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Calculation of effective interaction potentials from radial distribution functions:
A reverse Monte Carlo approach
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An approach is presented to solve the reverse problem of statistical mechanics: reconstruction of in-
teraction potentials from radial distribution functions. The method consists of the iterative adjustment
of the interaction potential to known radial distribution functions using a Monte Carlo simulation tech-
nique and statistical-mechanics relations to connect deviations of canonical averages with Hamiltonian
parameters. The method is applied to calculate the effective interaction potentials between the ions in
aqueous NaC1 solutions at two different concentrations. The reference ion-ion radial distribution func-
tions, ca1culated in separate molecular dynamics simulations with water molecules, are reproduced in
Monte Carlo simulations, using the effective interaction potentials for the hydrated ions. Application of
the present method should provide an effective and economical way to simulate equilibrium properties
for very large molecular systems (e.g., polyelectrolytes) in the presence of hydrated ions, as well as to
offer an approach to reduce a complexity in studies of various associated and aggregated systems in solu-
tion.

PACS number(s): 61.20.Ja, 05.20.Gg, 02.70.—c, 61.20.Qg

I. INTRODUCTION

Computer simulations, such as Monte Carlo (MC) or
molecular dynamics (MD) methods, are important tools,
and routinely used to study molecular systems in con-
densed phases and solutions [1,2]. In fact, for a given
Hamiltonian, these methods can supply numerical solu-
tions to the main problem in equilibrium statistical
mechanics by calculating statistical ensemble averages for
experimentally observable quantities. While the approxi-
mations inherent in the simulation procedure itself (e.g. ,
limited sampling of the configurational space, finite size
of the simulation box, etc. ) are usually insignificant and
under control, the choice of the Hamiltonian or the in-
teraction potentials is often questionable. Today in most
computer simulations so called effective site-site pair po-
tentials are used, which are parametrized to reproduce
some set of experimental data. The interaction potentials
obtained from quantum mechanical calculations are in
general more detailed and possibly also more reliable
than the empirically parametrized simple pair potentials.
However, these ab initio potentials are more expensive to
use due to their complicated functional form and can be,
so far, calculated only for small molecular systems. An
efFective computational scheme for reconstruction of the
Hamiltonian from an available set of canonical averages,
the reverse problem, would provide an additional choice
and should be of great importance to the field of molecu-
lar simulations.

*On leave from Scientific Research Institute of Physics, St.
Petersburg State University, 198904 St. Petersburg, Russia.

Recently, a reverse MC procedure has been suggested
[3], in which the starting point was a radial distribution
function (RDF) obtained from experimental structure
factor data. No input potential was required in this
method, and the simulation was carried out to minimize
differences between calculated and reference averages.
The reverse MC simulation produced a set of
configurations for a further analysis. Because the Hamil-
tonian was not reconstructed during the simulation, the
reverse problem was not completely solved.

A similar problem of adjusting of potential (force field)
parameters to experimentally observed properties was
considered in a very recent paper [4]. It was suggested
that the method of weak coupling would allow one to fit
one or several potential parameters if an analytical form
of the potential was selected.

The main objective of this paper is to present a method
to reconstruct the Hamiltonian from radial distribution
functions. Clearly, in a general case the solution of this
problem is not unique. However, if we consider a limited
class of Hamiltonians (e.g. , those represented by a sum of
pair interactions), the solution appears fairly well defined.
Below we present a method of automatical adjustment of
the pair interaction potential, irrespective of its analytical
form, to known radial distribution functions.

Besides presenting a way to solve the reverse problem,
we also suggest a few important applications for effective
potentials as interaction potentials between atom groups
and molecules. In spite of the fact that computers are
becoming faster and faster each year and will continue to
do so for some time to come through parallel architec-
tures, it will only be practical to simulate systems consist-
ing of 10 —10 particles during a few hundred pi-
coseconds in the near future. Complex biomolecules and
organic molecules (e.g. , proteins, nucleic acids, mem-
branes, carbohydrates, etc.) should be simulated by ex-

1063-651X/95/52(4)/3730(8)/$06. 00 52 3730 1995 The American Physical Society



52 CALCULATION OF EFFECTIVE INTERACTION POTENTIALS. . . 3731

plicitly including the solvent molecules, which increases
the number of interactions by several orders of magni-
tude. The larger the molecular systems grow, the longer
the simulations needed to follow low-amplitude motions
and slow conformational transitions. In other words, it is
too demanding a task today to carry out such simulations
with an explicit account of all the atoms, and therefore
simplified models may have to be used in order to
compromise. For example, in the primitive electrolyte
model, which is often used for simulations of ion environ-
ment around biomolecules, the ions are modeled as hy-
drated with several water molecules in the hydration
shell. The solvent in the primitive electrolyte model is
considered as a dielectric medium with a permittivity c..
Of course, the primitive model potential I/(s») is a rath-
er crude approximation, especially at short distances be-
tween the ions. The effective interionic potential, ac-
counting for the molecular nature of the solvent, would
be a good replacement, instead of the primitive model po-
tential in studies of these systems.

It is, in principle, possible to derive the effective poten-
tial for a simulation of a given (reduced) system from the
simulation of a more detailed (full) system. The reduced
system has fewer degrees of freedom. A simulation of the
full system yields a representative sample of the statistical
ensemble. After removing the noninteresting degrees of
freedom (e.g., the coordinates of solvent molecules), we
obtain a set of configurations of the reduced system. The
task is to find an effective potential which reproduces this
set of configurations and corresponding canonical aver-
ages as close as possible. Once again, we need to solve
the reverse problem: reconstruct the interaction poten-
tial from canonical averages. Although different canoni-
cal averages may be chosen for the purpose, the RDF is a
good choice. The RDF's give a detailed definition of the
structural properties of the system. They can be routine-
ly determined in computer simulations of the full system,
and experimental RDF's are available for a large number
of liquids of small molecules from neutron and x-ray
diffraction studies. The basic idea is that the solution of
the reverse problem gives an efFective potential which can
subsequently be used for simulations of reduced systems
on a larger scale. For example to build up large
biomolecular assemblies in solutions.

The idea of the method, presented in this paper, goes
back to the renormalization group Monte Carlo method
for phase transition studies in the Ising model by
Swendsen and co-workers [5,6]. The algorithm was used
to compute the renormalizing constants (an analog to the
potential) for the blocked spins. It now appears that the
applications of this method are more general than the lat-
tice systems near the phase transition point. It will be
shown below that it is possible to renormalize the Hamil-
tonian of a molecular system in such a way that only the
degrees of freedom of primary interest are kept.

A general algorithm for finding the effective interaction
potential from RDF will be presented in Sec. II. Section
III contains an example of some successive direct and re-
verse MC simulations for the one-component model, in
which the initial interaction potential is restored. In Sec.
IV, this technique is applied to a calculation of the

effective potential for aqueous NaC1 solutions at two con-
centrations. The reference ion-ion RDF curves are calcu-
lated in MD simulations of the NaCl solution, with water
molecules explicitly included. A brief discussion of the
method is finally given in Sec. V.

II. THEORETICAL BACKGROUND

Consider a system with a Hamiltonian (potential ener-
gy) given as

H I q; j
= + IC S [q; j,

where S [q; j are functions of particle coordinates q;, and
X are constants defining the interaction potential. The
summation in Eq. (1) may also be replaced by an integral.

The Hamiltonian of a system with pair interactions can
be given in the same fashion as Eq. (1):

a(s. )
M

f dq S (q)exp —Pg K&s&(q)

f dq exp —P g IC~S„(q)

= —p((s.s, ) —(s.) (s, ) ), (4)

and q is the set of degrees of freedom of the reduced sys-

H= g+(lq; qkl)= g f 0'(»)5(» q; qkl)d»
i, k i, k

= f 4(») g5(» —
lq;

—qkl)d» . (2)
i, k

In comparison with Eq. (1), the sum is now replaced by
an integral, a by», X by 4(»), and S [q; j by

X;,k@» —
lq;

—q. l ).
Generalization to systems with several particle types is

straightforward. It is possible to extend the Hamiltonian,
given in Eq. (1), for systems with three-particle interac-
tions in an analogous way.

The Hamiltonian in Eq. (1) is defined by a set of con-
stants K . These constants span a space of Hamiltonians
of a given class, determined by the form of S [q; j. These
Hamiltonians may be considered as equivalent if they
have the same canonical averages (S Iq; j ) for each a.
For systems defined by pair interactions [Eq. (2)] this
means the coincidence of the radial distribution functions
p(»), since (S„)=4m» p(»). The averages (S ) are func-
tions of constants [E~j. In order to solve the reverse
problem, we have to obtain a set of constants [K j from
some averages (S ) =S*. The averages can be calculat-
ed from experimental structure data (structure factors) or
from computer simulations of the full system.

In the vicinity of an arbitrary point in the space of
Hamiltonians, [K j, we can write

a&s. )
a&s. ) = y are, +o(are'), (3)

BKy

where the derivatives a(S. ) ZaX» are expressed as
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sc"' =z'"+am"' .a a a (5)

The MC simulation is then repeated with another po-
tential K'" to determine a set of corrections AK"'. The
procedure is repeated until a convergence is reached, e.g. ,
until h(S ) becomes vanishingly small for each a within
the accuracy of the statistical error of the simulation.
The algorithm is similar to that for a solution of multidi-
mensional nonlinear equations using the Newton-
Raphson method [7].

A similar method was applied in a study of the critical
point region in the Ising model in Ref. [6]. In that partic-
ular case the number of constants K was finite. In fact,
it was in the range from 1 to 7. For molecular systems,
described with pair interaction potentials, the formal
number of constants is infinite because of the integral in
Eq. (2). In numerical solutions we can use a finite grid to
approximate a continuous function.

Let R,„, be the cutoff radius for the interaction poten-
tial in the computer simulation. For example, R,„, can
be chosen as half of the cubic box length. The interval
[O, R,„,] can be divided into M small slices, each slice
corresponding to a distance r =aR,„,/M, a= 1, . . . , M.
Then the Hamiltonian of the system of N particles can be

tern.
Let K' ' denote a set of trial values for the constants

K . By carrying out a MC simulation using these values
K' ', a set of averages (S' ' ) is obtained. The differences
between the trial values and the reference values are
b, (S )' '=(S' ') —S*. Then, by solving the system of
linear equations, given in Eq. (3), with appropriate
coefficients calculated from Eq. (4), and by omitting
terms of order 0 (AK ), we obtain b,K' ' and use them as
corrections to the potential according to Eq. (5):

written approximately as
M

H= g K(r )S
a=1

(6)

To demonstrate how the method presented works, and
to reveal some possible hidden difhculties, a few test
simulations were carried out for a simple one-component
system. The system consists of 50 particles in a cubic box
of length 1.=20 with periodic boundary conditions. All
quantities are given in dimensionless units. We started
with a model piecewise potential %*(r). Its exact values
in units of kT are given in Table I. A rather coarse grid
(the number of slices is 20) was chosen to facilitate the
representation of the results in a table form. Potential
iP'(r) resembles a Lennard-Jones potential, with cr=5
and m=2 corresponding to the reduced Lennard-Jones

where K(r )='l(r ) is the potential at a distance r,
while S is the number of pairs between the particles
with distances found inside the ath slice. In computer
simulations, S is normally used as an estimator of the
radial distribution function p(r):

p(r )=(S )
V

2m.r~N(N —1)

It is apparent from Eq. (7) that if we know the radial dis-
tribution function we also know the averages (S ). As a
trial function or an initial approximation to the effective
potential function, we can use, for example, the potential
of the mean force:

K' '= kTlnp —(r ) .

III. TEST EXAMPLE:
ONE-COMPONENT SYSTEM

TABLE I. Restoration of the potential from a radial distribution function for a simple one-
component model. 4 is a model potential (in units of kT) and p is the corresponding RDF from the
direct MC simulation; the rest of the table consists of results of the iterational procedure (Sec. II) which
reproduce potential 4 from RDF p . The initial approximation of the potential %0 was a potential of
mean force (8). In the last line, values of the internal energy are shown.

Direct MC
First iteration

+o (p.m.f.) po

Reverse MC
Second iteration

p&

Third iteration

p2

3.25
3.75
4.25
4.75
5.25
5.75
6.25
6.75
7.25
7.75
8.25
8.75
9.25
9.75

10
6
2

—2
—1
—1

0
0
0
0
0
0
0

0
0.00012
0.00231
0.0824
4.047
1.467
1.483

0.5685
0.5922
0.640
0.7507
0.9446
1.122
1.215

9.028
6.07
2.50

—1.398
—0.383
—0.394
0.565
0.524
0.446
0.287
0.057

—0.115
—0.195

0
0.00015
0.00243
0.0862
4.113
1.496
1.450
0.523
0.508
0.531
0.674
0.978
1.273
1.399

8.788
5.679
1.95

—2.113
—1.098
—1.077
—0.061
—0.044
—0.042
0.025
0.034
0.005
0.006

0
0.00013
0.00198
0.0756
4.125
1.475
1.482
0.559
0.592
0.652
0.731
0.913
1.135
1.229

9.239
5.736
1.987

—1.990
—1.007
—1.009
—0.022
—0.015
—0.012
—0.005
—0.015
—0.001
—0.002

0
0.000 11
0.002 23
0.0844
4.055
1.468
1.484
0.560
0.596
0.640
0.753
0.943
1.117
1.223

U —313 —167 —339 —315+5
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FIG. 1. An example of a nonconvergent iterative procedure
starting from zero potential (0); other lines (1—4) are potentials
obtained after corresponding iteration. 4 is the original po-
tential in kT units as in Table I.

parameters T*=0.5 and p =0.75.
The goal of this test was to ensure that a successive ap-

plication of the direct and reverse MC procedures yields
the initial interaction potential. The radial distribution
function p*(r) was calculated from a direct MC simula-
tion, and its values are given in the third column of Table
I. Thereafter the original potential ql (r) was put aside,
and the algorithm, given in Sec. II, was applied to restore
the potential from the radial distribution functions p (r).

Each simulation consisted of 10 MC moves. At dis-
tances of 3.5 or closer, the potential 4* was set to infinity
(hard core), leading to zero RDF intensities at these dis-
tances and to zero coefficients in the corresponding lines
of the linear equation system in Eq. (3). The zero lines
can be simply omitted from the equation system by as-
suming that if p(r) is zero for some interparticle dis-
tances, the probability should be zero for any pair of par-
ticles to approach the distance and the corresponding po-
tential can be set to infinity. The true potential can still
assume a finite value, but the absolute value is not impor-
tant.

The results are given in Table I. The initial potential
%'0(r) in the reverse MC procedure was set equal to the
potential of mean force [Eq. (8)]. The iterative procedure
converged after three iterations. Only statistical fluctua-
tions were observed during the further iterations. The re-
sulting potential after the third iteration coincides with
the original potential 4*. The deviations are less than
0.02, with the exception of small distances between parti-
cles. The deviations and statistical errors at small dis-
tances are larger. The essential point here is not the
small distances, but the high values of the potential at
these distances. Because of the high potential value, the
corresponding states have a low probability in the canoni-
cal ensemble. On the one hand, this is one reason for the
uncertainties in the effective potential. On the other
hand, this means that the perturbation in the potential

6
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FIG. 2. An example of the convergent iterative procedure
starting from zero potential with a damping parameter A, =0.5;
notations as in Fig. 1.

IV. CALCULATIONS OF THE EFFECTIVE POTENTIAL
FOR Na+ AND Cl IONS IN WATER SOLUTION

During the last few years, several works have reported
on simulations of ions in water [8—14], in which the cal-
culation of the potential of the mean force has been one
of the primary objectives. For electrolyte systems, the
potential of the mean force represents the solvent- and
ion-mediated averaged potential between ions, and there-

does not lead to a noticeable perturbation in RDF and
other canonical averages. It can be seen in Table I that
RDF, obtained from the effective potential (pz), coincides
in the limit of statistical error with original RDF p* in
the whole range of interparticle distances. One can also
observe clear differences between effective (second
column) and mean force (fourth column) potentials.

It is not necessary to start the iterative procedure by
using the potential of the mean force as a trial function.
The obvious reason for this choice is the fact that in
many cases the potential of the mean force is quite close
to the interparticle potential, therefore the iterative pro-
cedure converges rapidly. If the initial approximation is
very poor, however, the procedure may never converge.
An example of this is the iterative procedure starting
from a zero potential [%0(r)=0]. This is shown in Fig.
1, where the potential begins to Auctuate heavily. How-
ever, even in the case where the convergence is not
achieved, it is possible to apply a damping procedure, in
which the left side of Eq. (3) is given as A,h(Sa ), where
0 & A, & 1. This leads to smaller corrections at each itera-
tion step, but also reduces the contribution from the
second order term O(b, K ) in Eq. (3). The convergence
will be reached, although more iterations will be needed.
Figure 2 shows an iterative procedure starting from a
zero potential and using A, =0.5 which converged to the
original potential +*, as did the procedure starting from
the potential of mean force in Table I.
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fore is a valuable quantity for the understanding of many
chemical and biochemical processes in solution. Howev-
er, if we would simply try to exclude water and carry out
simulations with the potential of the mean force, the re-
sults obtained at finite concentrations (e.g. , RDF) would
differ from results obtained in ordinary simulations of the
detailed system with explicit water Only at infinite dilu-
tion (i.e., calculated for a single ion pair in solution), the
potential of the mean force coincides with the effective
potential. At finite concentrations, screening effects due
to ion-ion interactions lead to different behaviors of the
effective and mean force potentials. Also, accurate calcu-
lations of the potential of the mean force at infinite dilu-
tion is quite a dificult task because of poor statistics due
to the fact that only one ion pair is included.

The present method can be used to calculate effective
interaction potentials which can be directly used for
simulations of ionic systems without explicit account of
water. These potentials can later be used in simulations
of large ionic and polyionic systems for which the explicit
water simulations would be too expensive in terms of
computing power.

In the present work, ion-ion RDF's were obtained
from MD simulations of ions in water. Thereafter, the
algorithm described in Sec. II was applied to provide
effective potentials between the ions. We used the con-
stant temperature constant pressure (NPT) molecular dy-
namics algorithm I 15]. The simulations were carried out
in a cubic box with periodic boundary conditions. The
Ewald method Il] was applied for treatment of long
range electrostatic interactions. The flexible simple-
point-charge (SPC) water model

I 16] was used, and
Lennard-Jones parameters for the ions were taken from
Ref. I12]: o =2.35 A and v=0. 544 kJ/mol for Na+ and
0.=4.4 A and c, =0.419 kJ/mol for Cl . Two separate
simulations were carried out: one with four ion pairs and
248 water molecules (0.87-M ion concentration) and
another with ten ion pairs and 236 water molecules (2.2-
M ion concentration). The RDF's were collected during
1.0 ns, after 200 ps of equilibration. The simulation tern-
perature was 300 K and the pressure 10 Pa. The multi-
ple time step algorithm by Tuckerman, Berne, and Mar-
tyna I 17] was applied, with a small time step of 0.2 fs for
intramolecular and short range (less than 4.5 A) inter-
molecular interactions, and a large time step of 1.0 fs for
the other interactions.

Calculation of an ion-ion RDF appeared to be a tedi-
ous task because of the relatively small number of ions in
the system and their low mobility, especially in the case
of a direct contact between opposite charged ions. Such
configurations (ion pairs without intermediate water mol-
ecules) were found to exist in time periods of about 50 ps,
leading to a poor sampling of the configurational space.
The total time period of about 1.0 ns is still to be con-
sidered as a minimum to obtain a fairly reliable estima-
tion of ion-ion RDF s. Even in this case, the statistical
error in the first maximum of Na+-Cl RDF was about
one unit in the intensity scale. At larger distances the
RDF's are determined more accurately, with a relative
statistical error of about 5% or less.

RDF's obtained from the MD simulation of 1 ns are

5

Na-CI 2.2M
Na-CI 0.8M

Na-Na 2.2M
Na-Na 0.8M

CI-Cl 2.2M
CI-CI 0.8M

3

2

6, 7
r (A)

10

FIG. 3. Ion-ion radial distribution functions obtained from
MD simulations.

shown in Fig. 3. These curves show typical features for
ion-ion RDF s, and are similar to those calculated in oth-
er reported works I8,9,13,14] using a variety of water and
ion potential models. The anion-cation RDF has a first
contact maximum at r -2.8 A, and a second maximum
at r =5. 1 A corresponding to the configuration with a
single water molecule between the ions. The Na-Na and
Cl-Cl RDF's have their first maxima at distances of 3.72
and 5.3 A, respectively. The differences, when compared
with other researches, are mainly in the intensities, espe-
cially for the first maximum of the Na-Cl RDF.
Differences between RDF's at the two different concen-
trations studied in this work are rather insignificant. The
density and the internal energy values obtained in the
simulations are given in Table II I'18].

The next step is the calculation of the effective poten-
tial between ions from RDF, on the basis of the algo-
rithm given in Sec. II. The RDF's were calculated at dis-
tances ranging from 0 to R,„,=L/2 (L is the box side
length), and therefore the effective potential can be deter-
mined only for these distances. Because of the ionic

Quant Run No.

Nu~ber of H2G
Number of NaC1 pairs
Temperature (K)
Pressure (bar)
Salt concentration (M)
Average box length (A)
Density (g/cm )

Internal energy (kJ/mol)

248
4

300
1

0.87
19.76

1.042(3)
—53.54(5)

236
10

300
1

2.2
19.44

1.093(4)
—69.57(5)

TABLE II. Thermodynamical data of constant-temperature
and constant-pressure MD simulation of NaC1 in a water solu-
tion. The simulation time is 1 ns after 0.2 ns equilibration.
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charges, some care should be taken in the treatment of
long-range electrostatic forces. One can assume that, at
distances larger than R,„„the interactions between the
ions are purely Coulombic: q;q /er with a dielectric con-
stant corresponding to water: v=78. To avoid discon-
tinuity at R,„„onecan add a constant term q q. /cR toi j cut

the potential, inside the cutoff sphere. Adding a constant
potential to the Hamiltonian in Eq. (1) does not inAuence
Eqs. (4)—(6), and the algorithm can be applied in the same
way as for noncharged system (Sec. III). In the simula-
tions, the long range potential was taken into account us-
ing the Ewald method:

ET r&R cut periodic
cells r(R cut

erfc( ar ) 2m. 1 k+
3 g 2 exp —

2
cos(kr)—

s 77 EI' r (R cut

(9)

where k shows reciprocal space vectors [k
=(2~/L )(l, m, n), l, m, and n are integers], and a is the
Ewald convergence parameter. Usually e is chosen in
such a way that erfc(ar ) can be considered as zero for
r & L /2. In this work a value e =5.5/L was used.

The MC simulations for calculations of the effective
potentials (without explicit water molecules) were carried
out in the NVT ensemble for the same number of ions as
in the MD simulations. The box size was equal to the
average box size in the constant-pressure MD simulations
(see Table II). The interval [O, R,„,] was divided into 200
slices, thus the total number of linear equations in Eq. (3)
for three ion-ion RDF's was 600. After removing the
zero lines, corresponding to the small, nonprobable dis-
tances with zero RDF values, the number of equations
was reduced to 418. Solution of such a linear equation
system takes about one second of CPU time, thus further
refinement of the grid or consideration of a larger number
of RDF's does not cause a problem. The initial potential
was the potential of the mean force [Eq. (8)] calculated

from the MD simulated RDF's with the addition of the
term given in Eq. (9) in order to take into account the
long range part of the Coulombic interactions. The itera-
tive procedure converged after three iterations. The final
effective potentials are shown in Figs. 4—6 together with
the corresponding potentials of the mean force. These
effective potentials, being used in a MC simulation of the
ionic solution without water molecules, yield the same ra-
dial distribution functions as were obtained from the full
MD simulations in the limit of statistical error.

It may seem at first sight that the effective potential is
only a shifted potential of the mean force. However, this
is not the case, as can be seen, for example, by examining
Fig. 7, in which the differences between the potential of
the mean force and the effective potentials are displayed.
At the cutoff distance, the difference is about 0.7kT,
which is the constant term q;q. /sR, „, added to the po-
tential. At smaller distances the difference increases,
reaching a value of (1.5 —1.8) kT. The fact that the poten-
tial of the mean force decays faster than the effective po-

Eff.pot. 2.2M
p. m. f. 2.2M ----.

Eff.pot. 0.85M —.--
p. m. f. 0.85M

Prim. model ----

Z'.
LLI

o
CL

0
I—

IJJ

D
CL

-2

3

I

6.
r (A)

10
-4

2
I

6„
r (A)

10

FICx. 4. Na-Na effective potential, and the potential of the
mean force.

FICx. 5. Na-Cl effective potential, and the potential of the
mean force.
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FIG. 6. Cl-Cl effective potential, and the potential of the
mean force.

tials can be used for a reasonable estimation of the dielec-
tric constant for specific potential models for solvents.
Of course, larger simulation cells and estimations of RDF
at larger distances are desirable in order to ensure a true
asymptotic behavior.

The calculation of effective potentials may initially re-
quire relatively long computer simulation runs for the full
system to obtain the reference radial distribution func-
tions, but, once calculated, the effective potentials can be
used for simulations of ionic and polyionic systems (e.g. ,
DNA solutions as an example) on a much larger scale. A
simulation of ionic systems using effective potentials con-
sumes about equal computer time as a simulation of ions
using the primitive model, not forgetting that the
effective potentials reproduce structural properties (RDF)
corresponding to the full account of the solvent on the
molecular level. They do not suffer from the drawbacks
of the primitive electrolyte model and can therefore be
considered as a reliable approximation between explicit
atom solvents and the continuum models for solvents.

tential is quite natural behavior. This could be expected
because at large distances the potential of the mean force
decays as a screen Coulomb potential -exp( r/rD), —
where rD is the Debye radius, whereas the effective poten-
tial should approach the potential of the primitive model
q;qj /er. This potential, with a dielectric constant a=78,
is also displayed in Figs. 4—6. One can see that the
effective potential makes 1 —2 oscillations, thereby
reQecting the true molecular nature of the solvent, and
then approaches the primitive model potential, already at
distances 7 A and larger. The absolute value of the
effective potential is somewhat higher than the primitive
model potential, and corresponds to a dielectric constant
value of about 70. It can be compared with the result of
Ref. [19], a=82. 5, for the same flexible SPC water as
used in this paper. Thus calculations of effective poten-
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V. CONCLUSION

In this paper we have described a consistent method
for constructing effective interaction potentials, and
demonstrated it on a real molecular system —the ionic
water solution. It is possible, in the same way, to deter-
mine the effective potentials between small molecules,
atom groups of molecules, and especially macro-
molecules. These effective potentials can be used in MC
simulations oa. a larger scale without explicit considera-
tion of solvent molecules. For large distances, where the
RDF and the effective potential are not calculated in a
simulation of the full system, we can assume that only an
electrostatic potential with a proper dielectric constant is
acting, as was done in Sec. IV. All equilibrium effects of
the solvent are taken into account in the effective poten-
tials, in the sense that they reproduce the correct pair dis-
tribution functions and provide adequate structural prop-
erties. This is especially important for studies of confor-
mational properties of macromolecules. For nonspheri-
cal molecules one can include, in the same way, effects of
orientation al correlation functions, and calculate the
orientational part of the effective potentials. The method
can also be used for a derivation of effective atom-atom
potentials in the case when the atom-atom pair distribu-
tion functions are known from the experiment, e.g. , from
neutron scattering or from ab initio (quantum) MD simu-
lations (e.g. , Car-Parinello molecular dynamics [20]).

How reliable are the effective potentials? The exact
Hamiltonian of the reduced system, which reproduces all
canonical averages for interesting degrees of freedom
[q;,i = 1, . . . , n j, is obtained by averaging over the other
degrees of freedom [q;, i = n + 1, . . . , N ]:

I3H'[q, ], —
-2

2
I

6.
r (AI

io N
=ln f Q dqjexp( —PM{q, ,q I )

j=n+1, . . . , Nj=n+1

FIG. 7. Differences between the effective potential and the
potential of the mean force in the 2.2 M ion solution. We use the pair approximation, Eqs. (1) and (2), for the
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Hamiltonian 8*,neglecting three- and higher-order par-
ticle interactions. Their effect, raising due to interactions
with other (rejected) degrees of freedom, may appear in
concentration and temperature dependence s of the
effective potentials. In principle it is possible to include
three-body interactions in the method, determining
three-body correlation functions from simulations of the
full system and then applying the same algorithm. The
problem is only technical. While the number of lines in a
system of linear equations (3) when pair potentials are
used may be several hundred, for three-body potentials it
would be millions. In most cases the contribution from
the three-body interactions should be small. At least this
can be concluded since the overwhelming majority of
molecular simulations are done using pair potentials [1].
Thus we may also expect that the effective potentials, ob-
tained by the present algorithm, will provide a good
description of equilibrium properties.

Since the effective potentials are constructed from radi-
al distribution functions, they are, first of all, intended to
reproduce structural properties. As to thermodynamical
properties, one should take into account possible concen-
tration and temperature dependences of the effective po-
tentials and possibly also the three-particle contributions
to the entropy and its derivatives. Although in some
specific cases these dependences may be insignificant (e.g.,
in our example of ion solution the effective potentials for
two difFerent concentrations are very close to each other),
the possible dependences should be studied in each
specific case. Notice also that in simulations with
effective potentials the thermodynamics quantities will be
calculated in terms of the Hamiltonian of the reduced
system (1), e.g. , for an ion solution the pressure will be
the osmotic pressure, etc.

Another question is how do the effective potentials de-
pend on the system size? In our example of ion solution
(Sec. IV) the reduced system consisted of a few (8 or 20)
particles, thus the effect of a finite number of particles
and a finite box size on RDF may be noticeable. It is im-
portant from this point to carry out the effective potential
calculations (i.e., the MC simulations of the reduced sys-
tem) with the same number of ions, and in a box of the
same geometry as was used in the MD simulation of the
full system. In this case we can imply that the finite box
size equally affects both full system and reduced system
RDF's. Thus we assume that the size effects are mostly
canceled, and we can use the effective potentials for simu-
lations on a larger scale. Still this problem needs further
study.

Concerning the dynamical properties, we refer to work
[21] in which a similar problem of removal of nonin-
teresting degrees of freedom in molecular dynamics simu-
lations was considered. In the molecular dynamics simu-
lation, in addition to the effective potentials a memory
function appears. There are no clear criteria for the
choice of the memory function. It should be fitted in trial
simulations to reproduce correctly the dynamical proper-
ties of the full system. In principle one could neglect the
memory function and carry out a Brownian dynamics
simulation of the reduced system with effective poten-
tials.
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