projection operator

~i, l g +N (g)~i, m& g O(N)& RNRN IN (2.5)
k kp

~ tr(k)=5 ir-
k

(2.9)

(here IN is the N XN identity matrix and the superscript
T denotes matrix transpose) that leave H' ' invariant, we
seek an N-dimensional irreducible representation of a
group (technically, a simple compact Lie group) G of
transformations along with an appropriate tensor A&,
such that the transformation

Bv
+A,ov" (v.V)v=voV v+ f,2

Bt
(2.10)

and let r &(r) be its inverse Fourier transform, then the
Navier-Stokes equations may be written

1Vv'= g DN (g)v, g EG,
m=1

(2.6)

where we have used the shorthand notation
[7(v V)v] (r)=g&f d r'w &(r r')v(r') VU&(r—'). Let us

define the "Navier-Stokes operator"

leaves the equations of motion (2.1) invariant (later we
will relax the irreducibility requirement slightly). Since
the group is taken to be compact, the representation may
always be taken as unitary DzDz =I&. We assume, of
course, that the pressures p' and the forces f' also trans-
forrn under (2.6). We leave open the possibility that the
velocity fields are complex (their real and imaginary parts
then being the physical variables). The distinction be-
tween upper and lower indices is then made: vI trans-
forms via the inverse (or complex conjugate) representa-

BvN(r, t) = +A,07 (v.V)v —voV v; (2.11)

then we may formally compute the statistical average of
any functional F [v ] of the velocity field via

(F[v])= fDv F [v]J[v](5(N[v] —f) ), (2.12)

where fDv is a functional integral over all incompressi-
ble velocity fields, and is defined by an appropriate con-
tinuum limit
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fDv= —lim +fd"v(r;, t;)5[V v.(r, , t, )],
M —woo ~

with the operator
(2.13)

where [r;, t; ]; i runs over a discrete space-time grid and
V v(r;, t;) is the obvious discretized divergence at lattice
point (r, , t, ). Similarly,

5N (r, t) =5 (t} —v V )5(r —r')5(t —t')aP t 0

+A05(t —t')[[v(r', t).V ]~ tt(r —r')

5(N[v] —f ) = lim g 5(N(r;, t; ) —f(r;, t; ) )
M —+ oo;

(2.14) +gr (r —r')Bttur(r', t)]
r

(2.16)

J [v]=det 5N(r, t)
5v r', t' (2.15)

enforces the Navier-Stokes equations at all space-time
points. The Jacobian J [v] is given by

inside the determinant, and is precisely what is needed to
convert 5(v —N '[ f ]) to 5(N[v] —f ).

We now represent the 5 function using the identity
5(x)= f "„(dw/2m. )e ' for each space-time point, so
that

t'

(F[v])=fDvt Dw F[v]exp i f—d"r f dt w(r t} N(r t)+in' [v] exp i f d—r f dt w(r t) f(r t)
L

(2.17)

where w(r, t) is also incompressible, i.e., V.w=0. It can be shown that causality (i.e., the fact that 5N(r, t)/5v(r', t')
vanishes when t') t) implies that the Jacobian term reduces to [22]

5N (r, t)
inJ[v]=C&+ f d"r fdt's

' =Ci+C2.f d r f dt v(r, t) .
5u (r, t) (2.18)

Rotation invariance implies that C2 must vanish and the Jacobian term is therefore a constant, independent of the ve-
locity field.

Performing the average over the Cxaussian random field f(r, t) we finally arrive at

(F[v])=—fDvt DwF[v]ez
where the Lagrangian is

(2.19)

X[v,w]= ig f—d r fdt[w (t), voV )u&5 t3+—Low r &(v.V)u&]
a, P

—
—,'g f d"r f dt f d r'f dt'w (r, t)D &(r r', t —t') &w(r—', t'),

a,P
(2.20)

with D t3(r r', t t') =(f (r—, t)f&(r', t—') ) [see (1.10)],
and Z = fDv jDw e ("' } ensures correct normalization
by canceling out the (formally divergent) constant C, .
One may now extend, in the obvious way, the quantities
being averaged to functionals of both w and v:

(F[v, w]) =—fDv fDwF [v, w]e+(" ~} .=1 (2.21)

This is important as it turns out that response functions
may be generated in this way [20]. In particular, for
homogeneous driving (1.10), we have

( u (k, co)v&(k', cu') ) = 0(k, to)r &(k)5(k+k')5(to+tv'),

(2.23)

where (1.5) is obtained by realizing that tr[r(k)]=d —1.
In Fourier space the Lagrangian may be written
X=%0+A,t)L „with

Xo[v,w]= f f [ i ( it@+—vok2)w( —k—, —cv) v(k, cu)
k cg

—
—,
' iw(k, tv)i'D(k, co)], (2.24)

Xi[v, w]= i f f f—f g —P ttr(k)w (
—k, co)—qn. 2

(iw (k, tu)utt(k', tv') ) =C(k, cv)v tt(k)5(k+k')5(tv+co')

(2.22)

Xuti(k —q, to —0)
Xv (q, Q), (2.25)

[compare (1.11) and (1.12)] while, as before, where P &~(k) =~ &(k)k + r(rk)k& and we have
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used the shorthand notation f &
=—fd "k/(2m ),f:—fdco/2n, etc. Recalling that k v(k, co)

=k.w(k, co)=0, we easily compute the zeroth-order
(A&=0) forms

Co(k, co) = +~ok
(2.26)

~o(k, co) =8(k, co) i @0(k,co) i2 . (2.27)

The usual diagrammatic perturbation theory [20] in &0i.
results by expanding e ' in a Taylor series and perform-
ing the averages term by term. Representing the result-
ing integrals by Feynman diagrams, the zeroth-order
correlation function Oo becomes a straight line and the
zeroth-order response function Go becomes a combina-
tion straight-wavy line. Vertices have three legs (one
wavy one and two straight ones) and a momentum-
conserving 5 function, along with a factor (i /2)LOP &r (k)
(where k is the incoming momentum on the wavy leg)
that accompanies each one (see Fig. 4).

Generalizing the formalism to N velocity fields is
straightforward. Introducing incompressible fields w'
and w~, l =1, . . . , N, which bear the same relation-
ship to each other as does v' to v&, and assum-
ing (f ' (k, co)fp (k', co') } =8(k, co}r p(k)5(k+k')5(co
+co')5, one finds a Lagrangian X'+'=Lo' '+KALI ',
with

FIG. 4. Building blocks for Navier-Stokes diagrammatic per-
turbation theory. (a) The zeroth-order response function
Co(k, co)r s(k); U is represented by the straight part of the line
and w& by the wavy part of the line. (b) The zeroth-order corre-
lation function 00(k, co}r &. (c) The vertex (i/2)ioP &r(k).

N
XP'= g f f ——[( ico+vok—)wi( —k, —co).v'(k, co)+c.c]——,'D(k, co)w'( —k, —co).wi(k, co) (2.28)

f f f f At'c P tt (k)w i( k co)vs (k q co Q)vr (q Q}+c.c.
1 m, n aP, y

(2.29)

(here c.c. stands for complex conjugate). The fields w' are
assumed to transform in precisely the same way (2.6) as
the fields v'. The properties (2.7) and (2.8) then immedi-
ately imply that both Xz ' and XI ' are invariant under
the group G of transforrnations. When Xo=O we have

(i&' (k, co)v@ (k', co') )

=Co(k, co)r ti(k)5' 5(k+k')5(co+co'), (2.30)

(-..'(k, }-., (k,
= 00(k, co)r ti(k)5' 5(k+k')5(co+co'), (2.31)

with Co and 00 given by (2.26) and (2.27).
Perturbation theory in A+', ' is also straightforward.

The only changes are that it is now convenient to define
for each graph a "shadow" diagram containin the iso-
spin dependence (see Fig. 5). Since Co and o are in-
dependent of l, this dependence factors out of each dia-
gram and can be treated separately from the momentum
and frequency dependence. This will be discussed further

in Sec. IIIA. The extra index I is associated with each
line in the shadow isospin diagram, the vertices are Az "
and A& I~„,where A& I~„—= A& ",and lines joining two
vertex legs imply a contraction between the correspond-
ing indices. We adopt the convention that an arrow com-
ing into a vertex carries an upper index, while an arrow
going out of a vertex carries a lower index.

C. Symmetries of Az

In order to limit our search for appropriate cubic in-
variants, we now discuss symmetry requirements on the
coefficients A& ". First, since the projection-type opera-
tor P &~(k) is symmetric under interchange of P and y, it
is natural to choose A& "

symmetric in m and n. It is
easy to check that the equations of motion (2.1) are still
nontrivial even if A&

" is antisymmetric in m and n (the
nonlinear term does not vanish identically, as long as
N & 1), but this does not give a sensible K =1 limit. In
particular the diagonal terms n =m, which are the only
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all permutations of the three indices

g Imn g lmn g nml g min
N (2.34)

(a) D. Group-theoretical considerations

We now treat more technical issues involving the rela-
tion between AN and the group G. We shall discuss two
approaches to the construction of group invariants: trace
invariants and Wigner symbols. The first is actually a
special case of the second, but is easier to motivate and
hence worth introducing separately.

(c)

m rr

Trace invariants

Perhaps the simplest way to generate invariants is to
associate the indices I, I, and n with the generators of the
group G. Thus we let J', l =1, . . . , N be a set of finite-
dimensional Hermitian matrices (the so-called Lie alge-
bra of the representation) such that the unitary matrix
U(g) representing any group element g&6 may be ex-
pressed as

FIG. S. Generalization of Fig. 4 to X&1. The directed
dashed lines connect up to form a "shadow diagram" carrying
the isospin dependence. (a) The zeroth-order response function
Cor P" . (b) The zeroth-order correlation function &or g" .
(c) The vertex (i/2)A, OP &~ A& I~„.

N

U(g)=exp i+a&(g)J', g&G,
1=1

(2.35)

where the al are real numbers. The group structure is
completely specified by the structure constants f' ",
which are real and defined by the commutation relations

N

[J1 Jm] ~ y f lmnJn (2.36)

E=fd rE(rt), ,

N

s(r, t) =—,'po g v'(r, t) v&(r, t),
1=1

(2.32)

whose integrand reduces to —,'pop& v'~ when the repre-
sentation is unitary, but is in any case real and positive.
Using the incompressibility conditions and appropriate
integrations by parts, one finds

o~oRe y (~„'"—Ax ')fd'r v, (v V)v„,
dt 2

ones that survive when X = 1, are canceled. We therefore
assume AN™=AN

Second, we impose the constraint that the total energy
be conserved in the absence of viscosity and forcing. The
total energy is defined as

We will always take tr[J'] =0 [since an overall phase fac-
tor in (2.35) has no effect]. By choosing suitable linear
combinations if necessary, we may also take
tr[J'J ]=A,5&, where the real number A, )0 is chosen for
convenience. In this case f' "=(lliA, )tr[[ J', J]J"] is
completely antisymmetric in all three indices. For exam-
ple, if G =SU(2) and J'=o', I =1,2, 3, are the Pauli ma-
trices, then A, =2 and f™=2m&„,+here e&

„

is the fully
antisymmetric tensor with e123 1.

Suppose we now define matrix dynamical variables
0 [x] by

A [x]=gx, J', a=1, . . . , d,
1=1

(2.37)

where x'(r, t)=x&(r, t) are real vector field dynamical
variables. The unitary transformation (2.35) induces a
transformation on the x' via

(2.33)
0 [x']—:U (g)Q [x]U(g)= gx', J',

1=1
(2.38)

which therefore vanishes automatically if AN "=AN
(more complicated assumptions that allow for an an-
tisymmetric part may be possible, but we again appeal to
a sensible N = 1 limit). Associated with this conser-
vation law is the conserved energy current
j,(r, t) =kopoReg& „A&"(vI.v„)v +Regliu'v&, which
obeys Bc/Bt+T j,=O. Together with the symmetry in
m and n, this implies that we require full symmetry under

which defines an N XN real orthogonal matrix Dz (g) via
N

U (g)J'U(g)= g D" (g)J',
1'=1

(2.39)

N

x~ = g DN (g)x~, D~(g)D~(g)=I~ (2.40)

[compare (2.6)] and there is no distinction between upper
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where

11 y 12' ~ ~ ~ P I

1112 ~ . I
N +a, I1~P, 12 y, I (2.41)

and lower indices in this case. We now ask what equa-
tions of motion for the x can one write down that are in-
variant under this group of transformations. To see the
answer, note that, due to the cyclic property of the trace,
any quantity of the form

tr[Q [x]Atl[y] 0 [z] I

just the structure constants (2.36) are relevant in comput-
ing (2.42)], the matrices Dlv are representation indepen-
dent and a single maximal set of independent invariants
must exist. It is simplest to assume that the J generate
the fundamental representation, i.e., have minimal di-
mension. For SU(2) these are the Pauli matrices; for
SU(M) they are any orthogonal set of N =M2 —1, M XM
traceless matrices. Below we will discuss invariants that
depend more significantly on the representation.

In the example of SU(2) represented by the Pauli ma-
trices, the first few invariants are

I I -I I I I
1 2 m —tr[J 1J 2. . . J m] (2.42)

A 3 =tr(o') =0,

is an invariant of order m. Other invariants, in addition
to those defined by (2.42), can also be constructed: sim-

ply contract the indices on products of lower-order AN's.
1112n nI 3 14For example, both 5l l 5l l and Q„Alv Alv are12 34

fourth-order invariants (which may or may not differ
11121314

significantly from Az ' ' ').
Consider, then, any set of equations of motion of the

form

x =7'[x], l =1, . . . , N, et=1, . . . , d, (2.43)

where V' [x] is a sum over all possible m and for each m,
all possible mth-order invariants (which we will still

11
. . I

denote generically by Alv' ) of terms of the form

col;m[ ]
— y A 2

'
m

12, . . . , I

2' 'm
0 . . . x ~ ~ ~

Acx2 cx cK2, 12 ~m, I

(2.44)

where 0 . . . could be any spatial-rotation invariant
2 m

integrodi6'erential operator acting on the r dependences
of the x' (r, t) In partic. ular, the form

0 =5 f d rz f d "r35(r—r2) 5(r —r3)
cx2

(2.45)

yields the nonlinear term in (2.1) with x'=v'. These
equations must transform covariantly since multiplica-
tion by x I followed by summation over l yields a scalar
on both sides of the equation.

Given a group 6, there are many possible choices for
the generators J'. However, within a given representa-
tion, any choice may be obtained from any other by tak-
ing appropriate linear combinations. The resulting in-
variants are then corresponding linear combinations of
each other. The number N of generators is determined
by the dimension of the group. Thus, if N is to vary (in
particular, to become large) the group G must vary with
N. The dimension of the matrices J (i.e., the dimension
of the representation) is of no consequence here. Though
the details of the representation may enter [more than

11 12 — 11 12A3' ' =tr(cr 'cr ')=25! l
1 2

11 1213 11 12 13A3' ' ' =tr(cr 'o 'cr ')=2iel l l123

A ' ' ' ' =tr(cr 'cr 'cr 'cr ')1111 I I I I
3

5l l 5! l„+5!I 51 I +5! l 5l l ]

(2.46)

2. Wigner coe+cients

In the second approach to constructing invariants we
associate the index 1 with the basis vectors (or states) on
which the J' operate. Thus X is now the dimension of the
matrices rather than their number and may vary even
when the group G is taken to be fixed, independent of %.
Using a quantum-mechanical bra-ket notation, if
[~1&, . . . , ~N & I is an orthonormal basis for the vector
space (with corresponding Hermitian conjugates
[ ( 1 ~, . . . , (N~ ] ), then we define dynamical states

N

The operation

~x' &=U(g)~x &, (x' ~=(x ~U (g)

(2.47)

(2.48)

then defines the group of transforrnations on the x' via

Xa g Dh' (g)X a~ Xa, l g Dlt (g )Xa
I'=1 I'=1

(2.49)

Note that A3 "=if™is completely antisymmetric in
this case and therefore violates the requirements in Sec.
II C. It will always be the case that
A&™—Ag '"=iaaf' " The on.ly question is whether or
not there is a nontrivial symmetric part [clearly not, for
SU(2)]. Note also that the fourth-order invariant can be
constructed trivially from sums of products of the
second-order one. In fact, in this case, all higher-order
invariants may be constructed from products of
Kronecker 5's functions and e tensors. This implies the
well-known result that all rotation invariant combina-
tions of vectors in three dimensions may be constructed
from dot products and cross products.
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where

D"'(g) =
& iIU(g)Ii'& . (2.50)

As an aside, the relation to the Clebsch-Gordan
coefficients is made clear by constructing the state

Ii&—:Ijm& j—m =I —j—1&j . (2.51)

For integer j these are most familiar in the form of the
spherical harmonics Y (8,$). The transformation ma-
trices (2.49) are the famous quantum-mechanical D ma-
trices [23,24].

We now wish to construct quantities of the form

AN' x l x l, (2.52)
1''''' m

where AN is chosen to make 2 invariant under (2.49).
Since, by (2.50),

N

U(g)li &
= g D"(g)li'&, (2.53)

the kets transform under group element g in the same
way that the x 1 do under group element g '. We may
therefore state the problem alternatively: we seek a ten-
sor AN such that the linear combination of product
states

For the group SU(2), the representations are labeled by
the total spin j =0, —,', 1,—,', 2, . . . , and have dimension
lV =2j+1. A convenient basis is formed by the eigen-
states of angular momentum component J,:

12& ~ ~ ~ i 1

li2 & Ii, & Ii & .

(2.56)

From (2.54) we have the obvious relation

N

I
g( m ) ) y I

i ) I
g( m) ) (2.57)

Since
I
2( ') is a scalar it is clear that

I
S(l ') must trans-

form in the same way that & iI does, i.e., with the complex
conjugate representation. More generally, if the states in
the product come from di6'erent representations
N2, . . . ,X, the resulting states transform via the corn-
plex conjugate of the representation X. Thus, by letting
N vary over all permitted values, the Wigner symbols al-
low one to decompose the transformation of the given
direct product into a direct sum of irreducible representa-
tions (this is known as the Clebsch Gordan -decomposition
of the direct product). This does not quite define the usu-
al Clebsch-Gordan coefficients. These are defined in such
a way that the resulting product state transforms via the
representation N, not its complex conjugate. In the case
where the representation is real (i.e., where the complex
conjugate representation is the same as the representation
itself), there is a matrix gN such that

Is™&=y all ™Ii& Ii &

I ] y ~ ~ y 1

(2.54) (2.58)

1]1213

m) m2 m3

mi — J~ J+1, . . . ~J (2.55)

These are special cases of the Wigner 3j symbols [24]. In
general, the states in the direct product (2.53) can belong
to di6'erent representations N], . . . , N and we would

1).. 1
seek coefficients AN . . . N that make the result a scalar.

1 m

The general SU(2) Wigner 3j symbol is then
I]1213

1 2 3 1 2 3

m; =l,. —j, —1. We are clearly interested only in the case
in which all representations are the same.

Appropriate equations of motion may now be written
down precisely as before. Equations (2.44) and (2.45) are
valid with the new tensors AN defined above.

is a scalar (normalized in some fashion) under the trans-
formation (2.53). For the group SU(2) this means that we
wish to add m angular momenta together to obtain a
state with zero total angular momentum. This is a well-
known problem in group theory and quantum mechanics,
closely related to the problem of decomposing the direct
product of m —1 irreducible representations of a group
into a direct sum of irreducible representations. The

1) . 1

solutions AN' are called Wigner coefiVcients For.
SU(2), with basis states given by (2.51) and with m =3,
one uses the notation

translates the bras into kets. This matrix is really a spe-
cial case of the invariant tensors AN in w'hich there are
only two indices since I2( ') =pl l.gN Ii ) Ii') is clearly
a scalar. If we then define the Clebsch-Gor dan
coefficients

I;12 1 11
I'12 . I

CN;N2 N C(+r+ir ' ' ' r+m) ygN ANN]. N
1'=1

(2.59)

where the prefactor is an appropriate normalization, it is
clear that

1;1213
CN NN —= & jmI j2m2j3'm3 &

=(—1) ' ' &2j+I

X
m m2 m3

(2.61)

The corresponding translation matrix 1S

&„',„',. . .
„

I12&e . a Ii & (2.60)
12, . . . , 1

transforins just as Il ) does. For m ~4 these coefficients
are no more unique than the Wigner coefficients are [see
the discussion below (2.42)]. For the group SU(2) the rep-
resentations are all real and one more commonly denotes
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K. Graphical considerations

A crucial property of the group-theoretical formula-
Il . ~ I

tion is the preservation of the coefficients AN' under
vertex renormalization. Stated more simply, different or-
der diagrams, with the same structure of m external legs,
will have the same dependence on the indices l„.. . , l
and must therefore be proportional to some linear com-
bination of A&'s with the same m. For small m (m =2
or 3, say) there will be only a single type of Az and the
dependence on the indices I&, . . . , I will be uniquely
specified.

The reason for this is that XP' is a scalar and therefore
I), . . . , I

the average of an operator 8 1' ' ™,which transforms in
I l 12 I

the same way thatx 'y ' . . z does, is givenby the sum
over p of

0 1' '
m —gp(0 1'' m(~{X))p) (2.62)

(the subscript c denotes the usual connected part), which
therefore must also transform in the same way. Now

~ ~ ~

0 ' is independent of the v and w fields and a con-
traction of the form

(2.63)

I) . . I
is, by construction, a scalar. However, the AN'

Im
comprise all invariants, therefore 0 ' must be some
linear combination of them.

At the level of graphical technology, it is precisely this
property that is responsible for the variation of the
universality class with X in the spin models. Without the
group symmetry, diagrams with the same external leg
structure would have essentially random dependence on
the indices and would therefore not add up in any
coherent fashion. Without the O(N) symmetry, this is
precisely what leads to Ising-like behavior for all finite X.
%'e expect similar behavior to occur in the turbulence

gg =( —1) 5&. & &
and the conventional normalization is

c(N N, ,N2)= —( —1) ' ' &N [24].
Finally, we mentioned at the beginning of this subsec-

tion that the trace invariants are really special cases of
the Wigner coefficients. They are constructed, in effect,
by using the group generators as states. This, in fact, cor-
responds to a special representation, known as the adjoint
representatian [25], and it can be shown that in this repre-
sentation the signer coefficients as defined above are pre-
cisely the traces of products of generators (2.42). The
demonstration of this fact is a special case of the use of
tensor methods in the theory of group representations
[24,25] where invariants are constructed as traces of
products of more general tensor quantities. In the case of
the adjoint representation these tensors have only two in-
dices [one transforming under the fundamental represen-
tation, the other under its complex conjugate, exactly as
in (2.38)) and are traceless and hence may always be writ-
ten as linear combinations of the generators, precisely as
in (2.37).

problem. In Sec. III we will use these group properties
and the associated properties of the diagrams to analyze
the large-N limit.

F. Galilean invariance

In Sec. I we alluded to the importance of Galilean in-
variance in the establishment of the exact renormaliza-
tion group results (1.15) and (1.18) for the exponents. We
would like to be able to establish similar results for all X.
It turns out that this can be done only if we generalize the
model somewhat.

For X= 1 the Galilean transformation

v'(r, t)=v(r+Apupt t) —up, (2.64)

where up is an arbitrary fixed (real) velocity, leaves the
Navier-Stokes equations invariant sinceBv', , Bv

+A,p(v V)Y = +A,p(v'V)v
dt dt

(2.65)

If, in addition, we assume that w'(r, t)=w(r+A, pvpt, t)
transforms without an additive term (as do f and p), then
the Lagrangian (2.20) is Galilean invariant
X[v', w']=X[v, w]. It is precisely this invariance that
was exploited by DeDominicis and Martin [5(b)] to prove
(1.15) and (1.18) to all orders in y.

For N ) 1, consider the generalization of (2.64)

1 Iv'(r, t) =v'(r+Apupt, t) —h'up-,
@

1
hluo,

p
v&(r, t)=v&(r+Apupt t)

(2.66)

where h'=h& is any set of complex numbers, normalized
so that gP ihih'=1, and p, is yet to be determined. We
then have

av'
+Apg A~™(v'.V)v'„

m, n

I

+ApQ A~ (v~ 'V)v„

+Ap(up V) v' ——QA&(h)v„
n

(2.67)

where A&(h)=g A&™h . The last term on the right-
hand side cannot generally be made to vanish simultane-
ously for all i, unless further assumptions are made (see
below). Thus, full invariance of the equations of motion
under (2.66) is not generally possible. One may try focus-
ing instead on equations of motion for scalar combina-
tions

N

v~(r, t)= —,
' g [q&v'(r, t)+q'v&(r, t)],
I=1

(2.68)

N

pq "=g A~(h)qi =g A~™h qi .
l, m

(2.69)

where q'=ql* is another set of complex numbers with

g&q q& =1. From (2.67), the equation of motion for v~ is
invariant under the transformation (2.66) only if
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This is a kind of eigenvalue problem for the q", with ei-
genvalue lM. The matrix Alv"(h) is symmetric, but not
necessarily real.

Associated, then, with each Galilean transformation
(2.66) is a set of N invariant velocity fields v (r, t), one for
each eigenvector q' of Alv"(h), transforming with the as-
sociated eigenvalue p. Since p is generally different for
each eigenvector, a different transformation is associated
with each one. This invariance property clearly respects
the group symmetry: if v is transformed according to
(2.6), transforming h' and q' in exactly the same way
yields the same scalar v in (2.71) and the same eigenval-
ue equation (2.72). Clearly, when N= 1 the standard
Galilean invariance (2.64) and (2.65) is recovered with the
eigenvalue p = 1.

These invariance properties, though compelling, are
insufBcient to imply the result we seek, namely, that the
renormalization group results for the exponents general-
ize to any iY & 1. As shown in Appendix A, a true sym-
metry of the Lagrangian is required and this exists only if
the last term in (2.67) can be made to vanish for all / for
some choice of h, i.e., only if

—QA&(h)v„=v' for all / .
n

Comparing (2.58), this means that

(2.70)

—Alv"(h) =glv"
p

(2.71)

I, m =0, 1,2, . . . , N for all g, (2.72)

where unbarred quantities are taken to vanish when any
index vanishes. The quadratic invariants are now of the
general form

g& —g& +C0510~m0 (2.73)

and the cubic invariants are [maintaining the symmetry
condition (2.34)]

A lmn A Imn+ [g ~mn+fi ~ln+g ~lm]

+c26106 05„0, (2.74)

where CO, c&, and c2 are, for now, arbitrary constants.
The zero mode therefore introduces two new invariant
isospin vertices [Fig. 5(d)], which then must be summed

is just the quadratic invariant. If the group representa-
tion is irreducible, (2.71) can never hold because it re-
quires that h be an invariant: g+ &D& (g)h =h' for
all g. This requires that the transformation act like the
identity on some subspace, immediately implying reduci-
bility.

Suppose, then, that we relax the irreducibility assump-
tion. We introduce a single real velocity field v =vo (the
"zero mode"), which, by definition, is a scalar under the
group of transformations. Quantities referring to the ex-
tended system of X+ 1 velocity fields that includes v will
be written with an overbar. We define, then, the transfor-
mation matrices

Dx™«)=D~(g)+&lo~ o

over to produce the full isospin symmetry factor [and are
produced from (2.62) when any index vanishes].

Returning now to Galilean invariance, it is clear that
in order to satisfy (2.71) (which should now be written
with overbars) we should choose h =5 o and
c, =c2=lM. From (2.66), this means that only the zero
mode v transforms with an additive term

v'(r, t) =v'(r+ Aouot, t) ——uo5lo .
1

(2.75)

The value of p appropriate to a well defined &~ ~ limit
wil) be determined in Sec. III E. The introduction of the
zero mode is especially compelling in the adjoint repre-
sentation: v is just the coeKcient of the identity matrix.
It is then trivial to see that (2.42) produces (2.74). In
effect, one is now using a representation of U(N) rather
than of SU(N).

In Appendix A we use this invariance property of mod-
el II to derive the Ward identities used by DeDominicis
and Martin [5(b)] to establish (1.15) and (1.18). The valid-
ity of these results lends further credence to our proposi-
tion that the general N equations really do represent a
logical generalization of the original Navier-Stokes equa-
tions and do not violate any fundamental symmetries
present in the original equations. We therefore might
hope that all properties (of the correlation functions, for
example) will then vary smoothly with N, just as do those
of the X-vector models of magnetism. In particular, any
"discontinuity" in behavior between the Navier-Stokes
equations and their general X extensions would be
surprising. In Appendix B, as further evidence in
support of these hopes, we show that the
von Karman —Howarth result [l(b)] for the third radial
velocity moment generalizes naturally to arbitrary 1V.

In the following sections we shall treat the extended
and unextended models separately. Hereafter we will call
them model II and model I, respectively. It transpires
that their large-X limits are closely related and model II
requires the model I results as inputs.

III. THE SPHERICAL LIMIT

A. Further graphical considerations

In this section we shall consider finally the limit
1V~ ~. We begin by making a few general observations,
reiterating in a little more detail some of the necessary
properties of the graphical perturbation theory. We will
discuss first the simpler case of model I in which the zero
mode is absent and then make the necessary generaliza-
tions to model II at the end.

Of primary importance are the X-dependent symmetry
factors that accompany each graph. Since the zeroth-
order response and correlation functions are independent
of the "isospin" index l, the temporal and spatial integra-
tions over products of these functions, which represent a
given graph, are completely independent of this extra in-
dex and yield precisely the same analytic expression as
when X =1. As shown in Fig. 5, we may then think of
each graph as a product of two distinct expressions, one
carrying all of the isospin dependence, the other carrying
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all of the space and time dependence. Since we assume
that A~ "is fully symmetric [Eq. (2.38)], there is no dis-
tinction between straight and straight-wavy lines as far as
the isospin parts are concerned, which may then be
represented as graphs composed purely of directed,
dashed lines.

Having worked hard in Sec. II to establish the group-
theoretical properties of the 3&™,we shall now see these
properties bear fruit. In Fig. 6 we represent diagrammat-
ically some important graph decomposition rules that fol-
low from these properties [26] and which we shall now
discuss. As noted in Sec. IE E, the fact that the Lagrang-
ian is a sca1ar implies that the group covariance proper-
ties of the statistical average of some operator must be
identical to those of the operator itself. Thus, for exam-
ple, the Mth-order term in the perturbation expansion of
the response function

gl = ( twl v [g~(N)]M) (3.1)

(the subscript c denoting the connected part) transforms
exactly as does w' vl. Now, assuming that w' and vl.
transform according to the irreducible representations of
the group G, then, by Schur's lemma [27], 5I. is the only
second-rank tensor invariant under the group of transfor-
mations. This implies immediately that QM ~

——QM5I'.
Similarly, as long as A&™is the only invariant third-rank
tensor, any three-point correlation function must be pro-
portional to it. In model II, which includes the zero
mode, care must be taken when indices vanish. This will
be discussed in Sec. III E.

We now use these observations to derive the identities,
which we shall call rules (a), (b), (c), and (d), shown in
Fig. 6. Rule (a) simply generalizes the observation con-
tained in the preceding paragraph: for any second-rank
tensor operator Bl' whose average is represented in Fig.

6(a) by the bubble with two external legs, we have

(3.2)

The contraction g&bI' is represented by the closed dia-
gram on the right-hand side of Fig. 6(a) (a closed diagram
being one without any external legs).

Rule (b) states that if an isospin diagram is composed
of two subgraphs bl and el contracted together as shownI I

in Fig. 6(b), then, since each must be proportional to 5I,
we must have

gb('g—c,' .1

I I

y& I y5I 5 I'

I 1, 1'

(3.3)

Rule (c) states that the average of any rank-three
operator I~™must be proportional to A& " and hence

l, m, n

(3.5)

The contraction gl. „y' "
A&&. „.is represented by

the closed diagram on the right-hand side of Fig. 6(c).
Rule (d) states that if an isospin graph is composed of

two subgraphs p' " and y& „contracted together as
shown in Fig. 6(c), then, since each must be proportional
to Az ", we must have

y plmn

I, m, n

y plmn g1

2 l, m, n

~lmn —( f'Imn) P Imn y ~i'm'n'Z (3 4)
)

2 I', m', n'

where

I
1

(b) ~... Il,:,,"",

,j I;:::,::::.:.:";::,:::::,:,:C::::::::',::,':::::::) ~=':::.:"::::::::8:::::::::::::::::~ ~':::::::::::::::C
r r'i' X p ~N, lmn X Xlmn ~N

2 I, m, n l, m, n

(3.6)

I
I

!:::::::.::::,.:.;':,.:::, .:'::::,:':::.::::::,:::,:',:::,:::,::,::,-::,:$

(c)
r r C':::::::::,::::,,

'::.;:::,'::,:'-,::::,:.;.',:",g'~

m n

-r
I I
I ] I

II
i::::::::::,::':::::::'::':'F:,:'::,;':,';::,'":i,''::::) ~ w w ~r
~-:.:: ":-"'j - m n I~

Y Y

Clearly, if invariants of fourth or higher order were
unique we could continue to derive analogous identities
with more external legs and internal lines. However, gen-
erally, there is more than one invariant when the order is
four or larger, and one would have to consider linear
combinations of them. We shall not find it necessary to
pursue such complications.

!':::::::::::::::::::::::::

~2
%e 'm 'aa' ~

FIG. 6. Reduction rules {a)—(d) for the isospin shadow dia-
grams. See the text for details.

B. The large-%limit

We can now use rules (a) and (b) to formalize our inves-
tigation of the limit X~~. Consider the two-point
correlation functions. We first use rule (a) to close the di-
agrams and then ask whether or not the resulting closed
diagram takes the form shown in Fig. 6(b), i.e., whether
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or not it can be cut into two pieces by severing two inter-
nal lines. Such diagrams are called two-particle reducible
(2PR). If so, then rule (b) allows us to decompose the dia-
gram into two lower-order ones. If these lower-order dia-
grams are in turn 2PR, we may reduce them further, con-
tinuing the process until only two-particle irreducible
(2PI) graphs remain. In Fig. 7 we show a few of the
lowest-order 2PI graphs. If, after this reduction, only 8
graphs [see Fig. 7(a)—note that this is just I2] remain,
the original diagram is called fu/ly 2PR.

Since, in our problem, diagrams are composed of ver-
tices with three legs each, it is clear that any closed dia-
gram must contain an even number of vertices. Let us
denote the closed 2PI diagrams by I2'k, where
i = 1, . . . , nk runs over the number of topologically dis-
tinct graphs with 2k vertices. For example,
n, =n2=1, n3=2, etc. [26]. As mentioned, I2"=Iz was-
used already in rules (c) and (d). For the group SU(2) the
"tetrahedron graph" Fig. 7(b) is a special case of the
Wigner 6j symbols and, in general, I2'k is a special case of
the type-(i) Wigner 3kj symbols [28]. In general, the rep-
resentation could be different for each index sum (i.e.,
internal line) and the diagrams would then be functions
of the 3k representation labels —hence the name [see the
discussion following (2.60)].

According to rule (b), each time a 2PR graph is re-
duced, a factor 1/N results. Suppose that a given isospin
diagram D reduces to a product of m 2k diagrams each of
type Iz'k. If we define mD=+k, g, ",mz'k, then the
original diagram was severed mD —1 times. Including
the factor 1/N arising from the original use of rule (a), we
obtain

(3.7)

l, m, n

(3.8)

The fully 2PR diagrams then all have unit weight. Let us
then parametrize the large-X behavior of I'2'k via

Iq'k =J2'k N (3 9)

where Jz'k are bounded functions of N (in the simplest
case, J2'k is a constant, but in general it can oscillate with
N [24,26]). Equation (3.7) then reduces to

QD = Q2k
(i)

1@=1$=1

(3.10)

By construction, a2—=az"=0 and J2 =—J2"=1. If all a2'k,
for k & 2, are positive, then all higher-order terms vanish
when Ã~oo. Only the fully 2PR diagrams survive in
the spherical limit. Conversely, if some az'k is negative,
diagrams that reduce to powers only of I2'k become more
important than the fully 2PR diagrams and (3.8) is an

($() )
inappropriate normalization. Let a2k be the most nega-

0
tive exponent. The appropriate normalization would
then be

For example, if D is fully 2PR then m 2'k =0 for k ~ 2 and
D =5& (I2/N) ', where mz =—m2"'. It is clear, then, that
in order to obtain the large-N limit of any diagram, it
suffices to understand the large-X behavior of the 2PI
graphs.

Recall that we are still free to choose the normalization
of A~ ". Let us choose it in such a way that

~y

r
/I

I
\e

l I
I

/
/rr

r
/ II II I l

r

(io)
I2k, =& (3.11)

which, in turn, would translate into a new normalization
for A& ". In this case, only 2PR diagrams that reduce to

(io)
powers of I2k survive in the spherical limit and all others

0

may be dropped. The generalization of this analysis to
the case of model II will be discussed in Sec. III E.

C. Results for SU(2)

~,
I I

I I l
0 eL

l l

0
/

I
I / \

wl
/g

l / I
I/ /

FICz. 7. A few of the lowest-order two-particle irreducible
(2PI) isospin graphs: (a) the two-vertex "theta graph, " (b) the
four-vertex "tetrahedron graph, " and (c) the two possible six-
vertex graphs.

Although the above procedure for determining the na-
ture of the spherical limit is quite general, without con-
sidering specific choices of the A~ " we are not able to
make any general statements about the large-N behavior
of the graphs I2'k. In this paper we will concentrate on
the group SU(2), for which the essential results exist al-
ready in the literature [26]. In Appendix C we outline
similar but, as it turns out, fruitless efforts using the ad-
joint representation of SU(M) (for which N =M —1).

As mentioned in Sec. II, the cubic invariants for SU(2)
are the Wigner 3j symbols
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g Imn —f (N)
J J J

I, m, n= —j, —j+1, . . . ,j, (3.12)

1 }I+m n+g —I, —m, —n —g lmn
N, Imn N N (3.14)

since the (3j} symbols vanish unless 1+m +n =0 and
since A& I™"=( —1 ) J A&

" [the factor is again

( —1) ' ' ' in general] [24]. The 3j symbols are there-
fore all real. The fact that AN™ is proportional to
5&+ +„omeans that indices are "conserved" at each ver-
tex in a diagram and immediately implies rule (a),
without resorting to any general principles.

The 3j symbols obey the orthogonality condition [24]

J J J J J J
1 m n l m n' (3.15)

I, m

Therefore g& „(JI1 ~ } = 1 and the normalization con-
dition (3.8} then requires

where N=2j+1, f (N) is a normalization factor (see
below), and it is convenient to allow the indices to range
from —j to j rather than from 1 to N (though m =0 here
should not be confused with the zero mode de6ned in Sec.
II F and treated below in Sec. III E). Under interchange
of any two columns the 3j symbol acquires a factor
( —1) ~ [(—1) ' ' ' in general] [24] and is therefore
symmetric [see (2.34}]only ifj is an even integer. The al-
lowed values of N are therefore N =1,5, 9, 13, . . . . Also,
as mentioned, the transformation matrices DN are the
quantum-mechanical D matrices that determine the
behavior of the spherical harmonics under rotation.
Thus vm transforms in the same way that YJ (8,$) does.
The identity YJ* (8,$)=( —1) YJ (8,$) implies that

v —=v =( —1) v™ (3.13)

and hence that g" =( —1)'5
& &

in Eq. (2.58). This may
be used to raise and lower indices on any tensor. For ex-
ample,

similar procedure seems very difficult and calculating
corrections to the spherical limit perhaps unfeasible [see,
however, the discussion at the end of Sec. VC]. We are
presently looking into groups other than SU(2) [see Ap-
pendix C for an example] in hope of simplifying the
analysis.

D. Integral equations in the spherical limit

In order to obtain the full solution in the spherica1 lim-
it, we must characterize the fully 2PR graphs. For-
tunately, this is very easy to do: they are simply the bub-
ble diagrams shown in Fig. 8(a). The reduction process
consists of cutting out the bubbles one by one, each of
which then closes to yield a 8 graph Fig. 7(a). It is easy
to see that graphs containing lines that connect different
bubbles or different sides of the same bubble necessarily
give rise to higher order I2'k with k ~2. Since we have
chosen I2=N, from (3.7), each bubble diagram carries
precisely unit weight. Therefore, summing the bubble di-
agrams when X~ 00 is no different than summing them
when X =1. The latter is a very standard approximation
in turbulence, known as the direct interaction approxima-
tion [13]. In the spherical limit these really are the only
graphs that survive and the DIA provides an exact solu-
tion.

The bubble diagrams can be generated by iterating the
diagrammatic equation shown in Fig. 8(b). Here thick
lines correspond to the sum of all bubble graphs and thin
lines to their zeroth-order counterparts 51. Including

(a} bubble diagrams: —~ +

+ ~ ~ ~

f(N)=&N (3.16)

and the conventional 3kj symbols are then multiplied by
N . Amit and Roginsky [26] have considered N
component generalizations of the Potts model, which also
requires cubic invariants. They investigated in great de-
tail the behaviors of the SU(2) graphs I2'k for large N.
Using a combination of analytic and numerical estimates,
they concluded that, indeed, all exponents az'k are strictly
positive for k + 2 and bounded below by —,'. Unfortunate-

ly, they were unable to provide a complete proof and we
have nothing to add in this regard. In addition, there
seem to be several different graphs I2„'with ~2'k ———,', a11 of
which would then have to be included in any evaluation
of the leading Pnite Ncorrections to t-he spherical limit.
In more conventional 1/N expansions (that for the s
model, for example) the a's increase rapidly with the
number of vertices in the graph and it is relatively easy to
order the corrections in integer powers of 1/N. Here a

D(14)

FIG. 8. Surviving diagrams in the spherical limit. (a) The
bubble graphs. (b) The diagrammatic equation that, when
iterated, generates all isospin bubble graphs. The thick lines
denote the full set of bubble graphs„ the thin lines the zeroth-
order result 5" . (c) The diagrammatic equation that generates
the direct interaction approximation (DIA). Thick lines denote
the full two-point functions, thin lines their zeroth-order coun-
terparts. This approximation becomes exact in the spherical
limit.
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once again the space- and time-dependent parts of the
graphs, the DIA may be expressed in the form of two
coupled integral equations. These are shown diagram-
matically in Fig. 8(c). Thick lines now correspond to the
full two-point functions 0 and 0 and thin lines to their
zeroth-order counterparts [note that only Go is actually
needed; see (2.27)]. The derivation of these equations is
standard [13]and we shall not repeat it here. In analytic
form they read

P, co—Q

P, co—Q

i co—+vok 2—, (k, ro),1

(k, co)

0(k, ro)= ~0(k, ro)i [B(k,co)+2 „(k,ro)],

(3.17)

(3.18)

where the self-energies are

R„„(k,ro)= Ao—k f f b(k, q)6'(k —q, ro —Q)C(q, Q),
q 0

(3.19)

(k, ro)=Aok f f a(k, q)0'(k —q, ro —Q)0(q, Q),
q Q

P, m—Q

in which, using p =k —q,

(3.20) FICx. 9. Three-point velocity correlator ( v (k, co )u&(p,
ro')u~(q, ro") ) in the spherical limit. The thick lines denote the
full two-point functions.

a(k, q)= g P p (k)rp (p)r (q)P, (k)
1 1

d 1

1

d —1

(k p)'(k q)' (k q)(k p)(q p)
k4q2p2 k2q2p2

+ 3 —d (k q)2 3 —d (k p)+
kq 2 kp

(3.21)

b(k, q)= g P p (k)&p (p)P „(q)1 1

k2 d —1

1 g d —1 (q p)(k.p)
d —1 k 2 kqp2

(k q) d —3 (k.q)
k3q3

These coe%cients are scale invariant

(3.22)

a (k, q) =a k, , b(k, q) =b k, (3.23)

(here k —=k/k) and are related via

a (k, q) =
—,'[b (k, q)+b (k, p)] =a(k, p) . (3.24)

As promised, the driving function 8(k, co) is completely
arbitrary, appearing as an inhomogeneous term on the

right-hand side of (3.18).
The DIA integral equations are nonlinear and include

the energy cascade phenomenon. Thus, even if 8(k, ro)
vanishes outside a small range k (mo, the nonlinear term
on the right-hand side of (3.18) still permits 0(k, ro) to be
nonzero in the inertial range. One can see this explicitly
by considering the bubble diagram series that makes up
the perturbation expansion for )D: the diagram with one
bubble vanishes only for k &2mo, diagrams with two
nested bubbles vanish only for k & 3mo, and so on. The
inertial range k »mo is therefore dominated by high-
order diagrams with many nested bubbles. It is then
clear why simple perturbation theory in ko fails to de-
scribe turbulence.

So far we have discussed only the two-point functions.
The third-order correlation functions are also easy to de-
scribe. We may close the diagrams using rule (c). The
discussion above implies that only bubble graphs may
survive this closure. It is easy to see that this means that
only "bubble renormalization" of the external legs is per-
mitted in the original diagram. Lines that cross connect
different legs lead to nonbubble diagrams after the clo-
sure. This implies that the third-order vertex functions
are unrenormalized: the only nonzero three-point vertex
is given by the usual undressed three-point interaction
(i/2)AoP pz(k)A&™. For example, the triple velocity
correlator is given by (see Fig. 9)

(u (k, co)up (p, co')u~(q, co"))= g [C(k,co)0(p, ro')0(q, ro")P .p (kr)+'(2 permutations)]

& &or (k)happ (p)rye (q) A~™5(k+p+q)5(co+ co'+ co") . (3.25)
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The general theory [20] implies that yet higher-order ver-
tex functions may always be built up out of third-order
vertex functions connected together by the exact, fully
dressed two-point functions (the so-called skeleton dia-
grams). It is tempting to conjecture that in the spherical
limit only tree graphs (skeleton graphs with no internal
sums) survive. To prove this, however, one would have
to generalize the closure relations, rules (a) and (c), to
graphs with arbitrary numbers of external legs. This in
turn would require the characterization of all higher-
order invariants (2.42} or (2.54). If, to leading order, for
example, all higher-order invariants could be reduced to
sums of products of cubic invariants and Kronecker 6's
functions, the result would follow. However, this is not
obviously the case and we have not pursued this question
any further. For our purposes, only the result for the
three-point vertices will be needed.

E. Analysis of model II

Let us now address the necessary generalizations of the
theory to the model that includes a zero mode. Consider
first the extended rules (a) —(d) (we remind the reader
that overbars distinguish model II quantities). From
(2.73) it is easy to see that rule (K) must take the form

N
bl'—= (BI }= —(1—5IO)gbl+bo5IO 5I' ~

which, though still diagonal, generally yields a different
result when I = I'=0 than when l =I'WO. From this it is
trivial to see that rule (b) is

N N

g bl'cl' =—+bi'
N y —I +bo—0

1=1
(3.27}

Similarly, rule (c}must now take into account the general
form (2.74) of the cubic invariants. Thus (3.4) becomes

1—lmn —( I lmn) g lmn ~ I m—n''
N, 1'

2

+ (5logN +5mofN +5nogN

N
&& & Y""gN, I +Y 5lo5 o5.o

1'm'= 1

(3.28)

where I2 is still given by (3.5) and we reiterate that the
unbarred tensors AN and gN are taken to vanish whenev-
er any index vanishes. It is now easy to substitute this
form into (3.6) to obtain rule (d):

N
&' "YI .= Il, m, n =0

N

~N, Imn
l, m, n =1

N 3 N
Mlm

1 lmn ~N, Imn +
N X P gN, lm

l, m, n =1

N

YolmgN +~Y000 '

l, m =1

(3.29)

Next consider the diagrammatic reduction process.
Rule (b) implies that reductions proceed as before, except
that the zero mode must be considered separately. Each
time a graph is reduced, two terms now result [see (3.26)).
Graphically, it is better to rewrite the result in the form

N N

g blcl =—gb
p X

1 0
y —I 1 boy —I

N

1 —0 1
N——c gb+ 1+—bc0—0

0 1 0 0
1=0

(3.30)

where the full sums over l clearly yield the usual
closure rule Fig. 6(b). How, then, do we graphically
interPret bO and CO'? SinCe g„„.=, AN "gN nn AN I m

, AN™ANl.m.„,it is clear that, except for an
overall prefactor, an external zero mode leg has no effect
whatsoever on the graph's internal isospin sums (this is
crucial also in the Galilean invariance analysis in Appen-
dix A). The quantity ho therefore may be calculated from
the closed graph, which is obtained simply by removing
these external legs, along with the vertices to which they
connect (we shall call this process excision) The overall.

= [(1+p )(1 5„0}+(N—1)p 5—„0]5"„ (3.31)

where we have maintained the normalization (3.12) and
gN gN I =N. If we choose

1

&N+ I
' (3.32)

then, as X—+ ~, the distinction between the two terms in
square brackets disappears. Furthermore, when N=O
the result is p=1, as required. With this choice, b 0 and

prefactor is just p, the square of the coefticient of gN in
(2.74). We will now fix the value of p by demanding a
well defined N —+ ~ limit, as well as recovery of the origi-
nal Navier-Stokes equations at N =0 (not N =1, as the
zero mode still remains). It seems clear that in order to
obtain a proper spherical limit, we should ensure that the
couplings to the zero mode are as similar as possible to
those between the other N modes.

To this end, consider the basic bubble graph
N

~N ~N, lmn'
l, m =0



3760 CHUNCx- YU MOU AND PETER B. WEICHMAN 52

co are 1/(N+1) times the closed graphs obtained by
excising the externally connected vertices.

Consider now the large-N limit. It is very easy to see
that the leading dependence on N of any closed graph is
unchanged from (3.9). The point is that the index 0 con-
tributes negligibly to the internal sums in the limit
N ~~. Each time a vertex contains one or more zeros, a
factor 1/v'N+1 results. Such vertices always occur in
pairs, so corrections to (3.9) are at most of relative order
1

Let us now understand which graphs for the two-point
correlation functions survive in the spherical limit. %"e

write these functions in the form

(3.33)

We may alternatively write

(c)
k, 0),(X

external zero-mode

sums over ail modes

(Non-zero l dominates. )

+

q, Q, f3 p, (0 —Q,y

(d) p, (0 —Q

+

k,o) ~ ~ k, co

q, Q

FIG. 10. Surviving diagrams for the zero mode in the spherical limit of the extended model. (a) Schematic diagrams for the self-
energies. (b) Schematic representation for the self-energy ladder diagrams for the zero mode. Here, and below, each thick line is
"fully bubble renormalized" and corresponds to a full DIA response or correlation function. (c) The five three-point functions need-
ed to resum the ladder diagrams. (d) The diagrammatic representation of the self-energies in terms of these three point functions. (e)
The diagrammatic representation of the self-consistent integral equation satisfied by the three-point function y .„.The other four
satisfy similar equations. (fl Schematic representation of the two topological types of diagram entering the full three-point function
for the zero mode in the spherical limit. Each three-point vertex is one of the five three-point functions in (c) and the full set of dia-
grams is constructed by connecting them together in all possible ways.
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G =—g Gi' ——9=—g Ci'+0
Ni 0 N Ni 0

(3.34)

and similarly for 0. Thus, to leading order for large N,
we may still obtain the isospin symmetry factors in the
diagrammatic expansions of G and 0 via the closure rule
(a). As we have argued that (3.9) is unchanged, we con-
clude that G and 0 are also completely unchanged by the
presence of the zero mode: in the limit N ~ Oo this mode
becomes an infinitesimal perturbation on the others. In
particular, the results for the group SU(2) are, as before,
precisely the DIA equations (3.17)—(3.20). In contrast,
the finite-N corrections will be more complicated, but this
does not concern us here.

The zero-mode correlations themselves are, however,
more complicated. Though it is clear that the reduction
process is unchanged —only the 2PI graph with largest
exponent a~ survives —the starting point is now a closed
isospin graph with two fewer vertices. In particular, be-
cause the graphs are no longer connected through the
joining of the external legs, more complicated internal
connections survive the reduction process. In Fig. 10(a)
we show the new class of /adder diagrams that now con-
tributes, in addition to the bubble graphs in Fig. 8(a). All

possible bubble insertions on the internal lines are permit-
ted as well, as also shown in Fig. 10(a). Since we have
seen that the zero mode contributes negligibly to the
internal bonds of a graph when N —+~, we may now
completely neglect the zero mode in resuming these dia-
grams. In particular, we shall now see that 0 and % may
be expressed comp/etc/y in terms of 0 and ft The point is
that the summation over all bubble insertions in a given
ladder-type diagram simply renormalizes each Go to 0
and each Oo to 0 in the undecorated ladder. Thus an in-
dependent series of the form shown in Fig. 8(b) [or, more
precisely, Fig. 8(c)] replaces each bond. This is shown in
Fig. 10(b). Note that the real distinction between the
ladder diagrams and the bubble diagrams is that closure
at the top and bottom of the ladder involves a product of
two two-point functions instead of just one. Thus the ex-
cision that occurs in the isospin part of the diagram is not
mirrored in the space-time part.

In order to obtain 0 and Vl we must resume the ladder
series. To this end, we introduce five three-point func-
t~o»y ..,py, f .„py,f . pyp .,pyandp . p

S

which are obtained by excising one of the external ver-
tices on the ladder diagrams [see Fig. 10(c)]. For the pur-
poses of calculating 0 and 8' we require only the first
three, in terms of which we have

2, (k, co)= f f [2y'„".„(k,co;q, Q)G(p, co —Q)0(q, Q)+y'„"., (k, co;q, Q)G(p, co —Q)G( —q, —Q)],
q 0

(k, co)= f f [y' .',„(k,co;q, Q)0(p, co —Q)0(q, Q)+y' .',„(k,co;q, Q)G( —p, Q —co)0(q, Q)
q 0

+y' .' (k, a)', q, Q)G( —p, Q —co)C( —q, —Q)],
where, for an arbitrary three point function, we have defined the contractions

EA,Oy'"(k, q)= — g y & (k, q)r&&(q)P & ( —p),
a,P, P', y

EA,py"'(k, q) = — g y z,(k, q)~pp (q)~» (p)P &r (k) .
a,P, P', y, y'

(3.35)

(3.36)

The DIA equations result if y & ~(k, co;q, Q) is replaced by the zeroth-order vertex —(i/2)A+ & (
—k) and the

remaining ones are set to zero. The functions y'" and y' ' then reduce to the coefficients A ok b (k, q) and Aok a (k, q),
respectively.

Finally, we must determine these three-point functions. This is done self-consistently, as shown for y .
„

in Fig.
10(e). Explicitly, we have

y p ~(k, co;q, Q)= ——XOP &r(
—k)

f f [[2y ~ „(k,co;q', Q')0(q', Q')+y „„(k,co;q', Q')G( —q', —Q')]
p, v, X, o.

XG(p', co —Q')G(q —q', Q —Q')v&i(q')P r( —p')P i&(q' —q)+[q, P~p, y]
+2y „„(k,co;q', Q')G(q', Q')G(p', co —Q')

XO(q —q', Q —Q')P„i&(—q')P r( —p')rq (q —q')]

Similarly,

=y, p(k, co;p, co —Q) . (3.37)
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y p ~(k, co;q, Q)

= —
Ao g f f [[2y „„„(k,co;q', Q'}0(q', Q')0(p', co —Q')+y „„(k,co;q', Q')G( —q', —Q')0(p', ~—Q')

p~»~~~~&

+y „„(k,co;q', Q')0(q', Q')G( —p', Q' —co)

+2y „,(k, co;q', Q')6( —q', —Q')6( —p', Q' —co)]

X G(q —q', Q —Q')w„&(q')r, (p')P,&&(q' —q)P (p)

+[2y „,(k, co;q', Q')0(p', ro —Q')+y „„(k,co;q', Q')6( —p', Q' —co)]

XG(q', Q')0(q —q', Q —Q')ri, (q —q')r, (p')P&,&(
—q')Pr& (p)}

=y ~ p(k, co;p, a) —Q) (3.38)

y o ~(k, co;q, Q)

= —
Ao g f f [ [y „„(k,co;q', Q') 0(q', Q') 0(p', co —Q')

p, »A, , cr, q, w

+y „„(k,co;q', Q')6( —q', —Q')G( —p', Q' —co)

+y „„(k,co;q', Q')C( —q', —Q')0(p', co —Q'}

+y „„(k,co;q', Q' ) 0(q', Q' )6 ( —p', Q' —co ) ]

X 0(q —q', Q —Q')r„i„(q')r„(p')r„,(q —q')P~i, (q) r „(p)}

=y ~ p(k, co;p, u —Q) . (3.39)

These three equations must be solved simultaneously for
the y's and then used as inputs to (3.35). One then finally
obtains the two-point functions via (3.17) and (3.18) with
Vl and 0 replacing 0 and G and using the new forms
(3.35) for the self-energies. Similar equations may be
written down for the two functions y, . , and y, .„„,
which will be needed below.

Finally, we turn to the three-point functions I' '. In
the case that all three isospin indices are nonzero, these
functions are unrenormalized, as in (3.25). In the case
that a single isospin index vanishes it is easy to see that
one obtains precisely the y's defined above, in which the
variable in front of the semicolon corresponds to the van-
ishing index. We discuss now the case in which all three
isospin indices vanish. Once again, the surviving isospin
graphs are determined by excising the three externally
connected vertices, yielding closed graphs with three
fewer vertices. The large-% limit is then determined in
the usual way. As before, we may classify these graphs
explicitly for the group SU(2). The idea is to take a
closed bubble graph and attach the external legs in all
possible ways. Alternatively, we must attach one more
leg to a two-point graph (i.e., a ladder-type diagram) in

all possible ways. A little thought will convince one that
Fig. 10(fj shows schematically the correct result. Thus, if
the third leg is attached to a rung of the ladder, the third,
"propeller, " diagram results in which the "blades" of the
propeller are y's. On the other hand, if the third leg is
attached to a ladder edge, the second, "triangle, " dia-
gram results. The corners are once again y's. In obtain-
ing this result, the key observation is that the rungs and
edges are bubble renormalized in all possible ways and
the third leg may be attached to any one of these bubbles
which in turn may be nested arbitrarily deeply. The
depth of the nesting determines the number of rungs on
the new ladder that then extends out of the original one
and has the newly attached 1eg at its apex. A little topo-
logical remolding yields the results shown in Fig. 10(fl.
In order to turn this schematic picture into an analytic
expression, we must now distinguish between straight and
wavy legs and bonds. For example, for the full vertex
I ' '

o ~(k, co;q, Q), Fig. 10(fl translates into 7 distinct tri-
angle graphs and 21 distinct propeller graphs. Further-
more, the last two y's in Fig. 10(c) are now required. One
finds then
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l= ——A,OP (k)aPy

+ Q f f, [ 2) .„„„(—k, —ai; —q', —Q')), p.„„„i(q,Q;q', Q')y y ..(p, co —Q;k —q', co' —Q)
p, v~k, ~o

XG( —q', —Q')G(q' —k, Q' —co)0(q —q', Q —Q')ri (q —q')+(6 more triangle terms)]

f f f f [Sy „,( —k, —co; —q' —q", —Q' —Q")
P, V, A., O. , g, 7

X y s & .(q, Q;q', Q')y, , „(p,co —Q;q", Q" )

X G(q'+q" —k, Q'+ Q"—co)G( —q' —q", —Q' —Q")

X G( —q', —Q')G(q' —q, Q' —Q)G( —q", —Q")G(q"—p, Q"+Q —ai)

X&„i,(q'+q")&, „(k—q' —q")+(20 more propeller terms)], (3.40)

in which k, co are taken to be incoming, while q, Q and
p, co —Q are taken to be outgoing.

We end this section by noting that the DIA equations
have been obtained previously as a large-N limit. Thus
Kraichnan [29,30] has considered generalizations of the
Navier-Stokes equations of the form (2.1) in which Az™
is randomly +I/+N, subject only to the symmetry con-
ditions (2.38). In the limit N ~ Oo the law of large num-
bers produces precisely the results we obtain: the DIA
equations become exact. In the same work, Kraichnan
[29] also realized the significance of Galilean invariance
and considered also extended random coupling models
analogous to (2.74) in which a zero mode is included. He
concluded, as we have, that the nonzero modes still obey
the DIA equations in the spherical limit, but did not ana-
lyze the zero mode itself. The excision rule is implicit in
his model as well, so a similar analysis would certainly
produce the same results that we obtain. However, if one
contemplates calculating finite-1V corrections, only when
the generalized Quid equations include the higher-order
group symmetry do the identities shown in Fig. 6 hold
and can one therefore carry out the reduction process dis-
cussed in Sec. IIIC and in this section. Furthermore,
only then may one hope that the universal exponents will
vary continuously with N [reducing to the usual Navier-
Stokes equations at N =1 (or N=0 in model II)] and
thereby allow a systematic expansion. A finite set of ran-
domly coupled velocity fields do not possess sufficient
group structure for these results to follow (see the corre-
sponding discussion for the spin models in Sec. II A).

The fact that Kraichnan also obtained the DIA equa-
tions in the limit %—+ ~ leads one to expect that this lim-
it will be rather insensitive to the detailed procedure for
obtaining it. We have demonstrated this explicitly in
Secs. III C and III E: it is necessary and sufficient, both
with and without a zero mode, only that the 0 graph I2
dominate at large 2V. Since this is the simplest graph, it
does not require a great deal of optimism to expect that
the DIA equations will often result in the spherical limit

(see, however, Appendix C for a counter example).
Finite-N corrections will, of course, depend on precisely
how the limit is taken [but should all coincide, once
again, at N = 1 (or N =0)].

IV. EXACT SOLUTION
IN THE SPHERICAL LIMIT

In this section we provide exact solutions to the DIA
equations in the inertial range, exhibiting the full scaling
functions g(s) and u(s) and the exponent behaviors
shown in Fig. 2. We use these solutions to compute the
energy Qux in the inertial range and various associated
universal amplitude ratios, such as the generalization of
the Kolmogorov constant. We outline the solutions to
model II, confirming that although the scaling functions
are strongly modified from their DIA counterparts, the
exponent behaviors are the same. We leave detailed
analysis of energy Qux and universal amplitudes for fu-
ture work, but we will, however, in Sec. V C comment on
various questions one might hope to answer that the DIA
equations fail to address. The analysis becomes rather in-
volved in some places, so in Appendix D we illustrate all
aspects of the calculations using a simplified, time-
independent set of model DIA equations. The advantage
of this simplification is that all computations may be per-
formed analytically. It may be useful for the reader to
study this section and Appendix D in parallel. We begin
our analysis by understanding the renormalization group
results in the context of the DIA equations.

A. Power-law driving

Let us use the power-law form (1.14) for the driving
spectrum. Consider first the case y (0. We have stated
that a renormalized linear hydrodynamics should then re-
sult. To see that the DIA equations reproduce this
behavior, suppose that the integrals on the right-hand
side of (3.17)—(3.20) are finite when k, co~0. Thus if
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1
C(k, co)=, vz —=vo+v, (0) .

lco+vg k
(4.2)

The renorrnalized viscosity vz is positive even if vo van-
ishes: the high-k modes provide an energy sink that
mimics viscous damping of the low-k modes. The solu-
tion for 0(k, to) is then

Dtt (k)
0(k, co)=, Dtt (k) =D(k)+—Di(k),

co +vg k

where

(4.3)

v, (k) =Ao f f b(o, q)0(k —q, —Q)C(q, Q), (4.1)
q(A 0

then we assume that v, (0)& ~. It transpires that the
theory is well defined only when an upper cutoff A is in-
cluded [5(a)]. The viscosity correction is therefore
nonuniversal and crucially dependent upon detailed mi-
crophysics that is beyond the resolution of the hydro-
dynamic Navier-Stokes equations. Given that v, (0) is
finite, for small k and co we then have

V0
ls + k 2 —z+ g2k d +2 —6—z g0 1 2

r

X f f b(k, Q)P-"u '
Q ~ P

g(t),

(4.7)

ties to the DIA equations [31].
Consider now y &0, but not too large. The correction

v&(k) now diverges at small k: the nonlinearity dom-
inates. To understand the resulting behavior we now sub-
stitute the general scaling forms (1.16) and (1.17) into the
DIA equations, treating them as exact. We must check
the consistency of this assumption in the end. In particu-
lar, we must ensure the convergence of the integrals for
both large and small q and Q. After appropriate rescal-
ing of the integration variables, the DIA equations then
read

D, (k)=Aok f f a(o, q)0(k —q, —Q)0(q, A) .
q(A Q

(4.4)

It is easy to check that if y & 0 we have, self-consistently,

D k4 d 2y 2 —d» &0
2

A2u (s)

vl A& I Ig(s)l

Do kh —2z+4 —d —y+g2g 2kd+2 —6—z
0 2

I

xf f a(k, Q)p Q' u u(t),

D, (k)= '

Dok2, y &
2

(4.5)
(4.8)

when k~O (we assume d)2 throughout). Thus D(k)
dominates D&(k) for 2 —d &y & 0 and

D,k' " ', 2 —d&y&0
&2—d

(4.6)

when k~0. Substituting (4.2), (4.3), and (4.6) into (4.1)
we find that v&(k)=v&(0)+O(k '"( ~'" ) ), which
confirms our original assumptions. Furthermore, any
driving that is weaker than thermal at small k becomes
renorrnalized to thermal by the nonlinearity. Precisely at
y =2—d [i.e., D(k)=Dok ] the fluctuation-dissipation
relation must hold and it is easy to check that
0(k, to)=(DO/vo)ReC(k, co) renders (3.3) and (3.4) iden-
tical. Note that the actual calculation of the coefficients
v&(0), DO, D„etc., requires knowledge of the full func-
tions 0 and 0 for all wave vectors and frequencies and
therefore cannot be inferred by simple arguments. For-
ster, Nelson, and Stephen [5(a)] calculate them using the
one-loop order renormalization group recursion relations
at small Reynolds number DOA0/vo «1, where the non-
linear terms can be treated perturbatively. As mentioned
in Sec. I E, this one loop calculation is, in fact, identical
to solving the DIA equations by an iterative scheme. It is
actually easy to see why this must be so: the order y re-
cursion relations are obtained precisely by renormalizing
the same bubble diagrams that survive at N~ ao [5(a)].
The renorrnalization group recursion relations therefore
result essentially by applying the method of characteris-

where Q=q/k, k=k/k, P=k —Q, s =co/vk', and
t =0/vq'. The scaling hypothesis is consistent only if
the leading behaviors on both sides depend only on the
variable s. Since we already know that the nonlinear
terms dominate for y & 0, we conclude that there must be
no residual k dependence in their prefactors. By con-
struction, the integrals themselves, as long as they con-
verge, depend only on s. Both (4.7) and (4.8) then yield
the hyperscaling relation 6+z =d+2, as alluded to in
(1.19). In order to obtain a second relation among the ex-
ponents, we assert that, since the power-law driving con-
trols the spectrum, the driving term in (4.8) must be of
the same order as the nonlinear term. This implies that

6—2z =d —4+y, (4.9)

which, when combined with (1.19), immediately yields
(1.18) for b, and z. It is then clear that, since z &2, the
viscous term in (4.7) is a lower-order correction to scaling,
vanishing as k —+0. Full, exact scaling over the entire
range of variables occurs only in the formal infinite Rey-
nolds number limit v0~0. We shall see below that this is
a perfectly well defined limit for all y &0 and we there-
fore take vo =—0 henceforth. In real systems the viscosity
dominates for k larger than a dissipation scale A and pro-
vides a cutoff on the energy spectrum [2]. By examining
the corrections to scaling due to the (vo/V)k ' term one
may estimate A, along with the corresponding dissipation
frequency co~. This will be discussed in Sec. VB in the
light of various experimental and numerical results.
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(4.10)

, =1+f f a(k, Q)P Q' u
Ig(. ) I'

s Q—'t
pZ

u(t),

(4.11)

With vp =—0, we may now choose, for convenient
normalization purposes, 3 i

= 1/v=(AODO) ' and
A2=(DO/Ao)'~ . The equations for g(s) and u(s) then
take the universal forms (dependent only on y and d)

r

z

is+ f f b(k, Q)P u, g(t),
g(s) Q z P*

where Kd =2/(4m )" '"I ( —,'d) is (2n ) times the area of
the unit sphere in d dimensions. This result is finite so
long as d +z —6 & 0. From (1.17) this requires
2 —2y/3 &0, i.e.,

y&3.
For y ~ 3 the assumptions underlying the derivation of
(4.10) and (4.11) are violated and, as we shall see below,
the renormalization group results (1.18) are no longer val-
id. An identical analysis of (4.11) yields the same kind of
divergence at both Q =0 and P =0. These sum to yield
(4.15) with u (s) replacing g(s) on the right-hand side.
The identical convergence condition (4.16) therefore re-
sults.

B. Scaling for y )3

For y ~3 we must regularize the small-k behavior of
the response and correlation functions. We do this by re-
gularizing the driving spectrum at small k. Thus, instead
of the purely power-law form, consider

D (k) =DO21(k/mo)k

~~oo
21(x)~ '0

(4.17)

where mo is an infrared cutofF and 21(x) must vanish
sufticiently rapidly with x to ensure convergence of cer-
tain integrals (see below). The amplitude Do, in general,
depends on mp. Correspondingly, we seek scaling solu-
tions to the DIA equations in the form

G(k, co) = g
~1 co k

(4.18)

0(k, co) = u
~2 co k

k vk' ~p
(4.19)

The amplitudes A1, A2, and v may also depend on mp.
We assume that

(4.20)g (s;x)—+g (s), u (s;x)~u (s), x ~ 00,

with b. and z given by (1.18). Solving these equations for
the two unknown functions g (s) and u (s) is nontrivial,
entailing some rather complicated numerics, and we will
not address this problem here. For small y many of the
details may be worked out using the renormalization
group recursion-relation —iteration technique [5,7].

Let us now investigate the convergence properties of
(4.10) and (4.11). For what range of y are these equations
well defined? The integral over t is perfectly finite since
g (s) = —1/is for large s due to the unit discontinuity, in
the time domain, of (k, t) at t =0] while u (s) is
integrable [since the frequency integral
k 'f „0(k,co)=vk &f u (s) is proportional to the en-

ergy spectrum]. The products in (4.10) and (4.11) are
therefore integrable over the scaled variable t. Also,
since b =d+y/3&d, the integral over Q converges at
infinity for all y &0. The only possible divergence there-
fore occurs in the infrared: Q~0 or P~0. I.et us first
examine (4.10). Since z =2—y/3 &2 &d, it is easy to see
that region Q~0 is convergent. The limit P~0 is more
interesting. In this limit the argument r = (s Q't)/P' of-
u varies extremely rapidly with t. Since u is integrable,
u (r) acts like a 5 function and the essential contribution
to the t integration comes from the region t =s. The con-
tribution to (4.10) from the region P & 5 « 1 is then

z

Is(s)= f f b(k, Q)P u g(t)
r

=g (s)u
„ f b (k, Q)P' (4.12)

P(5
where u = f,u (t). From (3.21) and (3.22) it is easy to
demonstrate the following asymptotic behaviors for a and
b. A, vg (s;x)

= —is+A A k"+ 'J (s'x) (4.21)

while for x~0 both vanish (see below). Substituting
(4.17)—(4.20) into the DIA equations (with vo—=0 still) we
obtain

1 —(k.P) +O(k P, P ), P~O
Q)= O(Q), Q 0

—,'[1—(k P) +O(k.P, P }], P~O

—,'[1—(k Q) +0 (k.Q, Q )], Q ~0,

where P =P/P. Thus

(4.13)

(4.14)

A2u (s;x}
vI Ai I g(s;x)I

Dp
)kh —2z+4 —d —y+ g 2kd+2 —5—zJ

V

where

(4.22)

gd +z —b,

Is(s) = u ICd g (s),d+z —6 (4.15)

Jt, (s;x)—= f f b(k, Q)P u
Q

z

;Px g (t; Qx),
pZ

(4.23)
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J, (s;x)—= f f a(k, Q)P Q'
Q

Xu;Px u(t;Qx) .
s — 't

pz
(4.24)

we have

J„„(x)=uox (4.28)

Consider now the large-x limit (at fixed s) of both sides of
(4.21) and (4.22). This limit is trivial to take except in the
regions of integration where either Px or Qx is small.
For y & 3 these regions give rise to the divergent contri-
butions to J, and Jb whenx~~. Let us write

The regularizations (4.17)—(4.19) are now assumed to en-
sure convergence of (4.27) in the neighborhood of w =0.
Convergence when w~ ~ is ensured since u (t;w)=u (t)
is independent of w in this region and because 6—z & d
for y & 3. Note that the equal time, equal point correla-
tion function is given by

Jb (s;x) =g (s;x)J„„(x)+b Ji, (s;x),
J, (s;x)=u (s;x)J„„(x)+EJ,(s;x),

where

(4.25) U(x=O, t =0)=A2v ma+' uo= d:
Up

(4.29)

J„„s(x)=f f [1—(k.P) ]P u ;Px . (4.26)
pZ

~p —+d dw w u t w
d —oo 277 p

(4.27)

Equation (4.26) is obtained from Ji, (s;x) by setting P =0
in all nonsingular terms and from J, (s;x ) by summing
the two identical contributions obtained by setting, re-
spectively, P =0 and Q =0 in all nonsingular terms. It
should be recalled that the neighborhood of Q =0 in
Jb(s;x) is nonsingular because b vanishes there [see
(4.13)]. Defining

so that uo and J»„s(x)are rescaled measures of the total
kinetic energy density Eo=(d/2)pouo, which diverges as
mp~O. The divergences therefore occur because most of
the energy lies near the driving range k -mp, not in the
inertial range k))mo. Note that for (&1 (y &3) the
kinetic energy density diverges in the ultraviolet. A finite
viscosity is required for convergence. Interestingly
enough, no divergences in the DIA equations result: the
large energy in the small scales does not feed back
significantly on the larger scales.

Having extracted the leading behavior of J, and Jb, it
is now easy to see that AJ, and AJb are finite when
x~00 as long as d & 6—z &d +2. In this limit we ob-
tain

lim AJAR, (s;x)=bJb(s)= f f u
+~oo Q

Z

P I b (k, Q)g (t) —[1—(k.P )']g (s)j, (4.30)

lim b J,(s;x)=EJ,(s)= f f a(k, Q)u
X~oo Q

Q P —EQz —6 (t)
pZ

—
—,'[1—(k.Q) ]Q' u (s)u (t) —

—,'[1—(k P) )P' u (s)u (t) (4.31)

The DIA equations now read

A, vg(s;x)
LS +g g A Md+2 —5—z d+2 —6—z

0 1 2~0

We may now consider the large-x limit. The behavior on
the right-hand sides of (4.32) and (4.33) is dominated by
the singular parts and to leading order we have

X[g(s;x)uox ' +EJi, (s;x)]

(4.32)

A, vg (s)
is+A, OA, A2m"—+ 'x 'u g(s),

(4.34)
A2u (s;x)

vI A, I'Ig (s;x)I'

Dp 5—2z 5—2z+4 —d —yP7Z 0
V

A2u (s)

vl A, I Ig (s) I

Dp 5—2z 5—2z +4—d —ymp x q~x~

+A, A m"+ 'x 'u u(s) (435)

g 2 d+2 —6—z d+2 —6—z
p 2m 0 x

X[u(s;x)uox ' +bJ, (s;x)] . (4.33)

For consistency, the amplitudes and exponents must be
chosen in such a way that all mp and x dependence drops
out. From (4.34) this implies, immediately,
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z=1 ~ (4.36) should seek solutions in the form

Taking A, v= 1 (A, is therefore real) and
AouoA, Azmo+ '= 1, along with (4.29) this leads to
the simple relations

g(s;x) =g(s)+x"+ 'g, (s)+

u(s;x) =u(s)+x"+ 'u&(s)+
(4.43)

1 1is—+g(s), v= =Aovo
g(s) '

A,
(4.37)

Substituting (4.43) into (4.41) and (4.42) and using (4.37)
and (4.40), we obtain

with the solution

$g(s)=i
2

1/2
$2 —1
4

(4.38)
g&(s)=—

1
b,J~(s)

Qp

1+
g(s)

(4.44)

where the negative square root is chosen so that
g(s)= —1/is for large s and has positive real part
~1—s /4 for IsI &2 [13]. We have therefore solved ex-
actly for the response function in the inertial range.
Amazingly, it is completely independent of d and y as
long as y )3, a reAection of the dominating effects of the
large-scale Aows.

Consider next Eq. (4.35), which now reads

u (s)
1

gpX
5+2—d —g

Ig(s)I'
(4.39)

where 5o= A&Domo '/Azv is a rescaled driving ampli-
tude. If the left- and right-hand sides of this equation
were of the same order, we would conclude that
b, =d —2+y. Normalizing, say, 5o=l, this yields
u(s) =1/[Ig(s) I

—1]. However, from (4.38),
Ig(s)I =1 for IsI &2, which would imply that u(s)—:~
in this same range. This is clearly inconsistent with our
convergence assumptions. We therefore must conclude
that 6+2—d —y &0, the driving term is a lower-order
correction, and

u(s) z
—1 =0.1

(4.40)

is+g(s;x)+x"—+ ' b J'(s;x),g(s;x) Qp

(4.41)

From this we can conclude only that u(s) =0 whenever
Ig(s)I Xl, i.e., when IsI ~2. This scaling function there-
fore has support only on the finite interval —2+$ +2,
but its behavior on this interval is as yet undetermined.

To proceed further, we must consider finite-x correc-
tions to (4.34) and (4.35). To see the nature of these
corrections we use the identifications we have made so far
[for clarity of exposition here and below we will continue
to write z explicitly; (4.36) will be substituted only at the
end] to write (4.32) and (4.33) in the form

and

2u(s) Re
Ig(s)I' g(s)

=5~ +u&(s) 1 —
z

+ EJ,(s),
Ig(s)l uo

(4.45)

where b J&(s) and b J, (s) were defined in (4.30) and (4.31)
and the value of the exponent 0=26—z +2 —2d —y will
be addressed below. This last equation gives different re-
sults depending on whether IsI &2 or IsI) 2:

g~(s)—u(s)Re
g(s)

=8~'+ aJ.(s),
1

Qp
(4.46)

ui(s)=

15~ + b,J, (s)
"p

1 —1
Ig(s)I'

(4.47)

The behavior of u&(s) for IsI &2 can be inferred only by
considering yet higher-order terms in (4.41)—(4.43), but
this is of no interest to us. What is important is that
(4.46) yields an equation for u(s). Now, if the driving
still controls the scaling (though it is now a lower-order
effect than it was for y &3), we must choose 0=0, i.e.,
b. =d+ —,'(y —1), which yields precisely (1.24). We ex-
pect this to be the correct choice for y not too large (see
below). However, for sufficiently large y we anticipate
that the scaling properties will cease to be sensitive to the
driving spectrum. In this case we will have 0&0 and
(4.46) should be solved with 5O=—0. We will discuss this
point in detail below. Let us then take 0=0 and leave the
value of 50 free. We now combine (4.38), (4.44), and
(4.46) into a single integral equation for the unknown
function u(s),

u(s'x) 6 —2z+4 —2-=5~ '+ ~g(x)+u(s;x)
Ig(s;x)I'

+x + ' bJ'(s'x) .1

Qp
(4.42)

50= »'& Re[EJ~(s)] kJ (s)
u(s)

[1 (s2/4)]1/2 (4.48)

Since d+2 —6—z&0 we now treat the AJ, and AJb
terms as perturbations for large x. It is clear that we where 5p =u p5p =Dp Q p 3 ] m p '/2 2 v. More exPlicitly,
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1/2
1 —(t'/4)

X u s
1 —(s /4)

—Q' u (t)

(4.49)

where we have made use of the fact that

C. The onset of turbulence

1. Short-ranged driving

Before describing details of the numerical solutions, we
make some general observations regarding the nature of
the solutions to (4.49). First, this equation was derived
with the assumption of power-law driving. Our ultimate
interest, of course, is in real turbulence generated by
short-range driving. We claim that equation (4.49) with
50——0 is appropriate to this situation. To see this, note
that if we had followed through the derivation of (4.49)
using an explicitly short-ranged form for the driving
spectrum

0, x —+~
D( )k= Do(rikm/)0, g(x)~ '

1
(4.51)

in place of (4.17), the vanishing of g(x) at infinity being,
at the very least, more rapid than any power law, we

u (s)
Re[g (s)J„„(x) ]—u (s)J„„(x) =0, (4.50)

[1—(s /4)]'

so that EJb and hJ, may effectively be replaced by their
unsubtracted counterparts in (4.48). We have also used
the relation (3.24) and the invariance of the product
u(t)u[(s Q't)/P—']P Q' under the change of vari-
able Q'=P and t'=(s —Q't)/P' Conve. rgence of (4.49)
when P~O (hence Q~l) is clear because in this limit
only t =s contributes and the term in large square brack-
ets then vanishes. Convergence when Q~0 is once again
ensured because b(k, Q) vanishes in this limit [see (4.13)
and (4.14)].

Equation (4.49) is the main result of this section. Its
solution completely determines the inertial range
behavior in the spherical limit. This equation, in general,
has no obvious analytic solution and therefore must be
solved numerically. The numerics in this case, however,
are quite tractable since the problem has now been re-
duced to a single equation for a single function of a single
variable on a finite interval. Nominally, the Q integration
is over an unbounded domain. However, the variable
r —(s Q't) /P' is —restricted to

~ r~ ~ 2 and an appropriate
change of variables may be effected to reduce the full in-
tegration in (4.49) to a triple integral over a finite three-
dimensional box (the three integration variables represent
t, Q, and the angular variable p=k Q). This, along with
details of the numerical procedure, is outlined in Appen-
dix E. Below we present only the results.

would have obtained Eqs. (4.42) and (4.45) —(4.47) with
5O —=0. Correspondingly, the variable y never appears, the
question of the value of the exponent 0 never arises, and
the exponent 5 is undetermined. Finally, we would have
obtained, as claimed above, (4.48) and (4.49) with 5O=O.
The free exponent 6 would then have had to be tuned in
order to find the solution u, (s). This solution clearly
must represent the Kolmogorov spectrum for the model.
A value y, may be assigned a postiori using (1.24) as a
definition. Physically, we expect this solution to be
unique, given the constraints that g & 1 and u (s) & 0.

Two questions must now be addressed. First, since the
value of b, must be determined before (4.49) with 50=0
even has a solution, how do we go about finding this solu-
tion? Second, what is the connection, if any, between the
a postiori inferred exponent y, and power-law driving?

2. Turbulent solution

To answer the first question, we note that (4.49) with
5o=0 represents a kind of nonlinear eigenvalue problem,
with eigenvalue b. (or, equivalently, y, ) and eigenfunc-
tion u, (s). To see how to solve such a problem, first con-
sider the following linear matrix inversion problem:
( A —A,I)v=b, where A is a linear operator, I is the iden-
tity operator, A, is a given real number, b is a given con-
stant vector, and the vector v is to be found. If k is not
an eigenvalue of A then ( A —A,I) is invertible and the
solution v always exists. If 1=0 then we have the usual
eigenvalue problem and a nonzero solution v, exists only
if A, =A,, is an eigenvalue of A. One way of locating ei-
genvalues is to fix b and consider the solution v(A, ) as a
function of A. . For generic choices of b [i.e., as long as b
does not lie in the range of ( A —

A,,I)] this solution will
diverge as A, ~A, Thus A,, is a pole of the norm ~~v(A, )(~

or, equivalently, a zero of ~~v(A. )~~
' and

n(A, )=v(A, )/))v(A, )[[ will converge to the corresponding
normalized eigenvector.

This technique generalizes straightforwardly to the
present problem. If 50=0 on the left-hand side of (4.49)
is replaced by some conveniently chosen fixed function
5(s), then a solution u (s~y) will exist for generic values of
y [and associated values of b, =d+ —,'(y —1) and z =1]
and will diverge as y ~y, and
u, (s) =lim~ ~ u (s~y)/u (O~y), normalized so that

C

u, (0)=1, is the scaling function we seek. We will simply
take 5(s) —=5O to be a constant, i.e., precisely Eq. (4.49).
In terms of finding the turbulent solution, this represents
a convenient numerical device. The fact that u(s~y) is
then also the physical solution in the presence of power-
law driving will allow us to make contact between the
two problems.

3. Relation to power-law driving:
Stability of the turbulent solution

To answer the second question, we sha11 now show that
y, is precisely the borderline at which power-law driving
becomes irrelevant and that for y &y, all exponents and
scaling functions "stick" at their turbulent values. As we
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u, =u, (s;50x ), u, (s;0}—=u, (s), (4.52)

with similar forms for gi, and ui, [formally, to make
the expansion (4.43) well defined, we consider the com-
bination variable w =50x to be arbitrary and finite even
as x ~oo ]. The crossover exponent o must be deter-
mined from the equations (see below). If o. & 0, then 50 is
relevant and the second argument grows without bound
for large x. This signals a crossover to the power-law-
driven solution proportional to x ' u (s~y). However,
if o &0, then 50 is irrelevant and u, (s) is recovered for
large x, with small corrections,

have seen, if we were to normalize 50=1, a signal of the
approach to y, would be a pointwise divergence in the
solution u (s~y)-(y, —y) ~ for some exponent P (we shall
see below that P= —,

' ). This signals the inappropriateness
of the chosen normalization and represents the onset of a
kind of nonlinear resonance: one is nearing a "natural
spectrum" of the system, in essence, one that is produced
without any driving at all. A better normalization, there-
fore, is u (s =O~y)—:1, which may then be used to deter-
mine 50(y). One should clearly find 50(y)-(y, —y} ~,

vanishing at y, . In fact, since we will find 2/=1, solu-
tions to (4.49) will exist for y &y, with 50&0. However,
the driving spectrum is, by construction, non-negative,
such solutions must be unphysical, and the validity of
(4.49) should be reexamined in this range of parameters.
We claim, in fact, that for y &y„bsticks at b,, —= b, (y, )

and the exponent 8 in (4.45} becomes negatiue. This im-

plies that the driving term has become irrelevant and pro-
vides only asymptotically vanishing corrections to scaling
in the inertial range.

To see how this comes about, we must consider the sta-
bility of the y =y„50=0solution under the infiuence of
power-law driving. Returning to (4.41)—(4.43) we begin
by setting y =y„h=h„and50=0. Let g, ,(s), u, (s),
and u i, (s) be the exact solutions for this case [recall that
g(s) is always given by (4.38)]. Now treat the term—2z+4 —d —y
Box as a perturbation. We seek, then, solu-
tions in the more general scaling form

prediction for the form of the corrections. For example
(4.54} leads to E(k)= Ak '[1+50a(y)(k!mo)
+ ], where a (y) = f,u,'"(s) and g, —=g(y, ). The
correction exponent g, + (y —y, } is diferent from
g(y )=b, (y )—z —d + 1 =g+ b, (y )

—b, (y, ) =g, + —,
' (y —y, ),

obtained by naively extrapolating the y & 3 results
through y, . The result is therefore not simply a linear su-
perposition of g, and g(y).

D. Numerical results

y, =4, &=d+ —23, g= —', (for all d &2) (4.55)

are exact answers in the spherical limit. We do not, at
this stage, have an analytic proof of this fact, but in Secs.
IV E and IV F below we will provide strong physical and
analytic motivation for this result.

It is clear from Fig. 11 that the solutions vary smooth-
ly with y: u(s) converges uniformly to u, (s) as y~y, .
Since there are no singularities in the integration in
(4.49) for any y in the neighborhood ofy„it is then clear

1.0

0.8

Now that we understand the general features exhibited
by the scaling solutions, let us turn to the numerical
verification of these results. In Fig. 11 we show the solu-
tions to (4.49) in d =3 for various values of y in the range
3. 1&y &4.3 with the normalization u (0)=1. In Fig. 12
we show the corresponding values of 50(y) (still in d =3)
that lie on a smooth curve passing through zero at a
point indistinguishable from y, =4. This last result turns
out to be insensitive to the dimension d. In Fig. 13 we
show the dimensionality dependence of u, (s) for various
d in the interval 2. 5 & d & 3.3. It seems reasonable, then,
to postulate that [see (1.24)]

u, (s;5ox )=u, (s)+50x u,"'(s)+ (4.53)
0.6

Substituting the form (4.52} into (4.41}—(4.43), it is
straightforward to see that (4.49) generalizes to

0.4

Z

=f f b(kQ)u '
wP P

Q —2277 P c 0.2

—Q' 'u(t wQ ) (4.54)

0.0
—1.0 0.0

s/2

where it is now clear that consistency requires
w =50x ' and hence o =y, —y. We see then that 50 is
relevant for y &y„irrelevant for y &y„and we have
finally confirmed claim (b). Moreover, we now have a

FIG. 11. Numerical results for the spherical limit scaling
function u (s) in three dimensions, normalized so that u (0)= 1,
for various values of the driving exponent y. The outermost
curve corresponds to y =3.1, the innermost to y =4.3, and y
changes in steps of 0.1 in between. The dashed curve to the crit-
ical value y =4.
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FIG. 12. Normalized driving amplitude 50 as a function of
driving exponent y in three dimensions. The amplitude vanishes
at a point y, numerically indistinguishable from y, =4.

FIG. 14. Turbulent scaling function in three dimensions,
with +1—s /4 divided out. The resulting function is not a con-
stant, but is clearly regular at the boundaries s =+2.

that 5o(y) should vary smoothly and analytically through

y, . Presumably one could establish this fact rigorously if
one wished. These observations confirm the exponent
value P = —,

' for the divergence of u (s~y) at fixed 5o= l.
We note that u (s) always vanishes with a square root

singularity at ~s~ =2. In Fig. 14 we plot u, (s)/+1 —s /4
in d =3, showing clearly the finite intercepts at

~
s =2.

This function probably extends analytically through these
boundaries. The square root singularity clearly arises
from the + I t /4/+1 ——s /4 factor in the integrand of
(4.49). Kraichnan [13], in his original approximate treat-
ment of the DIA equations, derived a result equivalent to

(4.38) and approximated u, (s) by Vl —s /4. From (4.49)
(with 5o=0) it is clear that this result is correct only if
A=z (the quantity in large square brackets then vanishes
identically). However, since z = 1, the requirement6)d +z used in the derivation of (4.49) would then be
valid only for d (0. It is perfectly straightforward to
analytically continue (4.49) to d & 0 and we have checked
numerically that, as expected from (1.24), the Kraichnan
solution is indeed correct when d = —

—,'.
Finally, we note that another exact solution to (4.49)

(with 5o=0) is u, (s) =5(s), with the consistency condi-
tion

1.0
b k, P' '— ' =0

9
(4.56)

(here z =1, as usual). This solution is unphysical, as it
does not generalize to 5o%0, and corresponds to a purely
static (co=0) inertial range. Amusingly enough, however,
it corresponds precisely to the solution of the simplified,
frequency-independent model DIA equations discussed in
Appendix D. From this Appendix one sees that
6=d +—', solves this equation as well.

0.2 E. Conformal transformations

0.0
—1.0 —0.5 0.0

s/2

0.5

FIG. 13. Dimensionality dependence of the turbulent scaling
function u (s) (driving exponent y =y, =4) in the spherical lim-
it.

In Appendix D we introduce a useful conformal trans-
formation [32], which essentially converts Q ~1/Q, that
allows us to solve the simplified DIA equations analyti-
cally. The essential requirement is the covariance proper-
ty b(k, Q)~Q b(k, Q) under this transformation. Let
us perform this same transformation (at fixed t) on the
second term in the full equation (4.49) for u (s). One ob-
tains (for 5o=0)
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X u
s —Q't

pZ
1 —(t'/4)

u (s)
1 —(s /4)

1/2

r

Q2d+2 —2h+z Q s
(t) (4 57)

pZ

Unfortunately, this is not very useful because the trans-
formation does not leave the argument r =(s Q't)/—P'

invariant. Ifit had, one could have immediately conclud-
ed that 2d +2—2h+z =0, i.e.,

A=d +1+—=d +—,2= 3
2 2

' (4.58)

and u, (s)=+1—s /4. We have already seen from our
numerics that u (s} is not of this simple form, so it is cer-
tainly consistent that r is not invariant. We note, in spite
of this, that (4.58) is (indistinguishable from) the correct
answer. One can motivate this result a little further.
Multiply (4.57) by 1/1 —s /4 and integrate over s to ob-
tain

u~2d+2 —2h+z Q s
pZ

u ( t) [1—(s /4) ]' (4.59)

which, by symmetry under interchange of s and t, van-
ishes identically for any choice of u (s) as long as (4.58) is
satisfied. There are presumably solutions to (4.59) for ar-
bitrary values of 6, so one cannot know, without solving
(4.49) fully, that (4.58) is truly the correct choice. The re-
sult is nevertheless quite compelling. Equation (4.59) ac-
tually has a physical interpretation: it is a statement that
energy is conserved in the inertial range cascade process.
With (4.58), the physical interpretation becomes even
more compelling: the energy cascade proves to be local.
It was precisely the assumption of locality that led
Kraichnan [13]to the g =—', result (see Sec. IV F below).

It is precisely this conformal argum. ent that was ap-
plied to a subtracted version of the DIA equations [ob-
tained from (4.32) and (4.33) simply by dropping the
singular terms] by Kuznetsov and L'vov [32]. In this
case both scaling functions are nontrivial and satisfy (with
50=0)

symmetric in s and t and vanishes identically if the first
equality in (4.58) holds. With (1.19), this yields the Kol-
mogorov values z =

—,
' and g= —,'. Based on this argument,

the authors of [32] concluded that the Kolmogorov re-
sults had been established for these equations. These re-
sults are probably correct (locality is then, again, im-
plied), but [aside from the fact that we believe (4.60) and
(4.61) to be an inappropriate set of equations to begin
with] the argument has precisely the same fallacies as be-
fore. A proof would require full solutions to (4.60) and
(4.61). These would be very difficult to obtain since both
g (s) and u (s) are now nontrivial and nonvanishing for all
s. We emphasize, then, that the exactness of the Kraich-
nan DIA result g= —', has precisely the same degree of an-
alytic backing as does g= —,

' for the corresponding sub-
tracted equations. The numerical backing, at this stage,
is nonexistent for the latter, while our own numerics
confirm the —,

' result beyond a reasonable doubt.

i +sEJ ( b)—,s (4.60) F. Locality, sweeping, and universal amplitudes

(4.61)

u (s)Red Jb(s) =b J, (s)Reg (s), (4.62)

which gives (4.49) with t/1 —s /4 replaced by Reg(s),
exponents obeying (1.19), and 50=0. The conformal
transformation then yields (4.57) with these same replace-
ments. Multiplying through by Reg(s) and integrating
over s yields the obvious analog of (4.59), which is again

along with Ai =1/7, A2=1/ADA„and b, +z =d+2
[compare (1.19)]. These are identical to (4.10) and (4.11),
but with the singular parts of the integrals removed and
the 1 dropped from (4.11}. The analog of (4.57) is now
obtained by noting that Eqs. (4.60) and (4.61) may be
combined to yield

vok e,(k)= —,
' f S(kipq)+ J G'(k, cg)D(k, co), (4.63)

In this subsection we finally make precise the various
notions of energy Aux and sweeping alluded to in Sec. I,
using the DIA equations as an explicit example. In so
doing we will identify various universal amplitudes that
generalize, for example, the Kolmogorov constant Cz in
(1.8) to the case when gW —,'. Our solutions to the DIA
equations allow us to calculate these constants exactly in
the spherical limit. Our analysis follows closely that of
Kraichnan [13].

To begin, let us understand energy conservation in
more detail. By multiplying 0(k, co) by the real part of
(3.17), subtracting from it 0'(k, co)=ReG(k, to) multi-
plied by (3.18), and then integrating over co, we obtain
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b(k—, p) 8(q, k,p), (4.64)

with

8(k,p, q)=amok f f 0'(k, co)0(p, co A—)0(q, Q) . (4.65)

The left-hand side of (4.63) is the viscous dissipation rate
and the second term on the right-hand side is the energy
input rate from the driving force. The function S(k~pq)
represents the net input of energy to mode k via the non-
linear interaction with modes p and q. Under the as-
sumption that an inertial range with a constant energy
fiux exists (which will be verified for the DIA equations
below), then in this range the dissipation and driving may
be neglected [formally, we take v0=0 and D(k, co) =0].
In this case

0= f S(k~pq) (4.66)
q

for k in the inertial range, which represents (4.59) in un-
scaled form and states that in the stationary turbulent
state no net transfer of energy to mode k occurs [this is
really just the Fourier space form of V j,=O; see (2.32)
and below]. Using S we may introduce precisely the no-
tion of energy fiux. Let II(k) be the average rate of
transfer of energy from modes p and q, with p, q &k to
any mode k'=p+q with k' & k, minus the average
transfer rate from modes with p, q &k to any mode
k'=p+q with k' & k. Thus

k' q

q

By straightforward manipulations, one can show that

=—K k ' f S(k~pq) .
q

(4.68)

If (4.66) is valid, then in the inertial range BII/Bk van-
ishes and we then have

where p=k —q, e(k)= f 0(k, co) is the Fourier space
energy density per isospin component, divided by
—,'(d —1)(2m ) "po (this normalization will be used below,
unless otherwise specified), and

S (k~pq) =2a (k, q)8(k, p, q) —b (k, q)8(p, k, q)

Xk.v (p, co —0)), (4.72)

which cannot, in general, be reduced simply to a product
of pair correlators. However, the definition (4.67) and the
relation (4.68) remain valid. An inertial range with a
constant energy Aux would still be characterized by
(4.66), with (4.69) following as before. As shown in Ap-
pendix B these results are the k-space equivalents of the
real-space von Karman —Howarth result. The fact that
we will establish (4.69) explicitly for the DIA equations
represents a direct proof of the validity of the
von Karman —Howarth result in the spherical limit.

Even when valid, Eq. (4.69) in no way implies that this
Aux is truly local: p and q may be very far from k'. The
notion of locality in turbulence is broader and is made
precise in the following way: consider two wave numbers
k and k' with k «k'. What is the total rate of energy
transfer from modes p, q, at least one of which is smaller
than k, to any mode k" & k'? This is given by

implies that e;„must also equal the total rate of energy
dissipation by the viscosity

vok 6 k (4.71)
k

This follows from (4.63) by integrating over all k and not-
ing that (4.64) implies that fzf S(k~pq)=0. On the
other hand, if the driving and dissipation ranges are well
separated in k space, one may substitute (4.68) into (4.63)
and integrate over the volume of a sphere whose radius k
lies in the inertial range. One finds then that
e;„=II(k)+F(k), where e (k)= f „voq a(q) is the
total dissipation rate inside this sphere and we have used
the fact that II(0)=0. If dissipation is negligible in the
inertial and driving ranges, then (4.69) is valid and it fol-
lows immediately that the energy Aux must equal the en-
ergy input rate e=e;„.Conversely, if the energy Aux is
not constant, any loss of Aux must be accompanied by
significant dissipation in the inertial range.

In general (i.e., for finite N) S(k~pq) may be defined in
terms of the triple velocity correlator [13]

2ko
S(k~pq)=1m g Az™

l, m, n

X vi —k, —co v„q,Q

II(k) =F, (4.69)

i.e., a constant energy Aux. Let us define the total rate of
energy input by the driving force

F;„=f f 8(k, co)C'(k, co)

—Domo vl x g s;x —Dogomo 4.70
X S

where go is a nonuniversal constant of order unity and we
have assumed the short-ranged form (4.51) for D (k). We
may turn the last equality on the right-hand side around
to express the driving spectrum in the physically more
transparent form D (k) =(F;„/gom o )g(k/mo), which
serves to elucidate how its amplitude must scale with en-
ergy input rate and the width mo. Energy conservation

II(kIk') = ,' f '" '"-' f""""'S(k"
lpq) . (4.73)

k" q

Notice that this is similar to the first term in (4.67), ex-
cept that, aside from the fact that k &k', one has relaxed
the requirement that both p and q are smaller than k.
This is important when k/k' is small because if both p
and q are small it is impossible to have ~p+q~ )k'. Thus
if energy is to be transferred a large distance in k space, it
can do so only through the interaction of one small wave
vector with two large ones. If the cascade is local,
II(k~ 0') will vanish as k/k'~0 (see below).

We may evaluate (4.67) and (4.72) in the spherical lim-
it. Consider substituting the scaling forms (1.16) and
(1.17) into the expression for S. If one scales out k from
the integral in (4.66), one naively concludes that it should
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8=ed Azv, ed z—- '
6

——6 28X103.86
(2m)

(4.75)

Similarly, we may study II(k~k'). After some rather tedi-
ous algebra we find [13]

11(klk')=pd~pv(k/k')' ~,

pd —3 —
6

——2.26 X 1013.9 4

(2m )

(4.76)

which indeed vanishes as k/k' —+0. The universal num-
ber pd is given by the expression

vary as AzVsdk +'+ . It is only by examining the
remaining dimensionless coefficient sd that one finds that
it vanishes by virtue of (4.59). Similar scaling of (4.67)
leads one to expect that it should vary as
A zie&k "+'+ . However, consistency with (4.68)
then implies that the coefficient ed is proportional to sd
and must therefore vanish as well. This seems to contra-
dict (4.69). There are three possible resolutions to this
paradox: (a) our notion of an inertial range in the zero
viscosity limit is incorrect and there are no solutions in
which (4.66) is obeyed, (b} the integral in (4.67) contains
infrared divergences and the naive k dependence is re-
placed by a constant term ed ~ m 0+'+, or (c) the ex-
ponent relation (4.58} is valid 2d +z+2 —26=0 and the
naive k dependence indeed yields a constant, with

s X' I' 4.74
K'

a dimensionless universal number [here s (K'~PQ)
=k ' S(k'~pq)/A&V, suitably rewritten using the
scaling forms (1.16) and (1.17)]. This does not contradict
the proportionality of ed and sd because in actuality,
sd ~ (2d +z +2—25)ed, so that ed need vanish only if the
prefactor does not. Cases (a} and (b) violate locality: a
strong dependence on the viscosity, as is assumed, for ex-
ample, in the Kolmogorov-Oboukhov- Yaglom theory
[see [2] and the discussion below (1.9)], implies that there
is no sharp distinction between the inertial and dissipa-
tion ranges. Similarly, an infrared divergence implies
that the driving range strongly perturbs the inertial range
cascade process. Note that the fact that A&V depends
upon mo is a separate issue; this latter coefficient is a
property only of the two-point correlation functions and
sets the overall amplitude of the energy flux (see below),
while ed is a property of a three-point correlation func-
tion and characterizes the interactions between different
length scales. Only case (c) yields locality: thus, as allud-
ed to earlier, scaling is consistent with locality only if

Our numerics overwhelmingly support the ex-

ponent relation (4.58) and hence case (c). The compelling
nature of the physics of case (c) is, more than anything
else, what leads us to believe that g= —', must be an exact
result.

Since our results are consistent with locality, we may
numerically evaluate ed in the spherical limit. We find

1 d —1 1

+ (b, —d)(3 —g) I'( —,'d)I ( —,'d +2)

X f u(s)ds

X
2 (5—1)(4—b, )s +4(b, —1)(h—2)
—2 &4—s'

X u (s)ds . (4.77)

G. Universal scaling

Let us now try to put together what we have learned
from our analysis of the solutions to the DIA equations
in a way that might plausibly generalize to finite N [33].
Recall from Sec. I that, in the Kolmogorov theory, the
coeflicient Cx in (1.8) is meant to be universal. An im-
portant question is whether a similar universal amplitude
can be exhibited if gA —,'. It should be emphasized that
writing the energy in the general form (1.9} is not
sufficient to make the coefficient Cz universal. The prob-
lem is that mo is only one somewhat arbitrarily chosen
measure of the shape of the driving spectrum and a
different choice will clearly change the value of Cz. In
order to obtain a universal amplitude, it is necessary to
uniquely specify the appropriate physical length I& that
should be used to universally nondimensionalize k. This
length will be determined in the DIA below. All other
lengths, such as lo = 1/mo, will scale linearly with l~, but
with a nonuniversal coefficient that depends on the de-
tails of the driving spectrum. Note that, in principle, the
same considerations apply to the coefficient e in the
original Kolmogorov result (1.8}. One could equally well
have chosen, for example, the energy input rate e;„orthe
dissipation rate e „,in place of the Aux F here. It is only
energy conservation that dictates that all measures of the
energy transfer must be the same. No such conservation
law uniquely specifies I . Cxiven e, we may equivalently
define physical velocity scale Uz related to Iz via

Pulling out the six factors of 2m that appear in the
definitions of the integrals in (4.67) and (4.73) gives a
better gauge of the magnitude of the universal
coefficients. We conclude, then, that most of the energy
flux in (4.67) comes from modes not too far from k. Since
(4.76) is only power law, this notion of locality is not par-
ticularly sharp.

Now, the fact that the energy spectrum depends on the
infrared cutoff mo means that the energy containing
range k-mo has a strong effect on the inertial range
k »mo. Why does this not contradict locality? As hint-
ed above, the answer is that though the energy transfer is
local, the total rate, or overall magnitude, can be
suppressed or enhanced by the large-scale motions
(presumably through large scale shear, vortex stretching,
etc.}. Thus locality implies a well-defined Fourier space
"pipeline" of energy, but the large-scale motions may
control the overall diameter of the pipe. This can be seen
explicitly in the derivation of (4.73): the infrared diver-
gences at small p and q cancel in S, so the energy transfer
rate from this region is negligible, even though the energy
content is large.
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ovpE'=
l

(4.78)

The quantity u will be linearly, but again nonuniversally,
related to any chosen typical large-scale velocity, say, Uo,

analogous to the typical large-scale length lo. Given U

and I we propose to rewrite the scaling relations (1.16)
and (1.17) in the form

the total root mean square velocity. The second equality
in (4.85) exhibits the nonuniversal proportionality con-
stant u 0 [defined in (4.27)] that connects I and
lo=1/mo. Notice that since Uz and Uo differ by a factor
ez, we have s—=co/Aovok =e&s~. The universal constant
c& is therefore given by

8$
cz =cz/ez, cz =Bz- u (s),—22m

ro (kl )' (4.79) (4.86)

C(k, cv) = g
co (kl )' co (kl )' (4.80)

E(k)=pocus 1 (kl )

8$p
Cy =By Q Sp

(4.81)

(4.82)

where g=h —z —d+1 as before and the coefficient Bz
was defined below (1.7). The coefficient cz is the univer-
sal amplitude we seek, appropriately generalizing the
Kolmogorov constant.

In the spherical limit we may identify I and U from
the results we have already obtained. From (4.75) and
(4.37) we have

1/2

ed~oUo
(4.83)

Using b =d +—', and z = 1 we immediately obtain the re-
sults

U =e&vo,

ed~oUo
3 3 3

ea~o& oho .2 4 2

(4.84)

(4.85)

We see then that, up to a universal coefficient, Uz is just

where the physical frequency is defined in the obvious
way by co =b'av~/l„. The function g (s~ ) = —1/is„ for
large s and we remove any residual ambiguity by nor-
malizing u(0)=1. We distinguish the scaling variable
s —=co/co (klo)' from the variable s used earlier in this
section since they may differ by a scale factor (see below).
Comparing with (1.16) and (1.17), we therefore have
A 2

=A, ou l"+ ' and 1/3
&

=v= A,ov I' '. These forms
are now proposed to be completely universal. Operation-
ally this means that given any set of inertial range numer-
ical or experimental data, we may extract from it the two
nonuniversal quantities l and v [through, say, a mea-
surement of e and of 0'(k, 0) at a single reference value of
k in the inertial range] and then use these two quantities
to scale the data as specified above. The result will be a
single set of universal curves common to aII data sets.
The inertial range is therefore characterized, in general,
by two nonuniversal parameters, in terms of which all
other parameters may be expressed.

An immediate consequence of this is obtained by calcu-
lating the energy spectrum (per isospin component) (1.7)

cz 3
—-1.27X(2m. ) =314 .

The combination cz 3ez '3 ——2.46 [obtained in place of
c& if one uses vo in place of vz in the definition of l' in
(4.81)] has been quoted previously in the literature [16] as
being in the neighborhood of 2.

What changes in these results might we expect for gen-
eral X? We will argue in Sec. V that z =1 is an exact re-
sult, though the exponent 6 is still undetermined. The
two scaling functions will, of course, vary with X. In par-
ticular, u (s) should not, in general, be confined to a finite
interval. Regarding the physical parameters l and U,
since (4.78) is always assumed to hold (i.e., the energy fiux
is always assumed to be one of the physical scale factors
in the inertial range) only one of them, say, v, needs to
be determined. The fact that U is universally related to
Uo is a nontrivial result in the spherical limit. One might
conjecture that this remains true for general N, i.e., that
pov is always proportional to the total kinetic energy
density. A note of caution, however, is in order. As dis-
cussed in Sec. VC, the DIA equations have certain un-
physical features with regard to the dependence of the en-
ergy transfer on Uo, which could somehow feed into the
energy Aux F and lead to a violation of this assumption:
new physics could bring in a new measure v of the outer
velocity scale, linearly but nonuniversally related to Uo.
It would nevertheless be interesting to check this relation
numerically and experimentally. A theoretical first step
would entail checking it for the model II equations
(3.35)—(3.39).

H. Model II

In this final subsection we describe a partial analysis of
the extended model, sufficient to verify that the DIA
values for the exponents remain unchanged. Obtaining
full solutions to model II is left for future work.

Despite the apparent complexity of the equations, the
behavior in the inertial range is quite simple and is dom-
inated by infrared divergences in the regions q' —+0 and
p'~0 in (3.35)—(3.39). These divergences arise, when
6—z ~d, not only from the DIA correlation function 0
but also from the y's themselves. When 6—d &z we
shall see that there are no divergences, implying the re-
sult obtained generally in Appendix A, namely, that the
exponent values (1.15) and (1.18) are valid for y (3. For
y & 3 the integrals are dominated by the infrared diver-
gences and just as in the analysis leading to the exact
solution (4.38) for g (s), enormous simplifications occur.
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To begin, let us first understand the dependence of the
y's on the indices a,P, y. The key observation is that
only the completely transverse parts of the y's enter any
physical quantity. For any function

h &&(k,q), the trans-
verse part is defined by

ing forms the y's obey. It seems natural that singularities
can appear only when one or more of the three momenta
k, q, p approach zero. Scaling will therefore occur away
from these points and we may generally expect the scal-
ing form

h pr(kq)= g ~ (k)happ(q)rr r(p)h pr (k, q) . (487) y, (k, co;q, Q) = Ca ~km g N.q, —,' k' vk" vq'
(4.90)

where the index dependence is given by

P &~(k, q)= g r (k)r" r(p)rp&(q)p&',
a', P'

g pr(k, q) = g r (k)q ~pp(q)up r(p),
a', P'

(4.89)

8 p (k, q) = g r (k)q ~pp(q)kp r (p)k
a', P, y'

It is easy to check that each term is transverse
and independent of all the others. Note that
g ~&(k, p)= —g &r(k, q) and 8 r&(k, p)= —8 & (k, q).
This implies that if one has the further
symmetry h'&r(k, q)=h' &(k, p), then we must have
h, (k, q) =h2(k, p), h~(k, q) = —h3(k, p), and
h~(k, q) = —h4(k, p}.

Let us examine now the various integrals appearing in
(3.37)—(3.39). We need to understand what sort of scal-

We should therefore project all equations in this way be-
fore solving them. A general isotropic three-index tensor
can be built out of Kronecker 5's functions and com-
ponents of the two independent vectors, say, q and p.
There are 14 possible combinations. By performing the
projections above, it is easy to see that h'& can have at
most four independent components, which may be ex-
pressed in the form

h '&r(k, q) =h, (k, q)P &r(k, q)+h, (k, p)P r&(k, p)

+h3(k, q)g pr(k, q)+h4(k, q)8 &r(k, q),
(4.88)

in the inertial range k,p, q all much larger than mo ~ Here
the subscript a runs over the five diFerent y's. Clearly
the four arguments may be recombined in diFerent ways
to obtain other equivalent scaling forms.

We have already seen that when y & 3 the DIA correla-
tion function 0 yields no infrared singularities. It is then
easy to verify, self-consistently, that the y's are also non-
singular and that all integrals converge in the scaling lim-
it mo —+0. Equation (3.37) for y & ~ is the only one
with an inhomogeneous term P &r ( —k }. This term
represents the only nonzero DIA vertex and sets all of
the exponents q, . By simple dimensional analysis we find

.„=—1, g . , =6—z —1, q . =26 —2z —1.
(4.91)

In particular, g .,„=—1 is exactly the same as its bare
value. From Eq. (3.35) for the self-energies, we then find
that f„„scalesas k', 2 „scalesas k ', and hence 9
and 'M scale precisely as do their model I DIA counter-
parts.

Next consider the more relevant case of y )3. There
are now infrared singularities from the correlation func-
tion 0'and, as we shall see, from the y's themselves. We
shall nevertheless demonstrate that 9 and 8' still scale in
the same way as do G and 0, respectively. To see this,
we use the same tricks that simplified the DIA equations:
the integrals are now dominated by infrared singularities
and any nondivergent terms may simply be factored out.
To illustrate this, consider just one of the terms on the
right-hand side of (3.37), along with the inhomogeneous
term:

K &r(k, co;q, Q)= ——'AOP &r—(
—k) —2AO g f f y . „„(k,co;q', Q')

X [0'(q', Q')G(q —q', Q —Q')G(p', a) —Q')r„i(q')P, ~(
—p')P ip(q' —q)

+0'(p', co —Q')G(q' —q, Q' —Q)G(q', Q')r„i(p')P„p(—q')P gr(q —q')] (4.92)

The transverse part is



3776 CHUNG-YU MOU AND PETER B. WEICHMAN 52

&~p&(k co q Q) — ~0[4'~p&(k q)+0 &(k,p)] —2A,,' g ~&&(q)r» (p) f f y'. „„(k,co;q', Q')
P' r'I ~~

'V'Y ~ m;u~u

X [0(q', Q')G(q —q', Q —Q')G(p', co —Q')P r, ( —p')P „&(q'—q)

+ 0'(p', co —Q')G(q' —q, Q' —Q)G(q', Q')P„p( —q')P, .(q —q')] (4.93)

where we have used g&r ~&&(q)err. (p)P &r.(k) =P pr(k, q)+P r&(k, p). Assume now that all three momenta k, q, p lie
in the inertial range. In this case q and q' cannot be simultaneously small. In addition, since z =1, the combinations
P &.(q —q')G(q —q', Q —Q') and P .(q —q')G(q' —q, Q' —Q) do not diverge for small (q —q'). We assume

y „„(k,co;q, Q) to have singularities only when one of the three momenta are small. The divergences in the integra-
w jU U

tion therefore may come only from small q' and small p' (since k is always large). Factoring out all smoothly varying
terms we therefore obtain, as ma~0,

K'~r(k, co;q, Q)= —Ao[P ~r(k, q)+P r~(k, p)] 2A—0G(k, co) $ ~~~(q)r r.(p)
2 p, y', p, v, o.

X [P (
—k)P „&.( —q)C(q, Q)~ „,(k, co)+P &( —k)P, r ( —p)C(p, co —Q)ic „(k,co)], (4.94)

where

ic „(k,co) =—f f y' „.(k, co;q', Q') 0(q', Q'), (4.95)

and we have used the symmetry property, (3.37), in the
last integral. Since K

„

is a function only of k, co and is
transverse to k in the index n, it must take the form

with, explicitly,

~, (k, co) = 1

(d —1)k

Ic „„(k,co) =~,(k, co)r (k)k„+ic~(k,co)r „(k)k (4.96) X f f gk„y'„„„(k,co;q', Q')0(q', Q') .
p, v

Furthermore, the projection operators P ~ ( —k) and

P„&(—k) eliminate ic2 and (4.94) simplifies to

IC'&~(k, co;q, Q)

(4.98)

= . —A,o
—2A,OG(k, co)s, (k, co)

l

X[k qG(q Q)+k pG(p co —Q)] '

X[/ p (k, q)+P p(k, p)], (4.97)

The remaining terms in (3.37) simplify in a similar
manner. It should be recalled that the angular depen-
dence of y' is given by a linear combination of the form
(4.88). The result (4.98) then implies that y3 and y4 (i.e.,
the coefficients of 8 &r and g &r ) both vanish in the iner-
tial range (though they could be important in the driving
range), while

y, (k, co;q, Q) =yz(k, co;p, co —Q)=y&(k, co;p, co —Q)

= —A,,—2A~OG(k, co)s, (k, co)[k qG(q, Q)+k pC(p, co —Q)]+ . (4.99)

where the ellipsis refers to further terms arising from
those neglected in (3.37).

In order to complete the solution we would have to ob-
tain a closed equation for v&. Unfortunately, this is very

I

dificult, as it requires extending the solution (4.99) into
the driving region q~O and p~O. The integral (4.98) is
dominated by the infrared divergences in the region of
small q', not the inertial range. Unfortunately, Eq. (4.99)
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Ki(k&Co) = jj(,pUp 2Apvpk 'C(k&co) Ki(k&co) (4.101)

with the solution

l
,oV o

a, (k, co}=
k g(k to)2

l
A,pV p

1+2g (s)
(4.102)

where Up is the driving scale velocity defined in (4.29) and

g (s) is the response scaling function (4.38) with
s =co/vk'. In addition, one finds ~z(k, co) =0. Finally,
substituting this into (4.99) yields

(k . n, )= i
A 1 2 (

)k.qg(t)+kpg(r)
1+2g( )

(4.103)

tells us nothing about this region. However, this result
nevertheless allows us to understand the scaling behavior.
To get a feel for this, suppose that (4.99) were exact even
in the driving range and suppose that we neglect entirely
corrections from the further terms we have neglected in
(3.37). We would then have

ai(k, co)= f f yi(k, co;q', Q')0(q', 0')[1—(k q') j .
q' 0'

(4.100)

Multiplying (4.99) by 0'(q, Q)[1—(k.q) ] and integrating
over q and Q we then obtain the closed equation

range, Eq. (4.99) suffices to determine the scaling. What
is important is that ~& scale with mp as ApUp. Corrections
to (4.99) in the driving range, though presumably of rela-
tive order unity, can do no more than renormalize the s-
dependent coefficient of A,pup in (4.102), without changing
its scaling dependence on mp.

Further complications will arise from the terms in
(3.37) that we have left out. These will yield three further
reduced functions, analogous to a &r(k, co), for the other
y's. Equations (3.37)—(3.39) will then contain linear com-
binations of these x's. A similar ad hoc closure calcula-
tion like the one above then yields a closed set of four
linear equations in the four unknown x's. In definitions
like (4.95), one finds that the subscript U is always in-
tegrated against 0, while the subscript w is always in-
tegrated against C. In results like (4.97), this pairing is
reversed: the subscript U always scales with 6, while the
subscript w always scales with 0. These correspondences
are precisely what guarantee that the scaling exponents
always work out.

It is not clear at this stage whether or not a more so-
phisticated analysis will allow one to solve exactly the
model II equations without resorting to numerics. The
problem is that many quantities, such as y3 and y4 above,
which vanish in the inertial range, will be of relative or-
der unity in the driving range. We have yet to find a sim-
ple ansatz that consistently yields forms for these correc-
tions valid over the full range of wave number and fre-
quency.

R,„(k,jo) =Apupk
1+2g (s}

(k, to)=Apupk 0(k, to)
1

1+2g (s)

and therefore

(4.104)

1 . g(s)ls+
g(s) 1+2g (s)

(4.105)
u (s)

u (s}= Ig(s)
~ 1+2g (s)

where g(s) and u(s) are the scaling functions for 9 and
VL, respectively. Once again, there is a finite renormaliza-
tion of the scaling functions, but no change in the scaling
exponents. Notice that u(s) obtained here is not real.
This is an artifact of the ad hoc approximations we have
made. In a full calculation this function must, of course,
be real and non-negative.

With the above calculation as a guide, it is easy now to
argue that the full exact solution must also have the same
set of scaling exponents. The point is that even though
we do not know its detailed extension into the driving

where t =tolVq' and r =(co—Q)IVp'. Since it contains
no new powers of k, the second term in large square
brackets represents

aconite,

order-one renornialization of
the three-point vertex. The scaling exponents are un-
changed. Furthermore, ignoring all but the first term on
the right-hand sides of Eqs. (3.35), we obtain in the
present approximation

V. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this work we have proposed a set of generalized
models for turbulence, parametrized by the number of ve-
locity fields N and a corresponding group G of linear
transformations. The essential feature of these models is
a simplification which occurs when N ~~: they become
exactly soluble. The results of this exact solution are
summarized in Sec. I; see especially Sec. I E and Figs. 2
and 3. In this final section we shall examine various
features of these exact solutions in light of the present un-
derstanding of some properties of real Navier-Stokes tur-
bulence.

As mentioned at the end of Sec. I E, the result z = 1 for
the dynamical exponent and the infrared divergences that
lead to it are a reAection of "sweeping effects. " In Sec.
VA we will try to place our work in the context of the
existing literature by discussing in more detail the com-
mon notions of sweeping, turnover times, and the associ-
ated Taylor hypothesis. Discussion of the latter may be
phrased very conveniently in the language of scaling
functions. Of special interest to the former is whether or
not precise definitions of turnover times exist and then
whether or not they can actually be computed. In Sec.
V B we provide one possible definition based on the scal-
ing of the dissipation length with Reynolds number and
show that it implies a time scale much longer than the
sweeping time with an associated "internal" dynamical
exponent z;„,& 1. We end by indicating work for the fu-
ture.



3778 CHUNG-YU MOU AND PETER B.WEICHMAN 52

A. Sweeping, Lagrangian coordinates,
and the Taylor hypothesis

1. Scaling and time series in a Jluid with a mean jhow

Sweeping lies at the heart of the connection between
spatial and temporal spectra. Essentially all experiments
to date are single-point measurements and yield only
one-dimensional time series data. From these time series,
however, one would like to infer, if possible, the spatial
energy spectrum. In many experiments, such as those on
grid turbulence or turbulent jets, the single point, call it
r=0, is stationary in the laboratory frame, but the Auid
has a nonzero mean fiow velocity v=(v(r, t)). The tur-
bulent eddies are then swept past the experimental obser-
vation point at constant rate. Under these conditions one
is clearly exploring some combination of the spatial and
temporal fluctuations in the fiow. The scaling form (1.17)
allows us to consider both and we shall now explore what
it implies about the temporal correlations in a moving
Quid.

If U&,b(r, t)=[1/(d —1)](v(r, t) v(0, 0)) is the
velocity-velocity correlation function measured in the
laboratory frame, then by appropriate averaging of the
time series data one can obtain the temporal part of the
correlation function U,„(t)= U&,b(0—, t) and its Fourier
transform, the power spectrum. If we denote by U(r, t)
the correlation function measured by an observer travel-
ing with the mean ffow (i.e. , at constant velocity v; this is
the function that is calculated theoretically), we have the
relation

U&,b(r, t)= U(r vt, t)+ —u
1

1
(5.1)

U(r, t)= A2v(vt)'~ " '
z e

u (a')
K K

(5.2)

where p=r/(vt)' ', ~=(vt)' 'k, g=b. —d —z+1 (as be-
fore), and u(r) = f (ds/2m. )e "'u (s) is the Fourier trans-
form of the scaling function. If 6—z &d, i.e., g& 1 (we
shall discuss the physically relevant case g& 1 below), the
last integral converges and we may safely consider the
mo —+0 limit to obtain the real-space scaling form

A2v
U(r, t)= u[r/(vt)'~'], r, taboo,(-t)( —c) (5.3)

where u(p) is the integral in (5.2). This form breaks
down only for very small r and t where dissipation effects
enter. We then obtain the relation

The experimentally measured function
U,„(t)=U( vt, t)+[1/(—d —1)]u then contains both
spatial and temporal information. The question we ad-
dress, then, is what exponent (or combination of ex-
ponents) can be inferred from U,„(t).

To this end, let us translate the Fourier space scaling
form (1.17) into real space. We obtain, then,

U,„(t) —u = A2vu „(ut)& (5.5)

for large t. The asymptotics now involves g alone and is
precisely the equal time behavior predicted by (5.3), but
with the replacement r =vt. Note that for the borderline
case z =1, the spatial and temporal power laws are the
same, but

U,„(t) u—= Az(vt) 'u(u/v) (5.6)

has a nontrivial dependence on the mean How velocity,
being independent of v as v ~0, but proportional to v~

for large v.
We see then that if z ~ 1 then what we shall call the

"weak" Taylor hypothesis is valid: the temporal statistics
of turbulent fIow, possessing a mean uniform velocity
v )0 measured at a Axed point in space, will be effectively
the same as the spatial statistics of that Bow. An experi-
mental time series then can be used to infer directly the
Kolmogorov exponent. If, on the other hand, z &1, ve-
locity Auctuations are so large that a background uniform
flow is completely masked: large eddies evolve at a rate
much larger than that at which they are swept by the ob-
servation point and (5.4) yields the same asymptotic re-
sult, with the exponent depending on both g and z, when
v & 0 as when v =0. The scaling ansatz elucidates the as-
sumptions underlying this hypothesis and allows us to
make its statement precise.

Unfortunately, the situation z & 1 and g & 1 is valid
only for power-law-driven turbulence with y & 3, but ap-
parently invalid for y & 3: physically, we know that g & 1

for real turbulence. Recall, also, that breakdown of the y
expansion occurs precisely at /=1 (as exemplified by the
divergences found in the DIA equations when y &3).
Divergences occur in (5.2) at precisely this same point.
To make sense of this equation for g & 1 one must again
consider a small-k cutoff'mo, using the scaling form (4.19)
in place of (1.17). The inverse Fourier transform then be-
comes

X f z le "~u [K K/m (uot)''~']
K g

—u [0;Ic/mo(vt)'i']]

In the simplest case v =0, scaling then predicts the pure
power-law behavior U,„(t)= U(0, t) = Azv(vt)'&
Xu(0). Only a nontrivial combination of g and z can
therefore be inferred. Now, if v &0 there are two possi-
bilities. First, if z & 1 then the argument of u in (5.3) de-
cays to zero for large t and the same asymptotic power
law results. On the other hand, if z ) 1, the argument of
u diverges for large t. The behavior of u(p) for large p is
obtained by demanding that (5.3) yield a t-independent
result for equal time correlations t~0. This requires
that u (p) = u „p~ ' as p~ oo and hence

(5.4)
A2v I u(0;x)+ —) J„~—z

(5.7)
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where the real-space scaling function is now

u(p)= f z [e ' 'i'u(i~') —u(0)]1
(5.9)

and u(r)—=lim„u(r;x). Even though U=0 in this
computation, the divergence has given rise to an effective
mean fiow velocity (v )'~ =voVd [see (4.29)], diverging—(0—1)/2as mp

Let us now reexamine the Taylor hypothesis. Proceed-
ing as before, substitutiny r =vt, Eq. (5.4) now holds with
U replaced by Uo,„~=U +Uod (the mean squared veloci-
ty as measured in the laboratory frame) on the left-hand
side. If z &1 the argument of the scaling function again
diverges and we arrive at (5.5) but now with the subtrac-
tion Up,„onthe left. This seems an innocuous change,
but in fact leads to a rather strange state of affairs be-
cause the latter is completely dominated (for small mo)
by the effective mean flow, whereas, paradoxically, the ar-
gument of the scaling function depends only on the actual
mean fiow V. Intuitively, if g& 1 most of the energy is in
large-scale, low-frequency fluctuations. On experimental
time scales a slow fluctuation will be indistinguishable
from a 6xed mean flow and ought then to somehow re-
normalize U in the scaling function as well. The renor-
malization group predictions show that this paradox is
avoided by having /=1 and z =1 occur simultaneously,
precisely at the borderline y =3. The above considera-
tions hint that this decrease in z with increasing y is a
different reflection of this same physics.

Apparently, then, the weak Taylor hypothesis has no
meaning in the physically relevant case, g& 1, as long as
U «vo (note, however, that if U & uo, as is probably the
case in turbulent jet experiments, the hypothesis presum-
ably still works). What. then should replace it? Suppose
first that we take seriously the renormalization group pre-
dictions for y & 3, namely, that z & 1 and g& 1. The para-
dox above no longer arises: as before, the appropriately
altered equation (5.4) predicts the temporal power law
U,„(t)—t'& " ' for large t, irrespective of the value of U.

However, one now encounters two serious problems.
First, the Kolmogorov exponent can no longer be in-
ferred directly. Despite this, the experimental inference
of the Kolmogorov —', law is based on the Taylor hy-
pothesis: the value g= —,'is calculated by assuming that
U,„„(t)-t,with 8=/ —1. The experimental value is
8= —,'. However, if 8=(g—1)/z one infers $=8z+1= —",

(using the renormalization group prediction z =—', ). This
value of g difFers quite significantly from the Kolmogorov
result, which would require, apparently, a measured
value of 8=1. We arrive then at a contradiction: z =

3

where u (r;x) = f (ds/2m)e '"u (s;x). The first term
converges when m p ~0 and the last term is just
U (0,0) = [1/(d —1)] ( v ). We therefore have

U(r, t) — (v )=— ([v(r, t) —v(0, 0)] )
1 2 1

d —1 d —1

= A2V(vt)'~ " 'u [r/(vt)' ']
(5.8)

and g= —,'cannot be simultaneously consistent with the
experimental results, irrespective of whether or not there
exists a mean flow.

The second problem is a more serious internal incon-
sistency. The point is that the cutoff mp determines an
outer scale lo = 1/mo and to =—lo/Uo defines a characteris-
tic turnover time for the large-scale eddies. Smaller ed-
dies, of size k & lp, then have two time scales associated
with them: the time scale t&=A, /vp over which the
large-scale flows sweep them past a fixed observer, and
some characteristic intrinsic turnover time
ri„=to(A/10), '"' of the moving eddy W. e may suppose
that z;„,& 1 is some continuation to y & 3 of z (y) for

int
y &3. However, if z;„,&1 then t i/ri=(A, /I o)

'"'«1
is negligible in the inertial range A, « lp: the turnover
time is much longer than the sweeping time. The latter
therefore dominates the dynamics at a fixed observation
point and z;„,cannot enter the scaling of the two-point
functions.

Our results avoid both problems, at least at the level of
the DIA equations, by having z stick at the value unity
for all g& 1. The above argument makes clear why this
particular DIA result ought to extend to the general case.
We state it, then, as a general principle, which we call the
"strong" Taylor hypothesis: large eddies, of 0 (lo) in size,
basically constitute a mean background flow for smaller
ones, which then internally generates the shortest time
scale in the problem and therefore, self-consistently, re-
quires z =1. It is apparently impossible to have z & 1 in
the presence of an effective mean flow vp and the scaling
combination must then be r/uot [i.e., Va-U„; see (4.80)].
The Taylor hypothesis exists in the strong form, but not
in the weak form. This is actually quite satisfying: the
velocity Up now determines both the subtraction on the
left-hand side of (5.8) and the scaling of time on the
right-hand side. For small mp any externally applied
mean flow V has a negligible effect on both since the argu-
ment of the scaling function in (5.6) is now U /Uo « l.

2. Turnover times and Lagrangian coordinates

The notion of an intrinsic turnover time (and associat-
ed dynamical exponent), supposedly obtained by an ob-
server that foIlows an eddy of size I, in a "freely falling"
frame of reference, comoving with the fluctuating mean
background fiow (with velocity of order vo ), is very com-
mon in the literature. The reason such notions dominate
the discourse so strongly is that the Kolmogorov cascade
is often phrased in terms of the breakup of larger eddies
into smaller ones and it is felt that the dynamics of this
process is local and should therefore be an intrinsic
phenomenon, not one dominated by the outer scale lp.
The existence of two (or more) dynamical exponents is an
unusual feature from the point of view of dynamical scal-
ing and arises, once again, from the fact that z —+1 as
y —&3. In most equilibrium problems (critical dynamics,
for example) z is. significantly greater than unity and
sweeping time scales are much longer than "critical"
turnover time scales. In turbulence, however, these two
scales change places at y = 3 and the question is then how
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to access the now much longer turnover time scale. Al-
though we have seen that the strong Taylor hypothesis
precludes seeing such a time scale in the velocity-velocity
correlation function, there are other ways of observing it.
One famous way is through Reynolds diffusion, in which
the time dependence of the separation between two pas-
sively advected particles is considered. A single advect-
ing particle in a turbulent flow will undergo ordinary

1 /zGDGaussian diffusion r=(Dt), characterized therefore
by a dynamical exponent zGD =2 and with diffusion con-
stant D -vo set by the outer velocity scale. In contrast,
the divergence of the trajectories of two nearby particles
will be non-Gaussian, due precisely to the dynamics of
small eddies, and obey a Kolmogorov-type law

RDb, r —t " with zRD ———,
' [34]. This kind of behavior is

seen in numerical simulations, but its experimental
verification requires simultaneous spatial and temporal
data, something that is just now beginning to become
feasible [35].

Since it involves following the trajectories of freely ad-
vecting particles, Reynolds diffusion is an intrinsically
Lagrangian quantity. Lagrangian history methods
represent a way of generalizing these ideas further. Here
one defines a more general velocity field
u(x, to~t)—=v(r(x, to~t), t), which is the velocity of the
fiuid element at time t that was (or will be) at point x at
time to. The "diffeomorphism" r( txo~t)= xg(x, to~t)
gives the position of this Quid element at the measuring
time t and one clearly must have

u( xt O~t)=(BIBt)r( xt o~t). Considered as a function of r

at fixed x and to, this is the usual Lagrangian description
of the velocity field with initial condition
u( xt ~ot )o=v( xt )o. On the other hand, if t—:to then
r =x and one obtains the usual Eulerian description. One
may write down, in a straightforward way, a formal per-
turbation theory for u(x, to ~

t) in powers of the nonlineari-
ty A,o [16] and hence derive diagrammatic expansions for
correlation functions, such as

U( tx~to;y, o~ss)—: (u( xt ~to) u(y, so~s) } .1
(5.10)

From this expansion, suitable infinite subclasses of dia-
grams may be resummed. A generalized set of DIA
equations results from the simplest nontrivial subclass.
Since these equations reduce to the standard DIA equa-
tions when so=s and to =t, they contain precisely the
same sweeping effects, along with z =1 and g= —,'. The
equations are enormously more complicated for so and to
different from s and t, so it is not clear what the detailed
scaling properties are in this case. Kraichnan [16] has
shown, however, that with a straightforward redefinition
of some of the time coordinates in these integral equa-
tions, a new set of Lagrangian history DIA (LHDIA)
equations may be defined that have nicer Galilean invari-
ance properties (namely, covariance under "random
Galilean transformations") and are argued to yield
Kolmogorov's —', law and presumably a new dynamical
exponent zIH =—', . The reason for the difFerent results is
that certain cancellations now occur in just such a way as

to eliminate the infrared divergences encountered in Sec.
IV. It would be interesting to see how these equations
behave in the presence of power-law driving, in particu-
lar, whether or not they encounter ultraviolet divergences
for y & 3 and whether or not they recover properly the re-
normalization group results in their region of validity.
This is an especially important question as the renormal-
ization group results are also a consequence of Galilean
invariance. Kraichnan [36] has also shown that the
LHDIA equations may be systematically extended to
higher order, still maintaining their nice invariance prop-
erties.

Realizability now becomes a problem however. As
mentioned in Sec. IID, Kraichnan [29] showed some
time ago that the DIA equations represent an exact solu-
tion in a large X limit, in his case with random
coefficients A& " (the so-called random coupling models).
However, he was unable to show the same property for
the LHDIA equations [16]. It is possible, then, that these
equations do not arise from any large-X limit. If this is
so, they cannot be the basis for a systematic expansion in
powers of I/X. However, it is this property that we be-
lieve to be fundamental. Without the systematic parame-
ter N the determination of which diagrams contribute at
a given order becomes a matter of taste and it is impossi-
ble to state whether the alterations that lead from DIA to
LHDIA yield a more or a less systematic expansion.
With the parameter X it is seen that any alterations to
the spherical limit equations cannot survive for large N.
In our case we would interpret this to mean that the unal-
tered DIA equations (or their model II counterparts) are
fundamental.

9. Quasi Lagrangia-n coordinates and their limitations

Belinicher and L'vov [3(b)] have recently presented a
diagrammatic proof that z =1, resumming exactly the
most divergent parts of the response function. They have
also shown, in general, that the most divergent parts of
the correlation function U cancel exactly and, therefore,
that g and b. are not so simply determined. Lower-order
terms, as we have seen explicitly at the level of the DIA
analysis, must be taken into account. Taking a path in-
termediate between the fully Eulerian and fully Lagrang-
ian approaches, these authors have also proposed a new
quasi-Lagrangian diagrammatic formalism in which the
coordinate transformation g(t) is taken to be independent
of x, and is the displacement, at time t, of the Quid ele-
ment that was at an arbitrarily chosen point ro at time to:
g(t) =g(ro, to ~ t), satisfying d gldt =v{ro+g(t), t ). This
change of variables has no effect on the equal time corre-
lation functions, but is claimed to eliminate sweeping
effects from the unequal time ones, at least in the neigh-
borhood of the point ro. Specifically, if one assumes that
the change of variables leads to a new dynamical ex-
ponent —,

' &z' & 1 and that the hyperscaling relation
b, +z'=d +2 [i.e., Eq. (1.19) with z' replacing z] holds,
then each individual diagram converges. In particular,
this is true for the Kolmogorov values z'= —', and /= —', .
Unfortunately, though self-consistent, the theory pro-
vides no way of confirming these underlying assumptions.
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In particular, there is nothing in the theory that rules out
residual sweeping effects (i.e. , mo dependence) in the
quasi-Lagrangian correlation functions. The assumption
that the hyperscaling relation can still be made to hold
seems especially optimistic: in our picture a completely
different fixed point controls the behavior for y )4, so
there is no reason why such a relation ought to be
"analytically continued" through y =3, all the way
beyond y =4. The quasi-Lagrangian formulation serves
only to provide a sophisticated diagrammatic reformula-
tion of the Kolmogorov argument. It allows one at least
to point to specific formal expressions, which, when as-
sumed to behave in certain specified ways, yield the Kol-
mogorov exponent values. Prior to this, one had to rely
on more imprecise notions.

4. Advantages and limitations of the DIA equations

The advantage of the large-X expansion is that at least
it gives rise to clean, well defined calculations with unam-
biguous answers and without hidden, unverifiable as-
sumptions. It allows direct and perhaps even systematic
(see Sec. V C below) calculations of experimentally
relevant correlation functions. In addition, even the
spherical limit X~ Oo contains much of the correct phys-
ics of the balance between power-law driving and inertial
range sweeping effects that is the key to understanding
the different regimes of scaling behavior. To be fair, we
should point out that the DIA equations are far from per-
fect. Kraichnan [37] has shown that sweeping effects in
the DIA equations, though present, are not included in a
completely Galilean invariant manner. He demonstrated
that the DIA equations are not invariant under random
Galilean transformations and that this leads to a com-
pletely unphysical effect of the driving range on the ener-

gy transfer between inertial range wave vectors and that
this is part of what is responsible for the non-
Kolmogorov —,

' law. Within the large-N approach we

may understand this as arising from the interaction be-
tween different isospin components of the velocity as they
sweep through each other. Eyink [38] has also em-
phasized this feature as a deep problem with the physics
of the DIA and a potential roadblock to making the
large-N expansion systematic. In particular, it may be a
feature that survives for all X & 1, disappearing discon-
tinuously only right at N = 1. Model II may be healthier
in this regard [39]. For further discussion, see Sec. V C.

We end this subsection by emphasizing an important
point regarding the status of the Kolmogorov —,

' law. The
Kolmogorov theory is often regarded as a cornerstone
upon which more sophisticated theories should be based,
much as are mean field theories of critical phenomena
[40]. However, unlike mean theories, which are exact
descriptions in certain limits (usually the limit of infinite
range or large dimension), there is no known limit of any
realistic model based on the Navier-Stokes equations that
exhibits an exact —', law. As mentioned at the end of Sec.
IVE, there are ad hoc subtracted versions of the X)IA
equations that most probably exhibit a —,

' law. These can
be most easily understood in terms of Kraichnan's [37]
"distant interactions excluded" modified Navier-Stokes

equations in which interactions between wave numbers
that differ in order of magnitude are simply removed
from the model. In particular, there is no direct interac-
tion between the inertial and driving ranges. The DIA
equations for this model contain precisely the right sub-
tractions to eliminate the infrared divergences in the orig-
inal DIA. Clearly, however, this model is in the wrong
"universality class" since sweeping effects have been re-
moved at the outset and the essential physics of the origi-
nal Navier-Stokes has been badly violated. The same
problem arises in the popular "shell models" of tur-
bulence, in which each decade (shell) in wave-vector
space is replaced by a single velocity variable and again
only near-neighbor interactions between shells are kept
(see [38] and references therein). Qne is therefore left in
the unfortunate position where the most desirable start-
ing point is unrealizable, while the realizable models all
have certain undesirable features. Concisely, this is the
underlying reason for the lack of fundamental progress in
understanding the Kolmogorov cascade. In summary,
one would like to put the maximal possible amount of
physics into a realizable starting point, but it appears that
only the full Navier-Stokes equations themselves contain
all desired features in a fully Galilean invariant way.

B. The dissipation scale

In the preceding subsection we have seen that the no-.
tion of a turnover time is most naturally discussed from
the Lagrangian point of view. Fortunately or unfor-
tunately, the theoretical techniques presented in this pa-
per are intrinsically Eulerian and we must address the
question of whether the same information can somehow
be extracted from a Eulerian correlation function. Since
the two-point correlation functions contain only the
sweeping time scale, the problem of extracting turnover
times can probably be resolved only by examining the
behavior of higher-order correlation functions. As a sim-
ple example, which has been used to interpret experimen-
tal results, here we will describe a definition in terms of a
three-point correlation function. We will show that it
leads to an intrinsic dynamical exponent z;„,=g —1. It is
an open question whether or not this definition coincides
with any of the previous ones.

The idea is that one should examine the dissipation
process in the presence of viscosity and in particular how
viscosity cuts off the inertial range at large wave num-
bers. Since dissipation depends only on local gradients of
the velocity field, it should be more intrinsic to the Aow
and hence less sensitive to large-scale sweeping effects.

We have seen that the formal limit v0~0 does not en-
tail any divergences in the DIA equations, but only
defines a viscous cutoff scale l =1/A beyond which ener-

gy dissipation dominates and the power-law energy spec-
tra become exponentially decaying. Only the physical
outer scale (see Sec. IVG), 1~-la=1/mo contributes to
the renormalization of the Kolmogorov exponent g. It
seems likely to us that, to the extent that locality remains
valid (see Sec. IVF), this will remain true for N= 1 as
well.

It is nevertheless interesting to understand what deter-
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mines I . Dimensional analysis leads one to expect, gen-
erally, that l =(vp/e)' [see (1.4)]. The Kolmogorov
theory then yields A/mp=/p//„-/~//, =Re ~, where
Re=kpU&/&/vp=vt b/vp is the Reynolds number and
vt b ApUp Ip is an effective turbulent viscosity. This rela-
tion is obtained by assuming that the scale-dependent
Reynolds number R& ——U&k/vp is of order unity at the
dissipation scale. Within the Kolmogorov theory, one
finds (by the usual, less general, dimensional analysis ar-
guments) vi =(eA, )' and from this follow the above re-
sults. In any case, we may include the dissipation scale
via a new scaling variable k/A, so that

E(k)=~k ~F(k/A), (5.1 1)

where F (x) +1 a—s x ~0, decreases exponentially as
x~oo [2,13,41], and, to the extent that the standard
viscous term is an accurate description of dissipation at
all scales of interest, should be a universal function.
Within the Kolmogorov theory we may write

' —5/3
kF
A

E(k) k
2/3 5/3 EC (5.12)—2/3~ —5/3

Since e A =F' vp, we may check this relation for
experimental and numerical data by plotting energy in
units of e' vo and wave number in units of
A=a' vo for various different values of e and vp. If
this relation is valid, all data sets should collapse onto the
single universal curve Cxx F(x) The .validity of
(5.12) was confirmed by early measurements [2], but was
called into question by later data [42]. Note that, more
generally, in order to go beyond the Kolmogorov theory,
one should multiply Eq. (4.81) by a scaling function
F ( k /A ). Scaling collapse would then be obtained by
plotting E(k)/e l ~ ~A ~ versus k/A. Notice that
the outer length scale /~ now enters and it would be in-
teresting to check the experimental data for such depen-
dence.

In order to construct a more general phenomenology
for A, let us assume that the dynamics of the dissipation
process has an associated dissipation frequency
cpA=1/rA. It has been proposed [43] that the relation be-
tween coA and A should reAect an intrinsic dynamical ex-

z'
ponent z;„, via cpA-tp '(A/rnp) '"', with, as argued
above, z;„,& 1. The energy dissipation rate at length scale
A is proportional to vpA E(A). Dividing this by the en-
ergy content E (A) at scale A, we may then postulate that
a)~-vpA . Thus zA is proportional to the half-life of an
eddy at the boundary between the inertial and dissipation
ranges. The hope, then, is that at this crossover scale,
dissipation is still sufFiciently weak that it can be used as a
probe of the inertial range dynamics without fundamen-
tally altering them. If this is true, it is reasonable that ~z
be of the same order as the intrinsic turnover time at
scale A in the absence of dissipation. This definition
yields

mogorov theory evidently predicts that z;„,=—', , which
matches the data rather well [2,42]. However, before tak-
ing this as a further vindication of the Kolmogorov
theory, one should attempt to relate z;„,more generally
to other known exponents. We shall now argue that
z;„,=g —1 and is therefore really just the Kolmogorov ex-
ponent in disguise. Its proximity to —, is not an indepen-
dent result, but is already implied by the proximity of g
to —', .

Let us first compute z;„,explicitly in the spherical lim-
it. Consider Eq. (4.41), but now generalized to include
the vok viscous term, to be treated as a small perturba-
tion:

1 . O 2 —z 2 —zis+—g(s;x;y )+ mp 'x
g (s;x;y, )

+x + ' bJb(s;x;y ),1

Qo
(5.14)

where y ~ vp is an appropriate viscous scaling variable,
to be determined below. In the limit x —+ ~ and vp~0,
Eq. (4.38) for g(s) is recovered. Corrections to this are
obtained by treating the remaining terms as perturbations
and performing an expansion of the form

g(s;x;y )=g(s)+x"+ 'g, (s;y, )+
which then yields

2-z ~-dbJb(s;y, )+ mp 'x

g, (s;y„)=
1+

g(s)

(5.15)

(5.16)

and this may be substituted into (4.46) (generalized, in the
obvious way, to include vp) in order to calculate u (s;y, ).
This equation is valid as long as the a-.. cond term in the
numerator is, at most, of the same order as the first, i.e.,
in the formal limit x —+ ~ and mo —+0, but

vo 2 —z S—d

V
(5.17)

y~=1 -xA=
2 —z

Vpm p

(5.18)

From (4.75), (4.37), and the results in Sec. IV G, we have
(using now z =1)

finite. Clearly y is the new scaling variable that we seek.
When y ~0 we recover the unbounded inertial range de-
scribed by (4.44); when y becomes large dissipation has a
strong effect and the inertial range power-law spectra are
cut off'. Note that the response function g(s;y, )=g(s)
is insensitive to the dissipation unless
(vp/V)mp 'x '=vpk/Apup ((y, is of order unity, i.e.,
only very deep into the dissipation range. We may define
a crossover scale x~ =—A/mp separating the two limits via

1/( 6—d)

A 1/(2 —z,.„t)-Re
mp

(5.13) 2 —z
vpm p

pvo ~ooolo ~Re .
Vpm p Vp

(5.19)

and this may be taken as the definition of z;„,. The Kol- Thus
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A 1/( 6—d) Re2/3
mp

(5.20)

i.e., z;„,=d +2—6=—,'. We see, then, that even in the
spherical limit, nontrivial scaling of dissipation with Rey-
nolds number occurs. Note that —,

' and —', do not differ by
very much.

Now let us derive a general relation between z;„„andg
containing both the spherical and Kolmogorov results.
The derivation relies crucially on the assumption of local-
ity discussed in Sec. IVF. Consider the energy balance
equation (4.63). Far outside the driving range one has

d —1 err
vok E (k) = —

po (5.21)

where we have used (4.68). In the inertial range both
sides of this equation essentially vanish. Let us define the
scale A as that at which the energy fiux II(k) difFers
significantly from its inertial range value e. Consider
then

f v,k'E(k)dk= p, [II(k, )
—II(A)],

ko
(5.22)

where kp lies in the inertial range mp «kp «A and the
right-hand side is defined to be of order e. We estimate
the left-hand side using the inertial range spectrum [see
(4.81)]

' 5/3 —
g

V

E( k)=C xp eo
E'

(5.23)

where Aov /e=l is the outer length scale [see (4.78)].
Up to factors of order unity, we may then define A via

Vp

5/3 —
g

—2/3 P A3 &=r,VpE
E

(5.24)

which yields

mp l,
e l
—i/3 4/3

Vp

v l
1/(3 —g)

p p

&p
=Re /( g) (5.25)

and hence

zint (5.26)

as claimed. From this argument one sees that
coA-II'(A)/E(A) is intrinsic to the energy transfer func-
tion and therefore involves correlation functions that are
of third order in the velocity field.

The most important observation is, then, that it is pos-
sible to define internal dynamical exponents different
from z, but that it is important to seek general scaling re-
lations that relate them to previously defined exponents
in order to understand their significance. Information
about them will generally reside in higher-order correla-
tion functions.

C. Work for the future

The large-X technique has wide applicability, limited
only by one's ability to invent suitable generalized equa-
tions of motion. One particularly interesting model, for
which the formalism presented in this paper goes over al-
most without change, is the Kardar-Parisi-Zhang (KPZ)
equation for interface growth [44]. Here one considers an
interface height field h (r, t) obeying the equation

=~oV'h —
—,'~oI Vh I'+ y(r, t), (5.27)

where P(r, t) describes the stochastic "raining" of parti-
cles onto the interface, &P(r, t)&=go being the average
growth rate, Kp is the diffusion constant for adsorbed par-
ticles, and the nonlinear term is the simplest one can add
that breaks the symmetry in h~ —h (i.e., with or against
the direction of growth). Defining u =Vh and f=VP,
this equation becomes

Bu +ko(u. V)u=aoV u+f, VXu=VX f=o, (5.28)

which is just Burger's equation. It is now obvious how to
generalize this equation to N fields. The topological
structure of the diagrammatic perturbation theory in A,p

is identical to that for the incompressible Navier-Stokes
equations; in particular all of the considerations in Sec.
III leading to the N —+ ~ limit can be taken over without
change and a pair of coupled nonlinear integral equations
for the response and correlation functions can be derived
in this limit [45]. Of special interest is the height-height
correlation function

& [h «) —h «')] & Ir r'I Ir r'I~ oo, (5.29)

which measures the surface roughness (the larger the ex-
ponent cv, the rougher the surface). The major conceptu-
al difference between incompressible turbulence and the
KPZ equation is the form of the driving spectrum.
Whereas turbulence corresponds to a spectrum concen-
trated around zero wave number, the growth model is
driven by white noise, i.e., "uncorrelated raindrops. "
The driving spectrum is therefore constant in momentum
space and the dimension of interest is d =2 (the interface
being a surface in d =3). This corresponds to y =2 and,
as for the DIA equations, there are no infrared diver-
gences. Unfortunately, although Burger's equation does
have a renormalization group expansion for small y )0
[5(a)], exact results to all orders do not exist. Thus, not
only are the exponents unknown in d =2, but the in-
frared divergences that simplified the analysis in Sec. IV
are no longer present. One must now solve numerically
for both scaling functions simultaneously, with scaling
variables no longer restricted to a finite interval. Doherty
et al. [45] have used a simple scaling ansatz based on a
fiuctuation-dissipation relation (rigorously valid only in
d = 1) to estimate the exponents as a function of d, ob-
taining an upper critical dimension d„=3.6 at which
z =2. However, the full numerical problem has now been
solved by Tu [46], who finds no upper critical dimension.

Other problems of interest include turbulence in non-
linear waves, especially capillary and gravity waves on



3784 CHUNG-YU MOU AND PETER B.WEICHMAN 52

Quid surfaces; transmission of waves, especially elec-
tromagnetic waves, through disordered media; and cou-
pled map models of spatiotemporal chaos (Sompolinsky,
Crisanti, and Sommers [47] have considered large-N lim-
its of such models, but without the extra group symmetry
emphasized here; it would be interesting to reconsider
their results within our formalism).

In terms of more direct extensions of our results for the
Navier-Stokes equations, we have already mentioned the
importance of a more detailed study of model II, especial-
ly regarding the effects of Galilean invariance. A more
interesting, but highly speculative idea would be to inves-
tigate an X-component generalization of the Lagrangian
history formalism. In principle, this is straightforward to
do: one now needs N diffeomorphisms r'(x, to~t) that
define the position at time t of a particle being swept
along by velocity field v', given that it was at point I at
time t0. One could then define correlation functions
analogous to (5.10). The fundamental question here is
whether or not the spherical limit yields an exactly solu-
ble set of LHDIA-type equations and how they compare
to those of Kraichnan [16].

There are deeper, more formal questions underlying
the one above. One can think of the diffeomorphisms
r (x, to~t) as providing a family of gauge transformations,
parametrized by the reference time t0, between different
but entirely equivalent coordinate systems [48]. One
knows from gauge theories in quantum field theory that it
is important to be able to do perturbation theory, order
by order, in a gauge-invariant fashion: physical quanti-
ties must not depend on the choice of gauge. Standard
Quid dynamics perturbation theory in A.0 is not gauge in-
variant and this lack lies at the root of all problems deal-
ing with the relation between Lagrangian and Eulerian
viewpoints. Attempts to develop a gauge-invariant per-
turbation theory have, so far, been unsuccessful. The
large-X method, in principle, avoids these problems by
yielding an exact solution in a given fixed gauge (i.e., N
fold Eulerian coordinates), but if one could understand
what this exact solution looks like in other gauges, one
might gain some insight into how to develop a proper
gauge-invariant perturbation theory at N = 1.

Along different lines, the most difficult, and possibly
most important, extension of our results would be to
compute the first nontrivial correction to the spherical
limit in powers of 1/N. As stated in Sec. III C, the inves-
tigations of Amit and Roginsky[26] into the large-N
behavior of the Wigner (3kj} coefficients suggest that the
next-order terms should be of order 1/N with a= —,'. At
this order the 6j coefficients and the 9j coefficients (see
Fig. 7) contribute. The evidence for this is largely numer-
ical and much more work would be needed to establish
these results in detail. The 6j coefficients yield seven new
diagrams that must be added to the DIA equations and
the 9j coefficients even more. Another strange feature is
that the 6j coefficients oscillate in sign periodically with N
with a finite period [24]. Such behavior in the scaling ex-
ponents would be rather odd, to say the least.

These difficulties with the O(3) Wigner symbols lead us
to believe that a different sequence of groups should be

found that allow for a simpler analysis at large X. Most
optimistically we would like only the analogs of the 6j
symbols, i.e., diagrams with only two more vertices, to
appear as leading corrections. In any case, once the ap-
propriate diagrams are identified [49], one would seek
corrected scaling functions in the form

1
g (s)=gDi~(s)+ «(s)+~a

1
u (s) =uD, ~(s)+ ui(s)+

Pf cx

and a corrected Kolmogorov exponent in the form

3g= —+ +
2

(5.30}

(5.31)

and extract gi, g„and u, (probably numerically) from
the resulting integral equations. One is guided here by
the 1/N expansion for the ¹ector spin models: the
correction g„for example, will appear as a logarithmic
correction to the Kolmogorov spectrum

ln(k/m )+
Pf cK 0
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The expression in large square brackets is exponentiated
to yield (5.31}. One therefore needs to extract a
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It should be emphasized that the group theory is re-
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self-consistent integral equations for C and [20,38].
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carried out separately in parallel.
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X[v', w'] =X[v,w]+ u05X[v, w],
where

(A5)

5K[v, w]=AO f d "rfdt

Xg w&(r, t) (u V) v' ——QA ~&„(h)v„+cc.
1 ~ n

undergo precisely the same Galilean transformations
that, respectively, v' and w' do (see Sec. IIF). From
(2.67) we see that the Lagrangian transforms via

APPENDIX A: GALILEAN INVARIANCE,
WARD IDENTITIES,

AND THE EXTENDED MULTICOMPONENT MODEL

The exactness of the exponent relations (1.15) and
(1.19) to all orders in y for the usual Navier-Stokes equa-
tions is closely related to Galilean invariance. In this ap-
pendix we shall discuss this issue for general X. It will
turn out that a similar result can be proven only for the
extended model discussed in Sec. II F. Without the addi-
tional zero mode, the argument fails.

We begin by generalizing the partition function to in-
clude source fields J,(r, t) and J2(r, t) Thus d. efine [see
(2.20)]

Z [J,,J2]=fDv fDw exp X[v,w]

(A6)

where u —=uo/uo is a unit vector. The additive piece
u05% vanishes identically only when an exact Galilean
symmetry exists, i.e., only if (2.70) holds. In this case,
taking J& and J2 to transform in the same way that w and
w do, we have the exact relations

X[v', w'] =X[v, w],

F[J'„Jz]=F[Ji,J2]+f dt fd r Ji.uo, (A7)

I [v', w']=I [v, w] .

Assume now that the transforming velocity uo=uou is
infinitesimal. Equation (A7) then yields, to 0 (uo),

+f dt f d "rg[J', v&+ Jz.w&+c. c. ] .
1

with the associated "free energy"

F [Ji, J2]= —lnZ [Ji,J2],

(A 1)

(A2)

I [v,w]=F[J„J2]

which generates the connected correlation functions [50].
The vertex generating function I [v,w] is obtained by
performing a Legendre transform on F:

Xg, Rot(u V)v(r, t) —h u—5T'
1 1

5v (r, t) p

I+
&

.Rot (u.V)w'(r, t)+ c.c.
5w'(r, t)

Integration by parts yields

(A8)

+ t "r Ji'vl+ J2 wl+c'c
1

where the equations

v (r, t) = (v (r, t) ) =- 5F
5J, ,(r, t) '

(A3)
0= f dt f—d"r1

2

X$ ~ A, t(oVu)
&

v (r, t)+ —h u.
5v (r, t) P 5v'(r, t)

+Rot(u V)
&

.w (r, t)+c.c. . . (A9)
sr

5w'(r, t)

w(r, t)= (w (r, t)) =——M'

5J2 i(r, t)

(A4)

are to be used to eliminate J& and J2in favor of v and w.
It is clear that v and w' vanish when J& and J2 do.

We now consider the effect of a Galilean transforma-
tion on the vertex functional. It is clear that v' and w'

In the case that 5% does not vanish identically, (A9) is
valid with (5X)„oappearing on the left-hand side.

0
From this result one can obtain an infinite sequence of re-
lations between vertex functions of different orders. The
special case important to us is derived by functionally
differentiating (A9) first with respect to U& (ri, ti), then
with respect to ui~ „(r2,t2 ), and finally setting v =w =0:
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0= A,,(t2 —t, )(u.V2) +—f dt f d r
6'r I d

5vp (rl tl )5~y, (r2 t2)
3

Xg —h'u + h
P 5V' (r, t)5vP (r„t,)5ivr „(r2,t2) P' 5v i(r, t) 5V P(r„t,)5wr „(r2,t2)

(A10)

or

O=ko(t2 t, )—(u V)I' ' (r2 —r„t2 ti)+——f dt fd"r1

Up LU

Xg —h'u I'~' (r2 —r, t2 t;r, —r—, t, t)+— hiu I' ' (r2 —r, t2 t;r,—r, t,—t)—a UtU~~ „2' 2 ' 1 ' i (A 1 1)

Fourier transforming this result, using the fact that
f ' (k, co) =rpr(k)C (k, cv) '5" and that the direc-

P y, n

tion of u is arbitrary, we obtain

0=—AOP pr(k) G (k, cv) '5"

+ h, I' ' (k, co', —k, —co), (A12)

where we have symmetrized the indices P and y:I'
p

=——,
' [I' pr+ I' 'p]. Specializing to the extended

model where G =95 o+G(1 —5 o), p is real, and
h '=5& o, we obtain finally

0=—
A,OP pr(k) G(k, co)

+—I' o' (k, co; —k, —co) (m &0),PaPym
0=—LOP pr(k) Q(k, to)

(A13)

+—I'o' o (k, co; —k, —co) (m =0) .
p U UpN p

Equation (A13) is the Ward identity we seek. Following
the arguments given by DeDominicis and Martin [5(b)],
this identity implies that I' 's with at least one vanishing
isospin index do not have ultraviolet divergences. By ar-
guments similar to those of DeDominicis and Martin
[5(b)], this implies that (1.15) and (1.19) hold for the zero
mode correlation functions 0 and Vl.

The remaining modes, with correlation functions 6
and U, do not necessarily obey (1.15) and (1.19) except
when X~~. Only diagrams beyond the lowest-order
bubbles have sufficient structure to violate (A13) when all
indices are nonzero. To see this, it is useful to translate
(A13) into diagrammatic language. Consider first the
space-time parts of the diagrams. The co derivative acting
on a graph may be defined in such a way that it produces
a sum of terms in which Go is replaced by BGo/Bco= iGo
along a unique sequence of Go bonds [the "bare back-

bone" of the graph [3(b)] connecting the two external
legs. This is precisely equivalent to summing over all dia-
grams obtained by attaching a third external leg with
zero frequency and zero momentum to the rniddle of each
of these bonds. However, I' ' is obtained by summing
over all diagrams obtained by attaching such a leg to the
middle of every bond in the graph ( Uo bonds are then re-
placed by d Uo ldto=i Uo[Go —Go ]). The two turn out to
be equal because a sequence of integrations by parts on
the internal frequencies allows one to transfer all deriva-
tives in the latter onto the bare backbone. This property
is not obvious and would probably not have been
discovered without the shortcut derivation obtained via
Galilean invariance. However, we have neglected to dis-
cuss the e6'ect of this newly attached leg on the isospin
symmetry factors. If the attached leg has nonzero isospin
index l, the bond, which is really just gg", is replaced by

„Az™n~5&5„"= A~ ", whereas if 1=0, g~" is re-
placed by g&

" 5 .5"„.=g~", i.e., is unchanged. Therefore,
in the former case the symmetry factor for the diagram
depends in a nontrivial way upon which bond the third
leg is attached to (except in the case of the bubble graphs,
in which all bonds are essentially equivalent) and the in-
tegration by parts process mentioned above fails: the re-
quired delicate cancellations no longer occur. However,
in the latter case, the symmetry factors are all unchanged
and the relations (A13) between (a/dry )G ', (a/ace) Q

and ro ' are recovered.

APPENDIX 8: THK VON KARMAN —HOWARTH
RESULT

In this appendix we discuss one of the few exact results
that exist in the turbulence literature. This result due to
von Karman and Howarth [1(b)], originally derived for
freely decaying turbulence, but valid also for stochastical-
ly driven turbulence, states that for a Quid in a homo-
geneous, isotropic turbulent state the third-order radial
velocity correlator has the form

( I[v(r) —v(0)]-r] ) = ——', Zr, l «r « lo,
where r=r/r, Z is the energy dissipation rate (see below),
and lo and I were defined in Sec. IA. The average is
now obtained by integrating over all positions of the ori-



52 MULTICOMPONENT TURBULENCE, THE SPHERICAL LIMIT, . . . 3787

Blm — (rd —iBlm) Blm —Blm ()
1
d —2 rr ~ rt rt2r dr

(83)

gin 0 at the given fixed time t (which we usually suppress
from our notation). In order to motivate, once again, our
claim that Eq. (2.1) represents an appropriate generaliza-
tion of the Navier-Stokes equations, we will now derive
the analogous result appropriate to general X.

In momentum space, incompressibility implies that all
correlation functions involve the transverse projection
operator r p(k). In real space this implies certain
differential relations among the correlators for different
components of the velocity field. For example, if we
define

B'p(r) = ( [u' (r) —u' (0)][vg(r) —ug(0)] &,

where we have now included the isospin index on v, then
[1(b)]

B'p" (r) =( [v' (r) —u (0)][up (r) —vg(0)]

X [uy(r) —uy(0)] &,

then

(84)

B Imn
(

d —2B lmn)
rrt 3(d 1 ) d 3 d rrr

Blmn=B lmn 0rrt ttt

(85)

These are trivial generalizations of the relations that hold
when X=1.

Using the generalized Navier-Stokes equations (2.1), we
may derive a relation between the second and third mo-
ments. Consider then

We have used the notation B,„=gpr B' &8p,
B,P~=+ ptaBaptp, etc., where t is any unit vector trans-
verse to r: r t=0. Similarly, if define the third moments

g(v'(r)upi(r')&= &0 g g&N™ &u, (r)v „(r)vpl(r')&
1 l, m, n y 'y

~p g &~N l„,& v (r)vy (r')up(r') &
— g &p'(r)vp i(r') &

, (u' (r)pl(r') &+vp+V (v (r)upi(r')&+vp+V' (u' (r)upi(r') & .
PP l Br'

Isotropy implies that (p'(r)vp (r') & =0 [1(b)]. Transla-
tion invariance and isotropy imply that both sides of (86)
are functions only of Ir —r' I. Therefore, if we define

2 1——z —— gB2 at I

b':,(.) = & ..'(.).;(0)&,

b' p'y (r) = ( v' (r)v p (r)v y (0) &

= —&u'(O)up(0)u" (r) &,
then

(87)

1 a d+1 lmn~0 d+i ~ r X ~N lmnBrrr
6r

v, a, + BB
d+1 r, lr (810)

+2voV gb, lp .
1

One can relate hap'y to B„'„„"via [1(b)]

b lm, n 1 B lmngb p' = B„,„5pr

(88)

+ r B„„"+(d—1)B„„„"
12 d —1) Br

X(5p r +5 rp)

a
gba, lP ~0 g g g [ ~N ban, ym;Pl + ~N, lmn yP, a ]

1 l, m, n y

where pg= —(8/Bt)(e& is the energy dissipation rate
(see Eq. (2.32) for the definition of E; note that the Z used
here is [(d —I )/2]X times the fiux F used in Secs. IV and
V). In deriving this equation we have used the identity
[1(b)] P,ba» (2/pod)(E &——5 p 2+,Ba» —Eq~~tio~.
(810) is the result we seek. Specializing now to the iner-
tial range, we assume, first, that giB„'l„(r)varies only on
the scale of the turnover time of the largest structures of
size lo and is therefore a much slower function of time
than is (e&. This is a locality assumption, i.e., an as-
sumption that the large scales do not significantly affect
the detailed correlations in the inertial range. We also as-
sume, as usual, that the viscosity vo may be neglected.
We therefore have

~ Bl n BlBrrr Brrr a p y

Using this, (88) may be reduced to

(89)
2 0 8 d+1 1mnX ~N, 1mn Brrr

6l' Or 1 m n

(811)

l, «r «lp,
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which may be integrated [noting that B„'„„"(0)=0)to
yield

Ao y A~/ „(r[v'(r) —v'(0)]r [v (r) —v (0)]
I, m, n

Xr [v"(r)—v"(0)])=— Zr . (812)

This is the appropriate generalization of (Bl).
We have done this calculation under the assumption

that the turbulence is freely decaying. This same result
actually holds for steady state driven turbulence as well.
The point is that even though the left-hand side of (86)
now vanishes, there is now an extra term on the right
coming from the driving force, which then contributes a
term corresponding to the large-scale energy input rate to
the right-hand side of (810). Locality ensures that this
energy input rate is precisely the same as the dissipation
rate appearing in (810) and hence that (812) is still
correct as written.

It is worth discussing the relationship between the
von Karman —Howarth result and the definition of the
energy fiux used in Sec. IV F [see especially Eq. (4.63) and
below]. The Fourier transform of (4.63) [with (4.72)] is
precisely (88). In real space, Eq. (Bl1) is just a more
compact rewrite of (88). In momentum space, the direct
use of (88) is more convenient. Under the assumption,
embodied in (4.66), of an inertial range with a constant
energy flux, the energy balance equation (4.63) implies
that the right-hand side of (4.68) is negative, with total in-
tegrated area —F, in the driving range k & mp; is positive,
with total integrated area e, is the dissipation range
k ~ A; and is zero in the inertial range mp «k «A. The
inverse Fourier transform of this right-hand side, which
is proportional to the first term on the right-hand side of
(88), therefore vanishes for r »1/mo and for r «1/A
and yields precisely —e for I/A «r «1/mo. This re-
sult is precisely equivalent to (811) and the
von Karman —Howarth result is then exactly the same as
the statement of constant energy flux (4.69). In Sec. IV
we prove directly the existence of a constant energy Aux
and therefore the validity of the von Karman —Howarth
result in the spherical limit.

Note that, as yet, no group-theoretic properties of
A&

" have been used. The von Karman —Howarth result
is therefore a rather weak constraint on the theory. Us-
ing the group-theoretic properties of A&

" we may sim-
plify the result considerably since the isospin index
dependence of B„'„„"is then known. For the simpler class
of models, without the zero mode, one has
B„'„„"=B„„„A&" and B—' &=B t35' and hence (810)
reads

d —1 1 8 1
o d+» (r B«)

2 t 6r r

~p a, , a
rd+1

(813)

where we have chosen the normalization (3.8) and used

Z= [(d —1)/2]NF. Equation (812) then reads

6(d —1)
er, l„«r« lo .

d d+2 (814)

Both equations are independent of N. It is straightfor-
ward to verify, using the results of Sec. IVF, that the
solutions to the DIA equations explicitly satisfy (814).

For the extended model we may derive two equations,
one for the zero mode and one for all the rest. Using
(3.28) we have (recall that p = 1/V N + 1)

0+l B:.5io& os.o
(815)

d+1
d+ 1 ar

r

„d+ia Bo
r"+' Br Br

(816)

where e =[1/(d —l)](v .vo). Equation (814) then be-
comes

N+1 '"" N+1 """ d d+2

Similarly, if the l =0 term is dropped from the sum over I,
we obtain

d —1 ) 1 8
d 2 at

8 2
d+] g

Pl'P ~+ 1
7'PT

„d+ia B),d+~ a. " a. """ (818)

where e [= 1/(d —1)N]g& ( v'. vi ). Equation (814)
therefore becomes

) 2 o ) 6(d —1) )
N+1 """ d(d+2) (819)

APPENDIX C: CUBIC INVARIANTS FGR SU(M)

In this appendix we discuss trace invariants associated
with SU(M). This group has N =M2 —1 generators and
the main problem in dealing with them is finding the
most convenient choice of basis. We shall examine the
't Hooft basis [51]. Let M=2L+1 be odd and define a
two-dimensional grid of integers n = ( n „n2 ), with
—I. n „n2~ L. Then there exists a set of N M XM uni-
tary matrices J„labeled by n, which satisfy

If we begin with (86), but keep only the l =0 term in the
sum over I, we obtain

d 1~—1 aBO
d 2 at
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{2mi/M)n' Xn"Jn' n" n +n"

J J Jn —n n

(C 1)

(C2)

y~ei(2 n/M)IX m y~&i(2n/M)1 m

l l

(C12)

tr(J J,-)=5 ~

1
(C3)

which follows from the usual formulae for discrete
Fourier series. We find then

where n'Xn"=n &nz' —nzn", and, for any integer vector
p=(p), p2), we use the periodicity convention l, m, n

Imn)2 y I
[

i (2n/M)l X'm+ —i (2n/M)I Xm]2

l, m

Jn+Mp Jn (C4) =g'[2N +2(N + 1)5(2m) —2]

1 if n=Mp for some p5n ='
0 otherwise . (C5)

Since these matrices are unitary, not Hermitian, the
group elements are generated by (2.35) with complex
coefficients an(g) satisfying (2 n =(2„.The structure con-
stants are now most conveniently defined via

[Jl J ]=iaaf' Jt, (C6)

This allows one to make sense of (Cl} when n'+n" lies
outside the allowed values of n. Note that we define
Jo =I to be the identity matrix, but it is not counted as
one of the generators. The explicit matrix forms of the
generators may be found in [51],but will not be required
here. For later convenience we define the periodic 5
function

=2N(N —1) (C13)

and we therefore choose

1

&2(N —1)
(N = (C14)

The most important consequence of (C13) is that the con-
stant, zero-phase terms in the expansion of the product
dominate for large N. This conclusion, as we shall
demonstrate, applies to all 2PI diagrams. Unfortunately,
as we shall also demonstrate, this means that all 2PI dia-
grams contribute equally at large N and therefore the
choice (C10) is not a useful basis for a large-N expansion.

To see the existence of zero-phase terms in any given
diagram, assign arrows to the lines in such a way that all
vertices are of the form shown in Fig. 15(a) or 15(b), i.e.,
at each vertex, either two indices combine into one or one

whence

f' = . tr([JI J ]J,}
lM

2'=2sin 1Xm 5(1+m+n) .
M

(Cj)

These are completely antisymmetric. Of main interest to
us, however, are the completely symmetric coef5cients ob-
tained from the anticommutation relations (a)

whence
m+n

g' = tr([JI J ]J)
2m=2cos 1Xm 5(1+m+n) .
M

(C9)

g Ima f ( N)g lmn

with the normalization f (N) chosen so that

(C10)

It is these latter that we shall use in our generalized
Navier-Stokes equations. We therefore define

B m-s

msI s
n ' n+s '

A 4-~-4-w-- +D
C I

II
/

& Jll+8

(c)

I2= g '(Al'v ) =N,
l, m, n

(Cl 1)

where the prime on the sum means that 0 is excluded. In
order to do this sum we will need the result

FICi. 15. Isospin diagrams for SU{M). The two possible
con6gurations of arrows are shown in (a) and (b). (c) Example
of the construction of a zero-phase term for the tetrahedron
graph.
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index splits into two. In expanding the product of
cosines associated with the diagram, a phase factor
e' ~ ' "or e' ~ '" (where m and n are the pair of
ingoing or outgoing indices) is contributed by each ver-
tex. A zero-phase term is constructed by noticing that
"current conservation" ensures that if two indices m and
n depart from some vertex, they must recombine at some
other vertex. One then need only choose the phase factor
e' ' "at the first. vertex and that which yields a fac-
tor e ' M' at the second. This by itself does not
cancel all of the I and n dependence: each may still ap-
pear separately inside various phase factors; however, if
one carries out this pairing procedure for all vertices, it is
not hard to convince oneself that full cancellation is en-
sured. We have not attempted to construct a formal
proof of this fact, but we have verified it for the first few
2PI graphs.

As an example, consider the tetrahedron graph Fig.
15(c), which is given by

Z4=16f (N) g 'cos mXn cos (m —l)Xl4 I 2' 2&

r. .. M

2m 2'Xcos nXl cos (n+l)X(m —1)M M

(C15)

(SDIA; historically, the contents of this appendix predat-
ed the contents of Sec. IV) in which the frequency depen-
dence is simply suppressed. Thus consider the coupled
pair of equations

=vok +Aok f b(k, q)0(k —q)G(q),
(k)

(D 1)

0(k) =
~
6(k)

~
D(k)+ amok f a (k, q) 0'(k —q) 0(q)

(D2}

These equations actually originate from a well defined
model: consider the "hydrostatic" Navier-Stokes equa-
tions

1
Ao(v V)v= — Vp+voV v+f, V v=0,

Po
(D3)

where the static incompressible field v(r) is to be deter-
mined for a given quenched random force f(r) with
Fourier transformed covariance (f (k)f&(k'))
=D (k)r &(k)5(k+k'). Perturbation theory in Ao is for-
mally identical to that for the time dependent problem,
with G (k)=1/vok at zeroth order and with identical
vertex. The generalization to 1V & 1 is also obvious and
the N —+~ limit yields the corresponding bubble dia-
grams, which can be resummed to yield (D 1) and (D2}.

The advantage one has gained by this simplification is
that one seeks solutions in the form of pure power laws

It is easy to check that

i (2m/M)mXn i (2~/M)(m —I ) X I i (2~/M)nX I
C(k)=, 0'(k)=, k —&0

h, h2
(D4)

and one finds

~ e i (2m/M)(n+ I ) X (m —I ) (C16) (the choice of parametrization of the second exponent is
for later convenience). We take the driving spectrum to
be of the form

N(N 2N+5) N—

2(N —1) 2
' (C17)

with the zero-phase term contributing the leading large-N
behavior.

For a 2PI graph with 2k vertices there are k +1 free
dummy indices and the sum yields a factor N +'. The
zero-phase terms therefore contribute

Z(i) f (N)2k2Nk+1 N
2k

2k —1
(C18)

-i21 —2k=iXi 11" '1 'z'=k'

(C19)

compared to D =BI for % = 1.

All 2PI graphs are then of order N and by the results of
Sec. III contribute when X—+ ~ since all exponents az'k

then vanish. From (3.7), the large-N symmetry factor is
then

D(k)=D k (D5)

+g2li 2' kd+2 —6—zf li (k Q)pZ 6Q Z

1=a h2h —~k~ —3~+6—~ —~
0 1 2

+g2h 2' kd+2 —6—zf a (k Q)pz —hgz —5
Q

(D6)

The integrals converge as long as d (A(d+z. For
b, & d the unscaled integrals in (Dl) remain finite as k ~0
and renormalized "linear hydrostatics" results with z =2
and C(k) =1/vii k . For 5) d the nonlinear term dom-
inates the scaling and consistency requires

5+z =d+2

for reasons that will become clear below. Substituting
these forms into the SDIA equations, and changing vari-
ables to Q=q/k, we obtain

1=h, v k

APPENDIX D: SIMPLIFIED DIA EQUATIONS

In order to improve one's intuition about the asymp-
totic scaling analyses performed in Sec. IV, it is extremely
useful to consider a simplified set of DIA equations

[compare (1.19): this motivates the definition of b in
(D4)]. Matching the driving term as well then yields

6—d —y =3z —6
so that
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z=2 ——, b, =d+ —,
4 4

(D10)

E(k)= K„P0k" '0'(k)—,
2

(D 1 1)

which yields g =b, —z —d + 1, precisely as in (1.20).
From (D10) one has then

which should be compared with (1.18). Since g=O coin-
cides with h=d it is clear that this determines the bor-
derline between linear and nonlinear behavior [hence the
parametrization in (D5)]. For y & 0 one has z & 2 and the
viscous term is irrelevant. For simplicity we therefore
take v0=0 from now on. The solutions (D10) may also
be derived to all orders in y using renormalization group
methods on the original model (D3). These solutions
therefore play exactly the same role as do (1.18) in the
full dynamical problem.

The energy spectrum may be defined via

1

( )
0 1 2 0

—
A, b b (m x)"+ 'J (x)

(m x)~ 3~+6 d 3' (x)
(D18)

+g2b 2Ii (m x)d+2 —5—zJ (x)

(D19)

where [compare (4.25) and (4.26)]

J„„(x)=f [1—(k Q) ]Q' u(xQ)=u0x

(D20)

We may now isolate the singular parts of the integrals

Jb(x)—:f b(k, Q)P' Q 'u (xP)g (xQ)
Q

=g(x)J„„(x)+bJb(x),

J,(x)=f a(k, Q)P' Q' u(xP)u(xQ)
Q

=u (x)J„„s(x)+bJ,(x),

———1
2

(D12)
and

(D13)

(D14)

which should be compared with (1.24).
In order to fix the amplitudes h I and h2, let us define

I (6—z, z;d)—:f b(k, Q)P' Q
Q

I, (b, —z, b. —z;d)—:f a (k, Q)P' Q'
Q

We then choose A,~h Ih2rb =1 a
~oh Ih2ra+Doh, h2 ' =1, i.e.,

uo—
—1 ~ u(ui)

Kd dm
w

is assumed to be finite. The finite parts

b Jb(x) = f Ib(k, Q)Q 'g(xQ)
Q

—[1—(k P) ]g(x)]P' u(xP),

bJ, (x)=f [a(k, Q)Q' P' u(xQ)u(xP)
Q

(D21)

(D22)

hi= r, —r.
h2=

A,0D0I i,

D A,0 0
(D15)

——'[1—(k Q) ]Q' u (xQ)u (x)
—

—,'[1—(k P) ]P' u (xP)u (x)]

D (k) =D021(k/m0)k

where 21(x)~1 for x ~ ao and vanishes rapidly for x ~0.
Correspondingly, we seek more general solutions

h,6(k)= g (k/m0),k'
h20(k) =
~ u (k/m0),

k

(D17)

where g (x) and u (x) approach unity for large x. Substi-
tuting these forms into the SDIA equations (with v0=0),
we find

Explicit forms for I, and I b will be given below.
Equations (D10}and (D15) represent complete analytic

solutions, as long as 6—z &d. The borderline 6—z =d
is reached when /=4. This should be compared to y =3
for the dynamical problem. In both cases the borderline
corresponds to g= 1, where the energy spectrum goes
from being ultraviolet to infrared divergent. For y &4
one must regularize the infrared behavior. We therefore
replace (D5) by

are nonsingular when x ~~:

lim b Jb(x) =I &(6,—z, z;d)

bk, '—1 —kp P'
Q (D23)

lim b,J,(x)—:I', (4—z, b, —z;d)

z = 1 A 2k u A2md+2 —6—z
1 2 0 0 0 (D24)

If, in the second equation, the driving term was also of
leading order, we would conclude that h=d —3+y and
h Ih2 'Do+h, h2uoA, 0=1. However, the latter equality
can be satisfied only if the first term vanishes. We there-
fore conclude, as below (4.39), that the driving must be of
lower order 6(d —3+y and the second equation yields

= f [a(k, Q)Q'-'P'-'
Q

——'[1—«Q}']Q'
—

—,'[1—(k P} ]P'

[compare (4.30) and (4.31)] where we have extended the
definitions of I and I b in (D14) into the region
b, —z & d. Matching up the leading behavior for large x,
the first equation in (D18) yields
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(D24) as well. Thus b, is as yet undetermined.
To proceed further, we treat the 6J, and EJb terms as

perturbations and expand

g (x)=1+gix"+ '+
u (x)= 1+u ix"+ '+ (D25)

1 r.(a —z, a —z;d),
2uo

(D26)

with u, determined only at yet higher order [com-
pare the discussion below (4.47)]. The exponent
Oo=—2A —2z+4 —2d —y must vanish if the driving is to
still control the scaling. Thus [compare (1.24)]

d +z —2+ —,'y =d —1+—,'y . (D27)

We then define do =h, h 2 'Dpm p
'+ ~ and obtain

d, =r.(S—z, S—z;d) —r, (S—z,z;d), (D28)

for large x [compare (4.43)]. Matching up the next-to-
leading-order terms, one then finds

g = ——hh 'mti' '+ &Dx' — I (g —zzd)1 ~ 1
1 2 1 2 0 P b

2Qp I,(h, —1,b,,—1;d)=I (b,, —1, 1;d) . (D30)

This is the same equation we would have obtained if we
had replaced the driving spectrum (D16) by the explicitly
short-ranged form

D (k) =Dail(klmo), (D31)

where g(x) is rapidly decreasing at large x. Equation
(D26) would then have resulted with no driving term at
all. We conclude, therefore, that the vanishing of do(g)
coincides with true short-ranged hydrostatic turbulence.

To find y, we must solve (D30). We first outline a
brute force method for doing this. We begin with the re-
sult

which should be compared with (4.48). More explicitly,
using a (k, Q) =

—,
' [b (k, Q)+ b (k, P) ],

do= f b(k, Q)P' [Q' —
Q '], (D29)

Q

which should be compared with (4.49} [and was alluded
to in (4.56)]. Note that there are no free parameters in
this equation: do=do(y) is determined completely by g
through (D24) and (D27). Precisely as for the dynamical
problem (see Sec. IVC), there is a special value y=g„
hence 5, =b,(y, ), for which do(y ) uanishes, i.e.,

C(a, p;d)=—f p Q
Q

1=—K
2 d (D32}

d —1 d —1 d —1 d+1I b(a, P;d) = — C(a+2, P;d)+ C(a+2,P 2;d) C—(a+2—,P—4;d) — C(a —2,P;d)

d a+P —d d —P d —a
2 2 2 2

a,P&d, a+P)d,
r —r Pl-d — +P

2 2 2

which may be derived by standard methods [50]. By breaking up b(k, Q) into a sum of terms of the form P Q ~ [us-
ing, for example, P Q =

—,
' (1—P —Q ) ] we find

1 1 1 2d —3 3+—C(a,P+2;d)+ —C(a, P—4;d) ——C(a —6,P+2;d)+ C(a, P—2;d)+ —C(a —4,P+2;d)

2d 3 3 3 3+ C(a, P;d) — C(a 2,P+2;d—)+—C—(a —2,P;d) ——C(a —2, P—2;d) . (D33)

Many of the arguments here lie outside the convergent
range given in (D32). However, it is easy to show that
(D32) remains correct as long as we take the Pnite part of
the integral (i.e., that obtained after all appropriate ultra-
violet and infrared subtractions have been made). Since
we have ensured that I b is finite [see (D23)], all subtrac-
tions required to make the right-hand side of (D33) are
automatically accounted for. Using (D33) and (D32) we
may numerically compute do(y) from (D24) and (D27).
We find that do(g) vanishes at a point indistinguishable

from y, =5 in all dimensions of interest. This yields
5, =d + —,

' and g, =
—,
' [compare (4.55)]. One can verify

this solution analytically using the properties of the I
function. The fundamental identity needed is

C(a,P;d)=C(a, 2d a P;d) for all a,P——(D34)

and can be used to verify (D30) term by term in the ex-
pansion (D33).

A much more elegant way of proceeding is to perform
a "conformal transformation" on (D27) [32]. Thus, if we
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define p=k Q, then

b(k, g)—=b(g, p)

Q(1 —p )[(d —1+4p )Q —2p(1+Q2)]
(d —1)(1—2Qp+Q )

1
b —,p 1

, b(Q, p) .

and from this it is easy to check that

(D36)

(D35} Therefore,

I'b(a, P'd)=Kd, f dg Q
' f dp(1 —p )'

0 —1

=K,f dg Q
+~ "f dp(1 —p )'

0
p

b(g, p)
(1—pg+Q )~~

b(Q, p)
(1—pQ+Q )~i

(D37)

where Q = 1/Q. This immediately implies

I b(a, P;d)=I b(a, 2d+2 a P—;d)—, (D38)
d+ —,4&y &0

4

which can also be demonstrated for all values of a and P
as long as the finite part of the integral in (D37) is used.
Performing this transformation only on the second term
in square brackets in (D29) we find

6= 'd —1+—, 5&y &43'
2'

d+ —,y&5,3
2'

(D42)

—f b (k q)pz —5[gz —5 gh —2d —2]
Q

(D39) ——1, 5)y)0
2

whose integr and vanishes identically if 6—z
=2d +2—6, i.e.,

y&53

. 2'
(D43)

c 3 3
b, =d+1+ =d+ —,

C 2 2 2
(D40)

as before [compare (4.58)]. Note that (D29) vanishes
identically for 6=2z =2, but the requirement 6 & d
makes this a solution possible only if d & 2. This solution
coincides with (D40) when d =

—,'.
In order to confirm that the exponents stick to the

values (D40) when y)y„one performs precisely the
same analysis as in Sec. IV C. Thus one tests the stability
of the y =y, solutions against power-law driving. A scal-
ing analysis demonstrates that, indeed, the driving is
relevant for y (y, and irrelevant for g )g, . See Sec. IV C
for details. To summarize, the exponents are

Note that, as in (4.60) and (4.61), we could also consid-
er subtracted versions of the SDIA equations. One would
then find that (D29) still holds for y )4, but with ex-
ponents now given by (D10). The same conformal trans-
formation now produces, from the first equality in (D40),
y, = —", , z, =

—,', b,, =d +—', , and g, =—,'. These are the ana-
logs of the Kolmogorov values. Though details differ be-
tween (D41)—(D43) and Fig. 2, the close analogy between
the two is clear.

APPENDIX E: DETAILS OF NUMERICAL WORK

In this appendix we outline the numerical methods
used to determine u (s} and y, in Sec. IV. We start from
(4.48), which we write in the form

—u (s)Red Ji, (s)—[1—(s /4)]' b Jb(s)

2 ——,4)37 )03'

4

1, y)4, (D41)
where

[ 1 (s 2/4) ]1/2g —0

Red Ji, (s)—=f f u P [b(k, g)[1—(t /4)]' [1—(k P) ][1—(s—/4)]' j,
g z P (E2)

bJ, (s}=f f u P [b(k,g)g' u(t) —[1—(k.P) ]u(s)],
q g p (E3)
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and we reemphasize that the integrals are over the domain

gati

~2 and i(s Q—t)/Pi 2. For convenience we scale out
the factor of 2 and define s'=s/2, t'=t/2, and u (s)= u (2s). We define also the angular variable p=k. Q, and it is easy
to show that P =+1—2pQ +Q and k.P = (1 p—Q) /P. Then, for example, we may write

dt ~ &/ g s—
Q —2 2'77 p

1 —'2 I

=2A„,f dt' f dg f dp(1 p')—' " Q" 'b(Q p) u
(1—2pg+Q')'" V'1 —2pg+g'

=—2Ad iI (s'),
where Ad, =Ad /2~ and b (Q,p) is displayed in (D35). We may convert the unbounded integral over Q into one over
a finite interval by performing a conformal transformation Q ~1/Q on the domain 1 Q ( no. We find then that

T

I(s')= f dt' f dQ f dp+1 t'A—'„(Q,p) u Q" '+u Q+1—2pg+Q +1—2pg+Q

where

( g )
—

( 1 2)(d —3)/2 Q& pb(Q )

(1 2 g +Q2)h/2

(E5)

(E6)

and we have used (D36). The singular point is at p= 1, Q =1, but will occur subtracted in our final expressions. We
may rewrite all remaining integrals in the same way and (El) finally becomes

u(s')B(s') —Vl —s' A (s') —+1—s' 50=0,
where 50=50/2 Ad i and we have defined

I t

A (s')= f dt' f dg f dp )
u [%„(g,p)u(t')Q" —A'd'" (Q,p)u(s')Q ']

+1—2pg +Q
1 I

(g )-(r~)Q2ii —d —4 ~sing(g )g(&i)gh —d —3]
't/1 —2pg +Q

(E7)

I

B(s')=f dt' f dg f dp. u [Ad(g, p)+1 t' Q" ' —%'d'"s—(g,p)/1 —s' Q ']
—i 0 —i '1/1 —2pg +Q2

I I

(g )Q 1 t12gh —d —3 ~sing(g )Q 1 r2gh —d —3]
+1—2pQ +Q

(E9)

1.0 1.0

0.8 0.8

0.4 0.4

0.2 — ~

I ~

0.0

~ linear interpolation
o quadratic interpolation

0.5 1.0

0.2

0.0
0.0

s/2

0.5 1.0

FIG. 16. Comparison of linear and quadratic interpolation in
the numerical solution for the scaling function u (s).

FIG. 17. Comparison of 50 and 100 divisions in the numerical
solution for the scaling function u (s).
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where
~2 1 2

~sing(g ) ( 1 2)(d —3)/2 Q i2

(1—2 g +Q2)(a+2)~2

(E10)

is the singular part of Ad(g, p). The integration is done
by Gaussian quadrature using Gauss-Legendre weights
and points. Thus

f dt'f dQ f dpF(s', t', Q,p)
n n n

g w(t)to(j )w(k)
i=I j=n k=1

1

XF[x (1),x (i),x (j),x (k)], (El 1)

where to (i) are weights and x (i) are the Gauss-Legendre
points in the interval ( —1, 1). We have performed com-
putations using n =50, n, =26 and n = 100, n, =51. The
discretization (El 1) converts the nonlinear integral equa-

tion (El) into a system of n nonlinear equations in n un-
knowns, which may then be fed into any standard sub-
routine designed for such a problem. When finding a
root, our error bars are always at most O(10 '

) for each
individual equation.

We have used a linear interpolation scheme to infer
u (s) at intermediate points [the combination
r'=(s' —Qt')/I' does not, in general, lie in the set of
Gauss-Legendre points]. For comparison, we ran the
computation at 5=d +—,

' and d =3 using a quadratic in-
terpolation scheme. As can be seen in Fig. 16, the
di6'erence is very tiny. Increasing n from 50 to 100 also
has very little effect (see Fig. 17).

As described in Sec. IV C, in order to obtain smooth,
finite solutions through y =y„it is best to fix the value of
u(s') at some particular s' [we choose u(0) =0] and scale
5o accordingly. In our numerics, this normalization is
used as an extra equation and the rest of the function is
then determined uniquely.
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