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Coupled Burgers equations: A model of polydispersive sedimentation
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This paper compares theory and experiment for the kinetics of time-dependent sedimentation. We
discuss noninteracting (apart from hydrodynamic interaction) suspensions and colloids which may ex-
hibit behavior similar to the one-dimensional motion of compressible gas. The velocity of sedimentation
(or creaming) depends upon the volume fraction of the constituting particles and leads to Burgers-like
equations for concentration profiles. It is shown that even the bidispersive system of two coupled
Burgers equations has rich dynamics. The study of a polydispersive case reveals a continuous "renor-
malization" of the polydispersity. We compare the Burgers system evolution with the experimental re-
sults on monodispersive and polydispersive sedimentation.

PACS number(s): 05.60.+w, 05.40.+j, 47.55.Kf

and polydispersive suspensions. The case of larger parti-
cles which are fairly insensitive to the thermal noise cor-
responds to mixtures called suspensions. The particle-
particle correlation function is determined by hydro-
dynamic interactions and remains unknown in this case,
and consequently the value of the kinetic coefFicient is
unavailable theoretically. We avoid the unresolved issue
by making a simple estimate of hydrodynamic diffusivity
which uses the arguments originally discussed by CaQisch
and Luke [6] and Hinch [7]. As for the velocity of hin-
dered settling, it will be described by an empirical depen-
dence.

Equations (1.1) and (1.2) with c dependences of
different complexity have been considered by a number of
authors. It was recognized [8,9] that Eqs. (1.1) and (1.2)
with c-dependent velocity resemble very closely the
famous Burgers equation of one-dimensional compressi-
ble flow [2,10]. This equation leads naturally to shock
waves in which the nonlinear velocity dependence on
concentration is balanced by diffusivity. Some nonlinear
aspects of this effect were studied long ago by Kynch
[11], who discussed the shock wave toppling in the ab-
sence of diffusivity, and more recently by Barker and
Grimson [8] and by van Saarloos and Huse [9]. Baker
and Grimson pointed out the fact that the Burgers equa-
tion has an analytical solution (if the concentration
dependence of diffusivity is neglected) and argued its
qualitative applicability to a sedimentation experiment
[12]. The paper by van Saarloos and Huse [9] used the
Burgers equation to discuss the sedimentation layers
which are sometimes observed in the course of sedimen-
tation.

Other versions of the continuity equations (1.1) and
(1.2) have also been considered. Auzerais et al. [13]con-
sidered the effect of particle interaction and made corn-
parison to experimental data for the case of vanishing
diffusivity. Davis and Russel [14] and Nir and Acrivos
[15] reported some analytical and numerical results for a
particular version of kinetic coefficients; see also [16].
Comparison to experimental data in a more complex sys-
tern with a steady shear Qow of liquid was reported by

I. INTRODUCTION

The particle flux J is produced by external forces (such as
gravity), and also depends on gradients of concentration,
pressure, and temperature. In the experiments which we
discuss below, the influence of the (other than hydrostat-
ic) pressure gradient and temperature gradient is assumed
negligible, so that the particle Qux can be written as an
expansion in the concentration gradient in the form

(1.2)J=V(c)c D( )Vcc . —

From the works by Batchelor the kinetic coefBcients of
dilute systems V(c) and D (c) are known for small enough
particles when the Brownian motion dominates [3—5].
These mixtures are called colloids and they are described
by a structureless particle-particle correlation function.
Batchelor's theory provides results for monodispersive

The study of the motion of particles in a Quid goes
back to Einstein and before that to Brown. Here we con-
sider the effect of gravity upon the particles. If they are
heavier than the surrounding Quid the resulting motion is
called sedimentation; if lighter it is creaming. The con-
ventional and simplest problem involves the evolution of
an initially uniform suspension or colloid. At the bottom
(of the test tube) there appears the sediment, and at the
top water free of particles which is called the superna-
tant. Between these regions there is the original suspen-
sion itself. Thus two interfaces are created, and they
spread and propagate towards each other. The descrip-
tion of the bottom interface invokes high volume ratios
leading to "traSclike" problems with possible jams and
other instabilities whereby additional interfaces may
emerge [1]. In this paper we address the evolution of the
top interface in the dilute limit, in which the volume frac-
tion of the particles is much less than 1. We apply the
continuity equation which describes the conservation of
species with concentration c(x, t) and current J(x, t) In.
the case of very small particles which experience Browni-
an motion this equation reads ([2], f58, 59)

t},c +divJ=O . (1.1)
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Schauflinger, Acrivos, and Zhang [17].
In the present paper we seek a quantitative comparison

between the time-dependent evolution predicted by the
Burgers equation and experimental data [18—20]. In the
polydispersive case we introduce a system of coupled
Burgers equations. Their solution describes the motion
of the suspension interface proposed by Smith [21] and,
in implicit form, by Davis and Acrivos [22]. The coupled
Burgers equations predict an interesting phenomenon,
which we termed phase shifts; it may already be observed
in a bidispersive system. The particle size distribution
function evolves in an interesting way near the interface.
Step by step the system eliminates particles with different
sizes. We call this evolution renormalization since it is
produced by applying many times a given rule of elim-
inating the fastest species (infinitely many times in the
continuum limit).

The paper is organized as follows. The Burgers equa-
tion is introduced in Sec. II and relevant kinetic
coefficients are discussed. To show how this equation
works, the experimental data of Ref. [19]for a colloid are
compared with the analytical solution. In Sec. III we use
coupled Burgers equations to describe polydispersive sys-
tems. We first address the unique steady-state motion in
terms of simple analytical formulas borrowed from phys-
ics of the one-dimensional compressible gas [2] and then
simulate the bidispersive case numerically to investigate
the evolution of the initial condition problem. Descrip-
tion of the continuous polydispersive case is presented in
Sec. IV. Then a comparison with experiments [18,20] is
presented.

II. MONODISPERSIVE SEDIMENTATION

Depending on the particle size one distinguishes sus-
pensions and colloids for a given Quid. The boundary is
defined somewhat arbitrarily through a Peclet number,

p
0 8&g gapa

D. 3k.T ' (2.1)

(4/3)era gbp 2a gbp
6~pa 9g

(2.2)

due to the density difference Ap in a fIuid with viscosity g
in the presence of gravity acceleration g. Thermal Auc-
tuations are the source of the Brownian difFusivity

k~T
D0=

6~pa ' (2.3)

where k&T is the temperature in energy units. Systems
with Pe & 1 are conventionally called colloids. For wa-
ter at room temperature and particles less that 1 pm
Brownian effects usually dominate, while larger particles
form suspensions.

The concentration profile in the dilute limit c(x, t)
obeys a Burgers-like equation

which describes competition between the action of (say)
gravity and thermal fluctuations on a spherical particle of
radius a. Gravity results in particle downward motion
with the Stokes velocity V0,

a,c =a. [ V(c)c]+a„[D(c)a„c], (2.4)

where V(c) and D (c) represent the Stokes velocity and
gradient diffusivity modified by the presence of other par-
ticles. The axis x is directed upward, opposite to the
direction of gravity. If c(x, t) is normalized to be the
volume fraction (c = ', ~—a n with n being the number den-

sity), then

v(c) = v,f„(c), (2.5)

where f, (c) is the hindering effect and

f„(c)=1—kc+0(c ), c «1 . (2.6)

According to calculations by Batchelor [3], k=6. 55 in
the dilute limit, c «1. Larger values of the concentra-
tion are sometimes approximated, for example, by the
Richardson-Zaki empirical formula [23], f, (c)=(1—c/

kCO
co) which works also in the case of suspensions.
(There exist other suggested formulas [19].) Here co & 1 is
the volume fraction at dense packing.

The difFusivity D entering (2.4) can be written as

Db(c) =Dofb(c),
with (again according to Batchelor [5]; see also [24])

f&(c)=1—(k —8)c+ =1+1.45c, c «1 .

(2.7)

(2.8)

Dh (c)=k'a Vo, c « 1, (2.9)

where k' is a pure number. Using (2.9) one finds that the
ratio Dt, /D& is of the order of the Peclet number. If the
dependence on concentration in Eq. (2.9) is incorrect,
there will exist an additional class of mixtures which can-
not be ascribed to either suspensions or colloids. The
difference between vertical and horizontal Auctuations is
not captured by the semiquantitative arguments above.

Equation (2.9) is in conflict with results by Koch and

The nonlinear terms in the expansion (2.8) (studied exper-
imentally [24]) lead to a maximum of fb at c-0.15, so
that the entire concentration dependence of the
diffusivity is within 10%%uo of its bare values up to the
volume fractions c -0.3.

Addressing now suspensions, in the case of large Peclet
numbers, we deal with strongly interacting systems, and
the applicability of Eq. (2.4) is unclear. If assumed, it in-
troduces a function D (c) called hydrodynamic difFusivity
[7]. This concept is an attempt to get the main effect of
multiparticle forces without a very detailed calculation
and can only be justified a posteriori.

Hinch [7] pointed out an argument by Caflisch that
uniform distribution with finite particle sizes leads to
convective Aows due to density fluctuations. Hinch
speculated that the convection will cease at a level of
mixing which is comparable to the interparticle separa-
tion ac ' . The velocity fluctuations of the remaining"
convection are then of the order of the main term of the
interparticle force evaluated at the interparticle distance.
This gives for the velocity fluctuation an estimate of
V0c . We may continue this speculation by multiplying
these two values,
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Shaqfeh [25], based on an uncontrolled approximation.
In the latter case the so-called "screening" length is of
the order of ac ', and the velocity fluctuation is of order
Vo. As a result the hydrodynamic diffusivity is aVO/c
and diverges in the dilute limit.

Experimentalists have been analyzing hydrodynamic
diffusion by two difFerent techniques. One approach
[18,20] is to investigate the gradient diffusion. The other
is to trace a marked particle and evaluate the self-
diff'usivity [26—29]. In a strongly interacting system the
two approaches may, in principle, produce different
values. Ham and Homsy [26] found that for the case of
self-diffusion the factor k' depends upon concentration
for small c & 0.01, and saturates at about k'=5 for larger
values of c. Experiments by Nicolai et al. [27,28]
discriminate between vertical and horizontal self-
diffusivities and may indicate that k =6—10 for the form-
er. Xue et al. [29] found a finite value of the velocity
fluctuations in their dilute limit. This measurement sup-
ports the Koch-Shaqfeh result, and the viewpoint that
hydrodynamic diffusivity diverges at small volume frac-
tions [30].

We found k'=10 by analyzing the gradient diffusion of
the experiments [18—20] (see Sec. IV). This estimate is
within the error bars of the experimental estimates of
self-diffusivity. The c dependence of Dz was not really
tested in this paper since both the degree of polydispersi-
ty and uncertainty of the size distribution function used
in [18—20] are found to be too large for this purpose.

Let us now use the Burgers equation to describe the re-
sults of experiments on monodisperse sedimentation. The
Burgers equation with relevant boundary conditions
c( —~, t)=co)0, c(~,t)=0 forms a solution which is
called a single Burgers shock moving with constant speed
and width. Substituting c(x, t)=c(x+ut) into (2.4) and
integrating from x to ~ one obtains

D(c) =[u —V(c)]c,dc
dx

(2.10)

which for large negative x gives u = V(co). The shape of
the interface can be found by another integration of Eq.
(2.10). This shape depends upon Peclet number [16]. At
intermediate times the interface proNe is time dependent.
We found such a measurement in the paper by Al-Naafa
and Selim [19]. The solution of Eq. (2.4) with initial con-
dition c (x,0) =ce8(x) is

cof i(x, t)
c(x, t)= f2(x, t)+f, (x, t)

Vok&o
[x + Vot (1—kco)] .

0

x + Vut(1 —2kcu)

2+D, t

x+ Vot
f2(x, t) =1+erf

2+D, t

X 1 —erf (2.11)

We then compare the data in Fig. 5 of Ref. [19]with this
formula. The result is shown in Fig. 1. The experimental

80-

75

70

65

(D 60—

bQ 55-

50
0 0.5 1.5

Height (cm)

2.5

FIG. 1. Fit of light intensity data versus tube height for a
monodispersive suspension [19]. Curve 1 was taken after 195.2
h after the beginning of experiment and curve 2 after 374.7 h.
Experimental parameters used for the fit: a =65 nm, co =0.009,
hp=1. 005 gcm, V0=0. 12X10 ' cm/sec. T=25'C, so that
g=0.0077 g/cm sec and DO=4. 4X 10 cm /sec. Both curves
are scaled in the vertical direction to meet the experimental
range of Fig. 5 in Ref. [19]. This is the experiment at small
Peclet numbers, so that hydrodynamic diffusivity is negligible
with respect to the Brownian part.

parameters are given in the figure caption. Initially the
shape of the optical density profile is narrower than the
prediction of formula (2.11). After a transient we get an
optical shape which does fit [31].

III. BIDISPERSIVE SEDIMENTATION

CJ
J( = V( (c i, c2 ) D(J ( c i,c2 )

Bx
(3.1)

Using expansion at small concentrations we arrive at the
two coupled Burgers equations

a,c, = V, a. [(1—k„c,—k„c,)c, ]+D,a„'c, ,

t), c2 = V2B [(1—kqici —k22c2)c2]+D2B c2 .
(3.2)

This system is a straightforward generalization of the
monodispersive Burgers equation (2.4). The hindering
velocity of each of the particle species depends linearly
on both volume fractions. This dependence has been
studied by Batchelor and Wen; see Ref. [4] where one can
find a method of computing the constants k», k &2, k2&,
and k22. The dependence of diffusivities D, and D2 upon
particle concentrations will be ignored in this section to-
gether with the cross terms when a gradient of, say, c&

influences a flux of c2 particles. These refinements vanish
with c.

First, we are looking for steady-moving solutions

We then consider the case of bimodal distribution of
particle sizes. Let c, and e2 be the concentrations of
these particles, both obeying continuity equations (1.1).
The corresponding fluxes JI and J2 are
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c, 2(x —v, 2t). Substituting these into Eqs. (3.2) and in-

tegrating once we have

dci
Dl =(Ul Vl )cl + Vlk lie 1 Vl k12clc2

dx
(3.3)

and an analogous second equation. Two shocks may be
observed for the relevant boundary conditions
c, 2( —«(&)=c0, 02 ci 2(~)=0. We then have to decide
which of the waves is faster. Without loss of generality
let us assume that U, )U2 where

U l
—Vl ( 1 k 11C01 +k &2C02 ) (3.4)

U2 V2( 1 k21CO&+ k22C02 ) (3.5)

c2(U2 —v, )=c2 (U2 —vi) .

Here v2 is

v2 —V2(1 —k22C2 ) .

(3.6)

(3.7)

Figure 2 illustrates the steady-state geometry of the sys-
tem. It can be easily shown that if U& &Uz then U& )v2,
and U&~U2 when U, —+U2. Consequently, no other
steady-moving solutions exist for this system. Thus, the
steady-moving solution of coupled Burgers system is
characterized by the formulas for the interface (shock)

This leads to the first shock velocity being U&. The sub-
stance 2 changes its concentration when the first shock
passes through. Let us denote this changed (we shall also
call it renormalized) concentration as c2. At the top of
substance 1 we essentially have the problem of mono-
dispersive sedimentation considered in the previous sec-
tion. Let the hindered velocity of settling be v2, as we
have seen above, it is also the velocity of the second
shock. The concentration c2 obeys the quadratic con-
tinuity equation in the reference frame moving with the
first shock velocity v, (see Ref. [2], Chap. IX, and Ref.
[21]),

velocities. It is nice to get to know that these formulas
also describe the solutions of coupled Burgers equations.
Experimental confirmation of the shock velocities pre-
dicted by Eqs. (3.6) and (3.7) for bidispersive (and tri-
dispersive) systems can be found in Refs. [24,32].

The coupled Burgers equations also allow one to study
the transient regimes prior to the establishing of the
steady-moving shocks. We hope to encourage studies of
time-dependent phenomena by addressing the physics of
coupled Burgers equations. To give an example of tran-
sient behavior we solved the system of two coupled
Burgers equations numerically.

The two shocks when formed separate linearly in time
and their asymptotic shapes may be found by numerical
integration of Eq. (3.3) with real concentration depen-
dences of the diffusivities; see [5]. Both shocks have finite
widths (analytical formulas may be obtained in a number
of limits) and quickly cease to interact; see Fig. 2. It
must be emphasized that no matter how simple the
steady-moving solution of the system (3.2) may seem, the
transition to this solution in time may be rich; see Fig. 3
where a change in coupling constant k2, from 0.35 to 0.4
resulted in the system's inability to reach the dynamical
steady state within the integration time. Figures 2 and 3
show examples of the time-dependent solutions of Eqs.
(3.2) which develop transient increases of concentration
and even additional transient shocks (Fig. 3). The final
profiles in Fig. 2 display the two regions discussed above:
the first shock at x =30, accompanying renormalization
of cz from 1 up to 1.86: and the second shock at x =45 at
the end of the integration time. Measuring the rate of
change of the separation between adjacent profiles one
can verify that the shock velocity is nicely predicted by
Eqs. (3.4) and (3.7). However, the separation between the
shocks accounts for the initial condition and interaction
at the stage of shock disentanglement" as well as for the
widths of shocks.

The described behavior is yet another example of the
dynamics of compressible one-dimensional gases [2].
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FIG. 2. Numerical integration of two cou-
pled Burgers equations (3.2) ~ Parameters:
Vl =0.1, V2 —0.05, kl, =k(2 —kg2 0 4y

k» =0.35, and D, =D2=0.01. Initial condi-
tions for cl(x) and c2(x) were selected to be
their individual Burgers shocks in the absence
of coupling with small shift with respect to
each other; c „=1, c+„=0 for both sub-
stances. Integration time t =2000 and At =40
between profiles. cl is shown in lines; c& with
broken lines. System size x = 100. The sign of
velocities was selected such that the shock
motion occurs from right to left. Initial and
final profiles are shown with thick lines. Equa-
tions (3.2) do not impose any constraints on
amplitudes of cl 2. We can formally use the
nonphysical range cl z ) 1.
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FIG. 3. An example of complex temporal
behavior. Parameters are the same as in Fig. 2
except that k» =0.4.

IV. POI YDISPERSIVE SEDIMENTATION

j=N
u,*=V, 1 —g k;c*

j=l
(4.2)

It is our intention to apply the ideas of the previous
section to the real polydispersive case starting with the
situation where a finite number N of particle sizes is in-
volved and particle groups are numbered 1 ~i ~N. As
before one should calculate the hindered velocities of
sedimentation of all particle groups which are given by

j=N
v;=V, 1 —g k,"cj (4.1)

j=l
and represent a generalization of expressions like (3.4).
Again we refer to Ref. [4] for the constants k; . The max-
imal velocity max; ( u; ) is to be found and the correspond-
ing substance (say, io ) will form the lowest (fastest) shock.
Generally speaking, the motion of the edge of the size
distribution is not necessarily the fastest; one may rather
say that some substance io will move down first, depend-
ing upon the matrix k, J and the size (and density) distri-
bution function. Other particle concentrations above the
leader will be renormalized, according to the equations

the calculation is a sequence of successively eliminated
particle species and corresponding velocities. The inter-
face shape becomes wider in time, although not as wide
as one would obtain without renormalization. The con-
centration profile in the limit of vanishing diffusivity can
be found by adding regions with renormalized concentra-
tions at separations prescribed by successive velocity
difFerences. Renormalization leads to thinner interfaces;
this is the so-called phenomenon of self sharpe-ning of the
interface [18,20] when smaller particles above larger par-
ticles move faster than they would do if mixed with larger
particles. When diffusivity is finite, a contribution to the
interface width comes from the phase shifts.

Before moving on to the continuous case we discuss the
influence of diffusivity from a different perspective. For a
single Burgers shock connecting concentration change

0.015—

0.01

0
0.005

03

2 o

c;(u; —v; )=c;*(u;*—u; ), (4.3)
30

35

which form a system of quadratic equations. Note that
the system can be formally extended to i,j=io given that

Now the entire procedure is to be repeated X times.
At each level of renormalization one additional substance
is eliminated and others get renormalized. An example
can be seen in Fig. 4 for the evolution of an initially
Gaussian-like size distribution function with N =26
different particle sizes, and real parameters taken from
[18]. In this particular case there is no inversion of or-
dering, i.e., larger sizes are eliminated first. The result of

40 45
55 60

Particle size (trtrt) 75
85 O

25
20

15

Height (cm)

FIG. 4. Snapshot of the solution c(a,x, t) at time t =36 min
for the experiment [18]. Parameters: a =61(+6) (t(m,
hp=1. 384 g/cm, co=0.05, and q=0 0085 g/cmsec. With
these parameters one obtains Vo(a) =0.0141 cm/sec and
Dz(a) =k'X8. 510 ' cm /sec. The value k'=1 is used (see Fig.
5). System length is 40 cm; an initially Gaussian size distribu-
tion with deviation 6 pm is used. Number of species N =26 and
1600 spatial points for each particle species.
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from c to c+ the width is given by

2D
Vok (c —c+„) (4.4)

where for a moment we assume the simplest possible situ-
ation: constant diffusivity and monodispersive case. The
smaller is the concentration difference the weaker is the
nonlinear effect competing with constant diffusivity [10],
and the shock width becomes proportionally larger. A
similar phenomenon exists in the polydispersive case; the
larger is the number of different particle sizes which are
taken into consideration, the smaller are the concentra-
tion changes and the smaller are the velocity differences.
In addition, the widths of the successive shocks overlap.
Thus, diffusivity provides a time-dependent cutoff for the
achieved resolution in particle size step.

This physics is rejected in the renormalization of the
size distribution function. When particles of a given size
move down and are not present at some height, the distri-
bution function of this size at that height becomes zero

I

[rigorously speaking, it is, of course, of the order of ex-
ponentially small, exp( —Vx/D) diffusive corrections].
In the limit of large N this leads to a discontinuity which
moves monotonically or jumps depending on the absence
or presence of the ordering inversion discussed above.
Discontinuous renormalization of the size distribution
function implies that diffusivity is to be taken into ac-
count, and the existence of the diffusive time-dependent
cutoff regularizes the problem. At any point along the in-
terface new structure appears as time goes on. The
minimal resolved size step diminishes with time, and the
emerging of the fine structure of the distribution function
(or segregation) continues. Note that certain integrated
properties such as the profile of the optical density may
still be perfectly smooth under these circumstances; it is
the size distribution function which changes most drasti-
cally within the suspension interface.

In the continuous case the coupled Burgers equations
form an integro-differential equation for the evolution of
the size distribution function c (a,x, t):

dc(ax, t) B . . . 8, , dc(a', x, t)= Vo(a) c (a,x, t) da—'k (a,a')c (a,x, t)c (a', x, t) + da'D (a,a')
dt Bx 0 Bx 0 Bx

(4.5)

u (a, b) = Vo(a)y(a, b),
y(a, b)=1—f da'k(a, a')c(a'),

0

and the continuity equation reads

c (a, b)[u (a, b) —u (b, b)]

(4.6)

where

u (a, b db)—
=c (a, b —db) [u (a, b db) u(b, b)]—, (4—.7)

b —db= Vo(a) ~ 1 —I da'k (a, a')c (a, b —db) . (4.8)
0

where the kernel k (a,a') is the continuous generalization
of the matrix k, and the diffusivity is a functional of c
with diagonal terms of zero and first order in c and off-
diagonal terms of first order in c. The solution of Eq.
(4.5) is well defined due to the presence of D. It is
noteworthy that for the kernels k(a, a') and D(a, a'),
whose dependence on a and a' consists of factorizable
terms, it may be more convenient to work with the Mel-
lin transform of Eq. (4.5) performed in variable a.

Generalization of Eqs. (4.2) and (4.3) to the continuous
case is straightforward. We consider the simplest case of
no ordering inversion. Then at any point x on the inter-
face (at late times) there exists maximal particle size b (x)
which is "eliminated" at this point. It is convenient to
parametrize the spatial dependence by b(x). Then con-
centration becomes a function of a and b, i.e., c (a, b) [and
certainly an implicit function of x through b(x)]. Parti-
cle hindered velocities are given by

Expansion of (4.6)—(4.8) to the first order to get an equa-
tion for Bc (a, b)/Bb should be done carefully since c (a, b)
contains a singularity at a =b,

c(a,b)=
z

+c (a, b),C(b)
(b a)P(b)

(4.9)

where p is positive, such that integral (4.6) converges,
and c (a, b) stands for the regular part at a =b The ex-.
ponent p(b) can be related to other functions by using
Eqs. (4.7) and (4.8). A study not presented here shows
that

i) lny(a, b)/Bb
2/b+[8 Iny(a, b)/Ba]

(4.10)

i.e., the concentration c (a, b) becomes infinite at the point
a =b. Given that the singularity is identified, explicit
difFerential equations of renormalization can be written
for dC/db and Bc (a, b)/Bb.

Numerical integration of Eq. (4.5) enables one to study
the time-dependent evolution of polydispersive suspen-
sions. For this purpose we performed simulations on a
workstation to fit the experimental data by Davis and
Hassen [18] and Lee et al. [20]. The simplest possible ex-
plicit difference scheme (Euler scheme) already works
nicely for Eq. (4.5), provided that spatial and temporal
steps obey the conditions hx ((D / Vo,
b, t ((min(bx/Vo, bx /D). The results cease to depend
on numerical resolution for N )30 particles species (to
model the size distribution function) and more than 1000
spatial points for each of the species given that the
characteristic value of the hydrodynamic diffusivity
exceeds 10 cm /sec. The diffusivity of particles of size
a was selected to be Dh=k'aoVO(ao), where ao is the
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average size. The results are presented in Figs. 4—6.
Figure 4 shows the evolution of the size distribution func-
tion c and resembles closely the numerical results by
Davis and Hassen (see their Fig. 2) if the latter are
resolved in space. One can clearly see the appearance of
singularities of the size distribution function. Their am-
plitude is restricted by diffusive resolution as we dis-
cussed above. Figure 5 compares the simulation results
with the experimental data for transmitted light intensity,
which is given by [18]
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~ w
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8
0.04

in[I(x, t)] cc —f c(a, xt),da
a

(4.11)
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FICx. 5. Fit of raw transmitted light intensity versus time for
a polydispersive suspension (Fig. 11 of Ref. [18]). The intensity
is measured at heights x =1.5, 6.0, 24, and 32 cm. Note that we
use k =2.5; this is the experimental value which can be extract-
ed from Fig. 11 in contradiction with Table I (both from Ref.
[18]). The other possible explanation is that Fig. 11 was, in fact,
taken for cp =0.02; then k -5 in agreement with Fig. 12 of Ref.
[18] and Table I. (In both cases the conclusion made in the text
remains valid. ) The Richardson-Zaki dependence (1—c) is em-

ployed instead of 1 —kc; here c is the total volume fraction. The
value k'=1 is used to show that the hydrodynamic diffusivity is
not required to account for the width of the curves. At the top
of the theoretical curves one can notice small oscillations caused
by insufficiently large number of particle species N =26 when
they get separated.

scaled to the experimental amplitude range
I(x,0)/I(x, cc )=0.12. The factor k' was the adjustable
parameter. It is interesting to note that we did not find
any significant dependence upon the constant k' for
values of k' up to about 10. Also important is the obser-
vation that the interface width obtained at smaller k' (we
tried 1 ~ k' & 10) is nicely comparable to the experimen-
tally measured one. Smaller values of k' require higher
resolution or more advanced numerical schemes and were
not attempted.

Thus it is possible to comment on the conclusion made
by Davis and Hassen who used Eqs. (4.2) and (4.3) and
discovered that in addition to the polydispersive width
there is a diffusivelike contribution which they identified
with the effect of gradient hydrodynamic diffusivity.
However, the "bare" hydrodynamic diffusivity that

r
4 6 8

Height (cm)

FIG. 6. Fit of volume fraction f da c(a,x, t) vs height x for
four different times: 332, 443, 567, and 1288 sec from left to
right. Last experimental curve at 2611 sec is not fitted since its
average displacement is not described by a motion with constant
velocity (see text). Experimental curves are from Fig. 2 of Ref.
[20]. Parameters: a =67.9(+4.0) pm, b,p = 1.57 g/cm3,

g =0.0164 g/cm sec, and cp =0.1. With these parameters,
Vp 0.0096 cm/sec and D& =k' X 6.5 10 ' cm /sec. The value
k'= 10 is used. The Richardson-Zaki dependence (1—c)" is em-
ployed with c being the total volume fraction here.

enters Eqs. (2.4) and (4.5) does not contribute to the inter-
face width directly —it is achieved through the evolution
of the equation, and the distribution of the phase shifts
inAuences the width. The simulation of the coupled
Burgers equation (4.5) becomes a necessary step to de-
scribe the results of the polydispersive sedimentation ex-
periment. It should also be noted that the tail of the in-
terface profile is sensitive to the real particle size distribu-
tion (which is not necessarily Gaussian as assumed in Fig.
5 and in Ref. [18]).

An analogous fit was performed for the data in Fig. 2
of Ref. [20]. The fit is shown in Fig. 6. Here the experi-
mental standard deviation of particle size was only —', of
that of Ref. [20], and polydispersity alone cannot account
for the observed width. With the help of hydrodynamic
diffusivity (using k'=10) we can get curves which are
rather similar to the experimental ones. The exception is
the last curve, whose position is not described by motion
with a constant velocity. We are thankful to Soonchil
Lee who explained to us that the shape and position of
this curve is afFected by the presence of the 1ower inter-
face between the suspension and sediment, and must be
ignored in our analysis [33].

V. CONCLUSION

Application of (coupled) Burgers equations to describe
sedimentation of (polydispersive) suspensions and colloids
enables one to reproduce experimental data and provides
a basis for analyzing time-dependent sedimentation. The
study of the fluctuations of concentration during sedi-
mentation may lead to an experimental realization of
Burgers turbulence.
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