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A nonlinear wave equation is derived describing the behavior of gas- and liquid-fluidized beds in the
small Froude number regime. It represents a two-dimensional perturbation of the Korteweg-de Vries
equation and is shown to constitute a valid approximation of the original system. While greatly simplify-
ing the analytical and numerical investigation of two-phase flow in fluidized beds, it also leads to the
conclusion that the underlying model does not significantly discriminate between gas- and liquid-
fluidized beds near the stability limit. An amplitude equation is derived governing the growth and stabil-
ity of solitary plane waves. The results are linked to those obtained by previous nonapproximative anal-
yses. It is expected that this analysis is applicable to other multiphase and trafBc flow models due to the
similarity in the governing equations and the completeness of the reduced wave equation.

PACS number(s): 47.55.Kf, 03.40.Gc, 47.20.—k, 47.35.+i

I. INTRODUCTION

As a particular two-phase Qow, in which densely
packed particles are suspended by an upward Qowing
Quid, fluidized beds have found a variety of engineering
applications and, therefore, have been the subject of ex-
tensive experimental and theoretical investigations [1—7].
Typically, the desired state of uniform fluidization be-
comes unstable upon increasing the Quid Qow rate and
turns into a wavy Qow in liquid-Quidized beds, or into a
bubbly Qow in gas-Quidized beds. Increased efforts have
been made during the last few years to understand the
origin of these nonlinear structures as well as the
differences between gas- and liquid-fiuidized beds [8—14].

To be more precise at this point, these differences seem
to be less due to the differences in compressibility and
viscosity of the Quids used for Quidization, usually air or
water, and more due to the magnitude of the ratio 5 of
the specific densities of the Quid and the particulate phase
[15]. This is refiected in common models of fiuidized
beds based on volume or ensemble averaged equations of
motion, where both the Quid and the particulate phase
are treated as incompressible. Assuming that the
behavior of gas- and liquid-fluidized beds can be modeled
in the same manner, the only parameters expressing an
explicit difference between these two are 5 and the ratio
of the kinematic viscosities of the fluid and particle
phase, v. Usually, gas-Quidized beds are associated with
very small values of 5 and v, and for simplification one
often sets 5=v=0. These values, however, depend on
the properties of the Quidizcd particles as well. This
reservation has to be kept in mind when we use the
phrases gas- and/or liquid-fiuidized bed below.

From the linear stability analysis of such models one
knows that the primary instability occurs in the vertical
direction, and the bifurcation analysis shows that this
leads to plane periodic voidage waves traveling upwards
through the bed [6,8,9]. Restricting attention to one-
dimensional traveling waves, it turns out that the period-
ic waves either terminate in a homoclinic orbit, i.e., a sol-

itary wave with a single hump and of infinite period, or
return to the uniform state at a smaller wave speed. Al-
though the other parameters play a role as well, it can be
said that the second case can only take place for nonvan-
ishing values of 5 [9].

The basic fact behind this behavior is the occurrence of
a codimension-2 degeneracy at the instability threshold,
at which the interparticle collisional pressure balances
the drag force exerted by the upward streaming Quid on
the particles. It is essentially the difference between these
two forces that determines the strength of the instability
and the growth rate of the unstable modes; the latter is
also proportional to the Froude number. At a certain
wave speed, which is related to the drag force, a station-
ary solution bifurcates transcritically from the basic
state —in special circumstances a pitchfork bifurcation is
possible indicating the existence of heteroclinic connec-
tions, i.e., moving fronts —whereas a Hopf bifurcation
takes place at a lower wave speed related to the value of
the interparticle force [9]. As is well known, the interac-
tion between these two solutions produces a homoclinic
connection [16]. The temporal evolution of this solitary
wave, which is a pure kinematic wave at the onset but
can further be described by a perturbed Korteweg —de
Vries (KdV) equation, has been intensively studied re-
cently within a small Froude number approach for a
one-dimensional model of gas-fiuidized beds [14].

It is obvious, however, that higher-dimensional insta-
bilities play the decisive role in the formation of bubbles
or other, less distinctive multidimensional wave patterns.
Again, bifurcation analysis reveals the presence of trans-
verse instabilities allowing the bifurcation of two-
dimensional periodic traveling waves off the state of uni-
form fiuidization [8,10,17]. Their stability has not yet
been studied analytically but known results for other sys-
tems and numerical analyses [18] suggest that, since they
usually do not represent the first bifurcating branch, they
are probably all unstable near their point of bifurcation.
This holds except within a very narrow parameter regime
where there exists no pure downstream instability, such
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that the first instability leads at once to a two-
dimensional bubblelike structure (cf. Fig. 3 in [8]). This
could explain the rapid formation of bubbles in gas-
Quidized beds; however, this possibility is only valid for
liquid-Quidized beds, which is contrary to experimental
evidence. More precisely, for the case described, one
needs to have vAO.

Although these "mixed-mode" branches may play a
prominent role in the nonlinear regime, as has been out-
lined in [17], they have not received much attention in
the literature and are, therefore, not well understood. In-
stead, the search for the origin of bubbles has been direct-
ed to a secondary, transverse instability of the one-
dimensional traveling wave solutions. Because such a
behavior can be observed very clearly in liquid- but not in
gas-Quidized beds, in the latter case the range of stability
of the one-dimensional (1D) wave has to be very small in
order to allow for the prompt onset of bubbling. A rudi-
mentary approach has been presented recently and de-
pends on the introduction of a diffusion term into the
mass conservation equation for the particles [13]. In a
more rigorous investigation, the present author has con-
sidered weakly stable perturbations of the uniform state
with long transverse wavelength, and followed their de-
velopment along the branch of vertically traveling
periodic waves in a model with 5=v=0 [19]. It could be
shown that the interaction between the one-dimensional
wave and a disturbance packet, consisting initially, i.e., at
the primary bifurcation point, of two pure transverse per-
turbations and the above-mentioned mixed modes, leads
to a secondary instability, at which the plane wave loses
its stability to the wave packet. For transverse perturba-
tions of wave number k, k "small, " the secondary insta-
bility sets in and gives rise to two-dimensional traveling
waves of bubble type (cf. also [18]), when the amplitude
of the primary wave has grown up to the order of k . It
has been found that a stationary as well as an oscillatory
instability can occur (cf. also the discussion in [17] based
on symmetry arguments). Because the standard model-
ing makes no difference in principle between the Quidiza-
tion by a gas and that by a liquid, the same result will
presumably hold for the latter case. However, since it is
known from the pioneering work of Anderson and Jack-
son [20] that perturbations grow much faster in gas- than
in liquid-Quidized beds, the 1D wave train can be expect-
ed to reach the critical amplitude much earlier, thus be-
ing more subject to a transverse instability in the first
case. Of course, this supposition has to be confirmed by a
detailed analysis, and it was one of the motivations of the
present study to facilitate this endeavor.

A somewhat different approach based on a small pa-
rameter controlling the linear instability —without corre-
lating it to the Froude number —has been applied quite
recently to 1D [12] and simplified 2D madels [ll], and
this has led to a 2D perturbation of the KdV equation.
The authors of [11]have also carried out a 1D simulation
and found that the initial solitary wave finally settles
down onto a periodic wave train, which is no surprise in
the light of the previous bifurcation results, as has been
discussed in [17]. Finally, Hayakawa [21] has derived an
amplitude equation describing the growth of pseudosoli-

tons in one-dimensional gas-Quidized beds, and found
that the one-soliton solution can blow up in finite time.

In this paper, we will derive a two-dimensionally per-
turbed KdV equation valid for both gas- and liquid-
fluidized beds using the Froude number as small parame-
ter. Reducing the complex two-Quid model to a scalar
equation for the voidage greatly facilitates the further
analytical and numerical treatment of the Quidized bed
system. Therefore, we will first state the equations we
deal with, then describe the procedure used to arrive at
the simplified equation, state the latter, and show that it
is a valid approximation of the original system. Then we
transform it into canonical form and examine the
coefBcients of the various terms, thereby showing that
they do not change their signs nor do they vanish in
physically reasonable parameter domains. This indicates
that gas- and liquid-Quidized beds behave very similarly
within the considered approximation. Finally, we derive
an amplitude equation governing the growth and stability
of solitary plane waves and link the results to those of our
previous bifurcation studies. The blow-up behavior of
these soliton perturbations can be ascribed to the approx-
imative nature of the reduced equation.

II. BASIC EQUATIONS AND SCALING

We start with the widely used two-phase Qow model
[4,8]
—B,P+div[(1 —P)v] =0,
B,P+div(Pu) =0,
F(1 P)(d, v+v.—Vv)

= —(1—P)k+8 (P)(u —v) —FG (P)VP

—(1—P)Vp+ —hv,
R

(2.1)

(2.2)

(2.3)

E5$(B,u+u Vu)= 5/k B(P)(u—v) —QVp+v ——h—u .

(2.4)

Instead of (2.2) we will also use the following equation for
the total volumetric Qow, which is obtained by adding
(2.1) and (2.2):

div[(1 —P)v+Pu]=0 . (2.2')

The variables are the Auid volume fraction or voidage P,
the effective Quid pressure p, and the particle and Quid
phase velocities v and u, respectively. The equations
have been made dimensionless by scaling with an ap-
propriate length scale L (cf. the discussion in [14] and
below), fluidization velocity uo=uok, pressure with p, gL,
and drag with p, g/uo, where g is the gravitational con-
stant and k is the unit vector parallel to the x axis point-
ing against gravity; the transverse direction will be denot-
ed byy.

Note that we have scaled the bulk modulus G(P) ( (0)
appearing in the interparticle force differently from p,
namely, by p, u 0 which provides another natural pressure
scale. However, the usual pressure term proportional to
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Vp has to balance the weight of the particles as well as
the drag force between the two phases, which are ex-
pressed by the terms (1—P)k and B(P)(u—v), respec-
tively. Hence these forces should act on the same scale,
whereas we assume that the interparticle force contrib-
utes on a scale 0 (F) compared to Vp; otherwise the kine-
matic wave occurring at the transition point would be
damped [22].

The density ratio 5=p&/p, is small for gas-fluidized
beds and often set to zero for simplicity, as is the ratio of
the viscosity coef5cients v=p&/p„both may be taken of
order O(10 '). The p, & may depend on the voidage but
are taken to be constant here. Thus we end up with the
nondimensional parameters Froude number F=u o/(gL)
and a particle-based Reynolds number 8 =p, u oL Ip, .
Using a macroscopic length scale I, yields F &&1, while
R =0 (1) (see [14] and the discussion below).

Now the state of uniform Quidization is given by

for the voidage perturbation. Adopting the notation of
[8], the positive constants are given by

80
A =Po+C, C=5(1—Po), E= 1 —5

F
&0

0
B'+—(1—5)(l —2P ) /F0

=(n +2)(1—Po)(1 5)/F,—

v 1 —
0o 4'oM= —PoGo, H=—,J= +H .

R $o
' B (1—Po)

(2.8)

In addition, it is convenient to introduce the following
abbreviations:

[AB, +2CB,c) +CO„+DO +EB,
M—~ J~—a, Hx—a. ]y=0 (2.7)

y=yo, v=o, u, =k,
Vpo = —[1—Po(1 —5}]k—=pok,

(2.5)

B(y)=(i —5) ' „~y,"+' (2.6)

with n=3.0 (cf. [1]). Linearizing around the uniform
How leads to the equation

while the drag coefficient has to satisfy the relation
Bo= B(P o)=(1—5)go(l —Po). To match this, the drag

coefficient is frequently assumed to be of the Stokes-like
form

m =M/A, c =C/A,
d =D/E [=(n +2')(1 —Qo)], h =H/J;
f (s)=m —c(1—c)—(s —c)

(2.9)

From (2.7) one derives easily the dispersion relation
determining linear stability by setting
P-exp(ot+ikx+iky) It ca.n be shown (e.g., [8]) that
the state of uniform fluidization is stable if f (d) ~0, oth-
erwise an instability sets in at small wave numbers, where
the growth rate is proportional to the Froude number.
This is more clearly seen by expanding the critical eigen-
value for small wave numbers, where we set 5=v=0 for
simplicity:

u+= igd[—1. FJ(/2+k2) F2[2y2[(G +d2Q2+G k2] J2(P2+k2)2]]

+Fgo[(Go+d 9, +Gok ]—F Po[J(2Go+3d )+O(F)]A, k

—F po[J(Go+3d )+O(F)]A, FgoGo[J+O(F)—]k +O(A, , A, k, A, k, k ) . (2.10)

Up to terms of the order of F this long wave expansion
is virtually identical to the small Froude number expan-
sion and shows how the various terms should be balanced
in order to capture the behavior near the stability limit
and for small Froude number: correlating the instability
range to the Froude number via

« —f(d) I,=o=d' —
I G, I

-F
leads to A, F'+ —A, F and k —A, F, because we want
to include the regularizing fourth-order derivative in x
and a contribution from the transverse direction; hence

', k -F '. Choosing a=& eventua11y gives
d —~Go ~

-F, A, -O(1), and k-F' . Then, on the other
hand, we cannot expect to keep track of the terms corre-
sponding to F k and F A, k, i.e., no derivatives Br,
BXB& will show up in the simplified wave equation for the
voidage to be derived in the next section.

Moreover, the imaginary part of (2.10) indicates that
the analysis should be performed in a frame moving with

velocity d against gravity, because the leading order ap-
proximation allows for an undistorted wave P(x dt) (cf.—
[12,14]). In [9] it has been shown that this corresponds to
a transcritical bifurcation at to, =d in the system describ-
ing traveling plane waves P(x tot+ky/A, ), where co—is
the wave speed and bifurcation parameter, while a Hopf
bifurcation to a branch of periodic solutions occurs at
coI, =c++m(k/A, ) +f(c), if col, (d holds. We mention
that another Hopf bifurcation may take place at

co'I, =c—V m (k/A, ) +f(c), if this expression is positive,
which requires in particular c —6 & 0. However, this
possibility —and thereby a possibly important difference
between gas- and liquid-fluidized beds —is ruled out
when only considering the weakly unstable case, because
it has been shown in [9] that col, (0 if &m is near d.

We note that Harris and Crighton [14] have employed
the scaling a= —,', which would give A, -F '~", k-O(1);
but they restrict their (one-dimensional} study to wave
numbers A, -O(l), which is not consistent within the
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above scaling, and so they miss the important fourth-
order derivative that prevents the rapid growth of short
waves (they are aware of this fact; see the Appendix of
[14]}. On the other hand, Komatsu and Hayakawa [11]
used the value of e = —f(d) as independent scaling
parameter —leaving the Froude number finite and
fixed —which suggests A, —e, k —e, and is certainly
reasonable. However, we prefer to choose an intermedi-
ate scaling, such that A, -O(1) and the fourth-order
derivative is captured as well, and this can only be
achieved by relating the strength of the instability to the
Froude number.

The main reason behind this approach is our interest in
the inclusion of one- and two-dimensional periodic solu-
tions, which bifurcate at wave speeds ~k =coo

+O(k ), coo= ~GO~+0(5), that lie in the interval
co P (h, d). The corresponding longitudinal and transverse
wave numbers are given by [8,17]

(1—5)m (d —co) kz ~2 f (co)
FJ(co h)[m —f (co)]

' — m
(2.1 1)

with the bifurcation condition 0 f(co) &f(d). As has
been discussed above, the weakly unstable range is
characterized by slightly negative values of f (d), and
marginally stable periodic solutions exist only for
coo~co(d. Hence the largest longitudinal wave number
is given by that of the one-dimensional wave train,
Ao-(d coo)/F, wh—ile A, ~O as co~d. We see at once
that Ao is of the order of f (d)/F, so tha—t a scaling of
f(d)-F with an a&1 would lead to an unphysical
divergence of ko as F~0, while it would tend to zero for
a&1 or within the approach of [11]. Now, the dimen
sional wave number of the periodic plane wave at its bi-
furcation point indeed approaches zero with the shrink-
ing range of the instability [cooed -f(d) —+0]. But the
wavelengths have been nondimensionalized with L —1/F,
and large L imply small F [note that uo must also become
small in order to ensure J '-R -uoL -O(1)]. Thus, if
we use for L the physical wavelength of an emerging or
nearby fully developed periodic wave, as has indeed been
done in [14], we end up with longitudinal wave numbers
iL, which are 0 (1) on such a length scale. In the weakly
unstable regime, this length scale is large, so the Froude
number is small, and this induces the above scaling. The
scaling of the transverse wave number can also be
justified from (2.11), since k -A, (co —m )+O(5),
A, -O(1), and 0 & co —m & d —m -O(F).

In summary, our approach represents the unique and
consistent way to unfold the degeneracy occurring at the
stability limit co~ =d, which simultaneously marks the on-
set of the kinematic wave; the periodic ("dynamic")
waves bifurcate within a distance of the order of the
Froude number [co=co„—O(F)] and have finite longitu-
dinal and small ( -F'/ ) transverse wave numbers. Com-
pared to the results in [11]we will obtain a more accurate
(which means also more complicated) approximation of
the system, which is better suited for the description of
periodic solutions.

III. DERIVATION OF THE SIMPLIFIED
WAVE EQUATION

U~ =FUX, Uy =F Uy
3/2

u„=1+Fux, u =F u& .

(3.1)

That is, assume a voidage perturbation of the form
$=$0+F'P; then the perturbations of the vertical veloci-
ties and the pressure have to be of the same order to bal-
ance gravity with drag and pressure as mentioned at the
beginning of Sec. II. Scaling the horizontal velocities by
F we obtain for Eq. (2.1)

(1—y, )a v +da y

=F'dx(0~x }+Fdrd
Fb —a+1/2(1 y g P +Fb+1/2g (yg )

This relation suggests the choices a =1 and b =—', above,
which are also consistent with the perturbation form of
the other equations. [For consistency a &0 is needed,
otherwise the fu11 nonlinearities from drag force and pres-
sure would be included on the same scale as the zeroth-
order linear terms that describe the kinematic wave. At
the same time, the interparticle pressure as well as the
viscous terms would act on a higher scale, which would
be a highly unstable situation. In fact, a = I is the proper
choice, since it brings the lowest nonlinearities onto the
same scale as the (slow) time derivative and the trans-
verse perturbation terms. ] Inserting this into the original
Eqs. (2.1)-(2.4), rearranging terms, dividing by common
factors of F, and dropping the tildes, we arrive at the fol-
lowing system:

(1 $0)~xox+d~xy=FR ii+F R i2 ~

POBxux+(1 d)dxp=FRzi+F R—2z,

(3.2)

(3.3)

(1+B' +p' )P+B ( — ) —(1—P )B p

=F3,+F P32+O(F ), (3.4)

(5+Bo+Po }0 Bo("x "x) Po~xp

=FR4i+F 1~2+0(F ),
B (u„—U ) —(1—P )8 P=FP, +O(F ),
Bo(u r) Pp&yp =F&bi +O(F'),
with

(3.5)

(3.6)

(3.7}

R„=B /+8 (Pu )—(1—P )8 U„, Ri~=Br(fur),
(3.8)R„=—a,y —a (yu )—y,a„u„R„=—a,(yu, ) .
(3.9)

Step 1: Setup

According to the above considerations we define
X=x d—t, Y'=F'/ y, T =Ft, and propose that the void-
age perturbation is of the order of the strength of the in-
stability, namely, O(F), whence the orders of the other
perturbations follow from the equations

4=4o+F0 p =poX'+Fp
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Furthermore, using (2.2') instead of (2.2) gives rise to

dx[(1 4—0»x+doux+0 ]

= —F[a [y(u —v )]+a„[(i—y, )v„+y,u„]]
F BY[4(ur Vr)] (3.3')

We will not state the R, 's explicitly, because we are go-
ing to use the following combinations of the above equa-
tions: we add (3.4) and (3.5) and form $0 X [Eq.

(1—5)p —Bxp = FR 3)+F R 32+ 0(F ),
Qpg+Bp(ux vx ) FR 4, +F R 42 +0(F )

BYP =FR5i+0(F ),
Bp(u Y

—vr)=ER6i+0(F ),
where

(3.10)

(3.11)

(3.12)

(3.13)

(3.4)]—(1—$0)X[Eq. (3.5)], and do the same with (3.6)
and (3.7). This gives

R3$ Gpaxy —d (1—yp)a »+5/0(1 d )Bxux Bxvx Bxux,
1 p v
R R

R =G'Qd P+(1—P )8 v +5/ d u +[(1 P—)v +dg]B v

+5[y,u +(1—d)y]a u ——'a2, V
——a'„u

(3.14a)

(3.14b)

and

41 WQGO~»4 d40(1 40)~xvx 540(1 '4)(1 d)~xux

~0 p V 2 Bo
R dxvx+ (1 40)~x"x 0 Bo4'("x vx) 0'~xpR 2

R4$ =ypGQy~xy+$0(1 yp)(~7 v» 5~7 u»)

+P [(1—P )v +dP]d v —5(1—P )[P u +(1—d)P)B u

40, V, 0"

R ~rvx+ ( 4'0)crux 0 4 (ux vx)
6 2

R„=G,a„y—d(1 —y, )a v„+5y,(1—d)a u, ——' a' v, ——"a' u, ,

R„=ypGpary —dip(1 —yp)axvr —5yp(1 —yp)(1 —d)axu „
00, v
R ~xvr+ ( 1 I(0)~xu Y BO(t'(u Y VY)R

I

the 0 (F) equation

(3.15a)

(3.15b)

(3.16a)

(3.16b)

up=do(1+Bo+po)+(1 40)(5+Bo+po)
Bo

4'0(1 —4'0)
(3.17)

$0( 1 yp)&XR4] +Bp[/QR ]] ( 1 yp)R 2] ]

F[4'0(1 0'0)d—»R 42—
+Bp[QQR &2

—(1—pp)R23]] +0(F ) . (3.18)
The equations (3.13) and (3.16a) suggest that the trans-
verse velocities are of a still higher order in F, but for the
sake of greater generality we will first work with the
present scaling and return to this point at the end of the
section.

Now, in order to obtain a single equation for the void-
age, we have to eliminate all the other variables by shift-
ing them to terms of higher order in the Froude number.
For instance, we can use (3.2) and (3.3) to express Bxvx
and Bxux, respectively, by Bxg+0(E); similarly, we use
(3.11) and (3.13) to eliminate the relative velocity. This
process may then be repeated in the 0 (F) terms. Basical-
ly, forming

Pp( 1 Pp ) X Bx[Eq. ( 3 ~ 1 1 ) ]+B0[$0 X [Eq. ( 3 ~ 2 ) ]
—(1—$0)X[Eq. (3.3)]]

a~= [dip —v(1 —$0) (1—d)],I

0

aoBo Bo'—a
Bo 2

+ +1—5,
(3.19)

Step 2: Treating the lower order terms

Let us first consider the 0(l) terms in (3.18). We use
(3.2) and (3.3) up to 0 (E) to eliminate Bxvx and Bxux in

R4&, and similarly (3.10) to remove Bxp and (3.11) to re-
move u& —

Ux from R4&, thereby we obtain new contribu-
tions to the 0(F) terms on the right-hand side of (3.18).
Defining the coefticients

elminates the 0(1) terms due to (3.17) and leaves us with this leads to
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R~, =[PoGo+Pod +5(1—Po)(1 d—) ]axg+a3$ + a&ax/

B0+F —dgpR „—5(1—pp)(1 —d)R2, — PRq)+JR 3,
0

[Qpa~R, t
—v(1 —Po) axRz, ] +0(F ), (3.208)

while on using (3.11) and (3.13) one arrives at

a, (1 —yp)
(1 —y, )R—„=a,y+a (yu )+ a y'

80

ax(PR4, )+ arR6, +0(F ) .
0 0

According to our scaling arguments we write [cf. (2.9)]

—A f (d) =PpGp+Ppd +5(1—Po)(1 —d)

80
No(1 —4o)

(3.20b)

(3.21)

where cp is an 0 (1) quantity, which is positive or negative depending on whether the system is on the unstable or stable
side of the threshold, respectively. With the coefficient

a&=
1 —4o d'(a, +a,yp)—

0 0
(3.22)

we thus obtain as an intermediate result

aTP+ax(Pux)+ a, + a~/ +a2a~p= F(coax/+—S)+0(F ),
0

(3.23a)

No(1 —4o) 1 —
4'oS=p+, —(1—p )R + (a R, +a R )+ 1—

80 80
Boko

ax(PR4i)
0

[ —d y~ „—5( 1 —P )( 1 d)R, +PR 3—, ]— ax [PoR „—v( 1 P) R, ] . —2

0 0
(3.23b)

Step 3:Treating the higher order terms

To get rid of the unwanted variables in the 0 (F) expressions, we use the 0 (1) approximations of (3.2), (3.3), (3.11),
and (3.13). Thus, to leading order,

ypR „—(1—yp)R „=ay(yu, ),
1a,R„=y,G,a', y —y,(i —y, )[d+5(i d)]a a—,u, [y, —v—(1 y—,)]a'a—,u, ,R

80
dgpR „+5(1—P )(1—d)R, = b [a /+a (Pu )]

—5 (1—P )(1 d)a P P(1 P—)[d+5(l——d)]a—u
0

PpR ~~ v( 1 Pp) R2& =RBp b3 [az /+ax(pu )]+v ( 1 P ) axing Pp( 1 Pp)[Pp v( 1 Pp)]a u
80

R3, =[Gp+d —5(l —d) ]a~/+ b8 ax/,
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NoGo
axR4, —— Bo db2 Bo

4'o(1 —4'o) 1 —4o Oo(1 —4o)

Bo
b, a [a,y+a (yu )]— aoBo Bo+ axe'

2Bo 6

with the abbreviations

Po(1 —0o)
b2 = [dPo —5(1—Po)(1 —d)],

Bo

I

ducing the stream function 8:
u +P (ux —ux)+P=F[arW P(u——u )],
ur+Po(ur —ur)+ax W= FP(—ur ur)—,

(3.32a)

(3.32b)

1 2 2 1 v(1 —po)b3= [Po+v(1 —Po) ]=—a2+
0 RBo

bs= [dPo+v(1 —d)(1 —Po)] .
1

0

(3.25)

(3.26)

with an obvious scaling of W [compare (3.33a) below with
(3.2)]. Using the relations for the relative velocity com-
ponents, we obtain

ux+ Q=F ar W —
P

— R4, +O(F ),d a, 2

1 —
o Bo Bo

Upon inserting these expressions into (3.23b) the linear
terms depending on u ~ cancel; after using the 0 ( 1 ) part
of (3.23a) to remove az./+ax((t)ux) from S we are left
with the relation

S=ar(fur) b, a„P+—a2araxp+2a2b2axp+a2b ax/

+b, a (ya'y)+b, a'y'+b, a'y'+b, a y', (3.27)

where

b, =

ur+axW= FR6—, +O(F ) .
0o 2

Bo

Hence,

a y+F a ya, w —a,ya w
0

(3.33a)

(3.33b)

0

No(1 —0o)
[Pod +5(1—Po)(1 —d) ]—co F,

0

ao, 4o
a y' — a (yR„)

0 0

a2 Bo ob4=b8+ 1—
0o Bo

(3.28)
and this gives

a,y+a, axe'+a, axe

+O(F ), (3.34)

db6=b3 a, +
0

vao(1 —Po)

RB

o(1 —o)
b5 = PoGo+Go+d —5(1—d)

0

ao+25 (1—Po)(1 —d)
0

db2+ +2a, b2,
0

(3.29)

(3.30)

F(coaxk+ax—4 am W

—arpaxW+S)+O(F ), (3.35a)

S= b, a&p+a2a&ax/+—2a2b2axp+a2b3axp

+b4ax(waxy)+b, axe'+b, axe'+b, axe', (3.35b)

where the coe%cients of the nonlinear terms can be writ-
ten as

az

1 —4'o

Bo
Bod'o

a3 1—
Bo

aoB o' Bo"

2B,
+

(3.31)

Step 4: Finale

To express the quantity ax(faux)+Far(puz) as a func-
tion of P, we return to Eq. (3.3') and "solve" it by intro-

b5=

+[d Po
—5(l —d) (1 Po) ]/Bo, —

Q2=bs+ [1—20'o —
B ohio(1 —0'o) ~Bo]

d Po+v(1 —d) (1 —Po)

RBo4'o( 1 4o)

o(1 —o)
[PoGo+Go+d —5(1—d) ]+2a,b2

0

(3.36)

(3.37)



3704 MA.NFRED F. GOZ 52

b6= [dPo+v(1 —d)(1 —Po) ]+a,b3,1

RBo ol —
o B0

Qo(1 —Po) J
a =b (d —h) b = J=

2 3 7 3 1 g
7 (4.1)

(ao+ Poa3 ) ~Bo

(3.38) 0o 1 —4o Wf (d)
Bo 2(d —h)

B0
, Po 1 —0o

0 0
0

+O(F) . (4.2)

o(1 —yo) aoBo" Bo
B0 2B0 6

a0

B0
(3.39)

Uy =I Vy, u~=FUy,

(3.12) and (3.13) become

(3.40)

Bip=FGoBrp+O(F ),
Bo( Ur —1'r) =PoGo~rk+O(F) .

(3.41)

(3.42)

Fortunately, this additional scaling does not affect the
final result, (3.35a) and (3.35b), except that the terms con-
taining the stream function 8' are shifted to the next
higher order, since now Bz W= 0(F); hence

W=O(F) . (3.43)

The latter follows because the contributions from the
transverse velocities in (3.2), (3.3), and (3.3') are shifted
to higher order, too, resulting in d r W =O(F).

Finally we argue that the contribution from the stream
function can be neglected in the regarded order. Above
all, 8 QB W —8 PB W=O(F) would hold, if
W'=f (P)+O(F},where f is any difFerentiable function.
However, this observation is of no help here. Instead,
(3.13) suggests that not only is the transverse component
of the relative velocity of the order of the Froude number
but also the transverse velocity components of both
phases themselves, which means that no transverse veloc-
ity (which would otherwise be the same for the two
phases) develops to leading approximation. This is in
agreement with Br/ =0 (F) from (3.10) and (3.12), and is
rejected in the structure of the perturbed KdV equation
(3.35). Assuming therefore

To prove for nonvanishing 5 and v that the bifurcation
behavior in the vicinity of the trivial solution has also
been attained correctly, we have to search for traveling
wave solutions P(X coT, —F) which are periodic in both
variables. Such solutions bifurcate at values of the propa-
gation velocity and longitudinal and transverse wave
numbers A. and K, respectively, satisfying the two rela-
tions

co =a2A, +Faz(K —b3A, )+ 0 (F },
—coA, +b,K +2b2a~A. =O(F) .

(4.3)

fid" =fz(0')'+f 34"+f4 (4.4)

where the prime denotes the derivative with respect to z,
and the f; are functions of P, co, F, k, and the other pa-
rameters. Applying the same procedure as in the preced-
ing section (see Appendix A) leads to a reduced equation,
which has to be corn.pared with the one following from
(3.35). There, the corresponding ansatz for traveling
plane waves gives, after dropping one common derivative
(and the tilde over co),

Indeed, the same result is obtained by replacing
co=d Fco (oi—&0) and k =FK in the full relations
(2.11) for the bifurcation points [8,17] and expanding
them with respect to the Froude number.

Most importantly, the appearance of the various non-
linear terms and the correctness of their coe%cients can
be tested against the equation describing traveling plane
waves. Proposing that all variables are functions of
z =x cot+ky on—ly reduces (2.1)—(2.4) to a system of or-
dinary differential equations. Upon elimination of the
other variables, this system is further reduced to a single
equation for the voidage [9]:

IV. VERIFICATION BY COMPARISON
WITH KNOWN RESULTS

Using results from previous analyses, the validity of
the reduced equation (3.35)—taking account of (3.43)—
can be checked easily: the linear terms should agree with
the stability and bifurcation results, while the nonlinear
terms should correspond to those obtained from an ordi-
nary differential equation describing plane voidage waves.

First of all, it is immediately seen that the linear stabili-
ty of the null solution of (3.35), evaluated for 5=v=0,
represents the 0 (F) approximation to that of the uniform
solution (2.5) of the original system (2.1)—(2.4); see (2.10)
and take account of the transformation X =x —dt as well
as of the scaling k =F'~ K and that expressed in (3.21).
In passing, we note the following relations to the original
coefficients defined in (2.8) and (2.9):

coP+aiP +azP"
= —F[(co—biK )P'+azK P"

+2azbzg"'+a2b3$' '+b4$$"

+b5(4")'+b6(4")"+b74" ] . (4.5)

The results of Appendix A show that the structure of the
two equations is exactly the same, and a lengthy but
straightforward calculation reveals that also the
coefficients are in concordance within the proposed ap-
proximation. We conclude, therefore, that the two-
dimensional perturbed KdV equation (3.35) is a valid ap-
proximation of the original two-Quid system and can be
used for simpli6ed investigations of Auidized beds in the
small Froude number regime.
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V. AMPLITUDE EQUATION FOR SOLITAR&
PLANE WAVES

A. Rescaling and examination of coefBcients

We transform (3.35) into canonical form by changing
variables to c;&0, i =1,2, 3, 5, 6; sgnc4=sgnb5, (5.5)

d =(n +2)(1—Po) with any positive n, az-d —h &0 for
all vC [0,1] and b2-d —c &0 for all 5C [0, 1] (see also

[8]), such that this condition is always satisfied. Then the
scaling parameters (5.2) are all positive as they should be
and, furthermore,

)=au, ~=PT, x =yX, y =pF, F=gF
with

(5.1) due to (4.1), (3.36), and explicit calculations revealing
that

' 1/2
IcoI

P=a2y3, a=
2a2b2

' 1/2
2a2b~

This gives our main result

+(" }x+"xx

a2p

a1
(5.2)

RBob6 =go

n+1 2
for Po&

1 —d+ai +v(1 —Po) +ai
0 0

(n + 1)(1—Po)

24o

2go a i =(n +2)[n + 1 (—n +3)go] & 0

(5.6)

where

F[Euxx uyy +c1uyyx +uxxxx +c2uxxxxx

+c3(uu„„)„+c4(u }„„+c5(u)„„

+c6(u )„]+O(F ),

X t(n +2)go+v(1 —Po)[n (n +2)—go]]

& for n &&2—1,
(5.3) 6go b7 =(n + 1)[n ( 1 ln +10)—Po( 1 ln —4n+6)] & 0

for n& —,
' .

(5.7)

(5.8)

a2y b3y b4y
E'=Sgn CP& C1 =

& C2 y C3
b1

'
2b2

'
2a1b2

bs b6r a2b7)
C4= C5= C6

2a1b2 2a1b2 2a 1b2

(5.4)

The above scaling requires a2b2 &0. But it is easily seen
that for the drag coefficient (2.6), yielding

I

We see that the dependence of these coefficients on 5 and
v is weak; in particular, a, and b7 do not depend on 5 or
v at all, while a2, b3, b4, and b6 are all inversely propor-
tional to 1 —5 (assuming 8 —1 —5 only). Since b5 does
not depend on v either, we conclude that the quid viscosi-

ty has no essential inhuence on the small Froude number
behavior of both gas- and liquid-Auidized beds. At 6rst
glance,

NoGo d'4o 5+ +2a [dP —5(1—P }(1—d)] — (1—d) (3—2$ )i 0 0
24o

=
—,'PoGo+ [(n +2)god +51—,'+(1—Po}[n (n +—,

'
) —(n +2) Po] J ]

0
(5.9)

could change its sign depending on the values of 5, Po,
and Gp. Assuming, however, a monotonic interparticle
force, Gp ~0, over the range of physically accessible
voidage values, then b 5 is positive if d & 1, i.e.,
Po& (n +1)/(n +2); hence c~ &0, if Po& (n +1)/(n +3).
These conditions are usually met, since fluidized beds are
normally operated at uniform voidage values between 0.4
and 0.6, while the Richardson-Zaki exponent n lies in the
range of 3 to 4 [1].

I

arbitrary constants. However, the O(F) part of (5.3)
determines A and xp as functions of a slow time 7 and
the transverse direction. In order to avoid the introduc-
tion of spurious resonant terms like JB A d~/F, we

have to assume that the amplitude A is a function of time
only; this is explained in more detail in Appendix B. As
will be shown below, this determines xp as the sum of a
time-dependent part and a time-independent part linear
in y, such that this ansatz is capable of yielding plane
wave solutions only.

Thus we assume A = A (~) with 7 =F7 and introduce
B. The sohton perturbation 8= A (r)[x —0—xo(~,y )], (5.10)

Based on (5.3) we can derive an amplitude equation
governing the growth and stability of a developing soli-
tary wave in two-dimensional Auidized beds. To leading
order, (5.3) has the single-soliton solution
u=6A sech [A(x —4A 7. xo)], where A—and xo are

with 8 0=4A /F, 8 0=0, such that (5.3) becomes

B~ —4A 8 u+ AB u + A 8 u = FN(u)+O(F ), —

(5.11a)



3706 MANFRED F. GOZ 52

A
N(u) =a.u+ '

8aeu —Axoaeu+e A 2a2eu+ Axo yyaeu

xp ~g& c( A xp BgQ +c) A x Bgg

+A B u+A c B u+A c 8 (uB u)

suggesting already that xp is linear in y. In order to ob-
tain more information about xp, we must actually solve
(5.13). For that purpose we note that N(uo) may be writ-
ten in the form

N(uo)=au+(b+c8)v'+dv +evv'+fu +gu u',
+ A'c4a', ~'+ A 'c5a',~'+ Ac (5.11b) (5.16a)

Expanding the sought solution with respect to the Froude
number,

u =uo+Fu&+O(F )

with the coefficients

a =6[(B,A )+4A (e+4A —xo y
—c &xo yy )],

with uo=6A (r) u, u =sech 8,
gives to the next order of approximation

(5.12)
c =3(B,A ),
b =6A (16cq A —xo+xo yy+4ci A xo ),

8 u, +Lu, = —N(u },
L,u, = —4A'a, u, +2Aa, (u, u, )+ A'a', u, .

The solvability condition for (5.13) reads

f N(u, )u d8=0,

(5.13)

(5.14)

It shows that xpy+c]xpyy has to be a function of 7 only,
I

since U=sech 0 is the integrable solution of I. 'u*=0,
with the adjoint operator L =4A Be—2AuoBe —A Be.
The evaluation of (5.14) yields the following amplitude
equation:

8 (A )= —,", A [e+—,(12c —5)A —(x +c,x )] .

(5.15)

f=720A (1—c4), (5.16b}

d =36A [ —e+4A (4cz —5)+xoy+c, xoyy],

e =72 A [4A (4c~+c3 —Sc2)—c,x o y ],
g=216A (10c2—3c3 —10c~+3c~) .

Now, the general solution of the di8'erential equation

p"' —4p'+ 12(pu)'= r

is determined by

k&+u f r d8 —f ur d8
P =WU, W

4u (1—u)

with an arbitrary integration constant k &. Hence the
stationary solution of (5.13) is given by

5k,—A u
c+ —+ + tanh8+ v'lnU + k

&
+—k2+ —+ + +—8 v — v

f, 15 3 b e g c g
4 8 30 105 130 16 ' 4 4 12 12 4 24

15 3 b c &, ki 1 1 2a+ k, + k, +—kz+ —e+ e' v' — —+—
32 ' 8 8 16 8 U 8 3

c + Sd + 16f tanh8
3 15 35 0

(5.17)

where k, 2 3 are constant with respect to 0. The require-
ment that u

&
should be bounded at + ao yields the condi-

tions k& =0 and that the coefficient of the last term van-
ishes, which is nothing else but the amplitude equation
(5.15). Imposing the condition u&~0 as 8~+ oo, so
that the bed is in its unperturbed state before the passage
of the solitary wave, leads to the relation

k =4 —'+ "+ 'f
8 30 105

(5.18)

b+ —c+—d+ f=0.3 2 16
2 5 15

(5.19)

The coefficient k3 of U' is arbitrary, because U' is always a
solution of the linearized equation. This and the
coefficient of the Ov' term can be set to zero, as they can
be incorporated into A and xp by changing them by an
O(F) quantity (the same argument as in [14]). Thus,
3kz+b=0, and upon combination with (5.18) this be-
comes the additional constraint

xo(r) =xo, (r)+kp, k =const

xo& = [ ——,'e+ 16cz A + —,",(5—
12c4 ) A

+4(—', +ci A )k ]A .

(5.21)

Thus the only two-dimensional perturbations that can be
reached by the perturbation ansatz based on the one-
dimensional KdV soliton are obliquely traveling plane
waves, parametrized by their transverse wave number k.
We note that Barcilon and Lovera [23] have also unsuc-

I

Now we could use (5.15) to eliminate A from (5.19) and
get an evolution equation for xp. It is more practical,
however, to eliminate the quadratic term xp, so that we
are left with an equation of the type

xo=(1—4c(A }xoyy+h ( A, A ) . (5.20)

Because xp +c&xp yy
has to be a function of time only

due to (5.15) and the requirement 8 A =0, the only pos-
sible solution of (5.20) is given by
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cessfully attempted to find nearby two-dimensional solu-
tions in the form of solitary wave perturbations (cf. Ap-
pendix 8). These failures suggest that genuine 2D solu-
tions are of a different structure and have to be ap-
proached by other methods.

It is nevertheless possible to draw some conclusions
about the existence and stability of solitary plane waves.
To achieve this, we finally investigate the amplitude equa-
tion, which now reads

A = 8 [e k—+ 4
( 12c4 —5 ) A ] A (5.22)

—', (12c4—5)Aa=k —e, xiii 0=4A0(cik +4cqA0) .

(5.24)

Therefore, as long as the base state is stable (e= —1),
steady state solutions to (5.22) exist for all transverse
wave numbers k ~0, but they are a11 unstable and per-
turbations develop either to the base state or to other
one- or two-dimensional patterns, e.g., periodic waves.
On the other hand, if the base state is unstable (@=+1),
(5.23) allows finite amphtude solutions for k ) 1 only,
but these are again unstable. In addition, the amplitudes
of those plane solitary waves whose propagation direc-
tions do not deviate too much from the vertical axis
(k &1) grow without bound, such that the above ap-
proximation breaks down and one has to return to the
full equations. Fortunately, the fully developed
quasisteady plane waves are described by an ordinary
differential equation, namely, (4.4), and can thus be stud-
ied without any approximation (at least qualitatively).
This has been done in [9], where it has been shown that
the interaction of periodic and stationary solutions pro-
duces solitary waves in the form of homoclinic connec-
tions. Indeed, the traveling directions of these periodic
waves have been found to be confined around the vertical

In general, the coefficients entering the amplitude equa-
tion can be read off from the energy equation following
from (5.3):

—' " f+"f+"u'axay

=Ff f dx dy [au, —u —u„„+2c4,uu„

+(c3—2c, )uu„u„„], (5.23)

where the last term vanishes if u is an even function of x
(which is the case here). The first term arises from the
antidiffusion in the downstream direction and acts as an
energy source in the unstable case, the second term is due
to the diffusion into the transverse direction and has a
stabilizing effect as well as the third term, which de-
scribes the effect of dissipation. The remaining terms
represent nonlinear corrections and are either stabilizing
or destabilizing (cf. a similar discussion in [24]). It is
therefore not surprising that the only coefficient out of
the c; that has survived the above procedure is c4. More-
over, with a little algebra it can be shown that
12c4 —5 &0 holds in the same range in which a, stays
positive. This is important for stationary solutions of
(5.22), for which

axis, corresponding to the (now scaled) range k &1 in
which the solitary waves become singular according to
(5.22) [25].

For the sake of completeness we notice that for c4 ( —,',
solitary waves would exist only if the base state is unsta-
ble and k & 1, and that this band of waves would be
stable (in the frame of one-soliton perturbations).

VI. DISCUSSION

For a commonly used two-Quid model of Quidized beds
a nonlinear voidage wave equation has been derived by
relating the strength of the instability to a small Froude
number perturbation. The equation covers the full range
of the density and viscosity ratios of the two phases, but
depends only weakly on these parameters; it can easily be
extended to include voidage-dependent viscosity
coefficients. From this reduced equation, an amplitude
equation for the perturbation of a Korteweg —de Vries
soliton to solitary plane waves has been derived, whose
solutions either are unstable or become singular in finite
time, signaling the breakdown of the approximation.
That the singularity is artificial is obvious from a compar-
ison to the equations describing fully developed traveling
plane waves [9]. The range of critical transverse wave
numbers coincides with that allowing for Hopf bifurca-
tions from the uniform state, which can be concluded in a
straightforward manner from the scaled equation (5.3).
The scaled version of (4.3) relates the wave speed to the
longitudinal and transverse wave numbers via

m=A, +F(c,k c~A, )+O—(F ),
eA, +k +A, =—O(F),

(6.1)

so that bifurcations to periodic solutions are possible for
positive E only (i.e., a=+1), with the transverse wave
number restricted to k & —,

' (at k = —,
' a degeneracy

occurs). Simultaneously, the longitudinal wave number is
confined to A, &1, whereby at A, =O a stationary and at
A, =1 a Hopf bifurcation to a branch of one-dimensional
vertically traveling waves takes place. Note that the dis-
tance of these two limiting points has been scaled to
~e

~

= 1. Eliminating A, , the expression

1 —czE (1+Pl 4k )+F(c,+cz—)k (6.2)

shows again (see [8]) that the two limiting points are con-
nected by a continuous branch of Hopf bifurcation points
to two-dimensional traveling waves. By symmetry, three
(probably unstable) solution branches emanate from each
of these points, one vertically traveling wave P(x cot,y)—
with a nontrivial transverse structure [26] and a pair of
obliquely countermoving plane waves P(x cot Sky ). —
Due to (6.1) and the relation k =ki, , such plane waves
exist in the range k & 1 only, highlighting the intimate
connection between plane periodic and solitary waves.
We recall that in the full system the branch of periodic
waves (for a given k ) must either terminate in an infinite
period bifurcation, i.e., develop to a solitary wave, or re-
turn to the uniform state via another Hopf bifurcation;
the latter case is excluded here. A similar behavior might
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be conjectured for the two-dimensional vertically travel-
ing waves.

It should be mentioned that Komatsu and Hayakawa
[11]have derived a similar reduced wave equation for the
case 5=v=0, and with the assumption of a constant,
vertically directed, volumetric mean flow [8'—:W'oF in
our notation, cf. (3.32)]. Because they do not weigh the
strength of the instability with the Froude number, which
occurs explicitly in the equations, they obtain a simpler
perturbation of the Korteweg —de Vries equation; namely,
all except one of the terms with coefficients c; appearing
in (5.3) are absent in their formulation. The exception re-
gards the nonlinear difFusion term cz(u )», which has
been shown above to govern the soliton perturbation.
Therefore the amplitude equation is the same in both
cases; the 1D version has been derived by Hayakawa [21],
but he gives no value for c4. However, the terms missing
in the approximation in [11] are important for the
description of periodic waves as is already seen from the
relations (6.1) and (6.2} following from the linear part of
(5.3). We believe, therefore, that our equation gives a
better approximation of the fluidized bed system near the
stability limit, although the reduced equation presented
in [11]has the advantage that it is not restricted to small
Froude numbers.

Our results are in agreement with other findings in one
space dimension [11,12,21,27]. In a numerical simulation
of the original 1D equations with periodic boundary con-
ditions it has been observed in [11]that an initial periodic
disturbance of the uniform state first evolves like solitary
waves but then settles down to a steadily moving wave
train meaning that the latter finite-wavelength pattern
represents the stable solution for the considered parame-
ter values. Another simulation in the same paper shows
the characteristic evolution of an initial two-soliton. Un-
fortunately, no time scale is provided for this process, so
that it remains unclear whether a finite-time singularity
could develop or not. A blow-up seems indeed to appear
in a third simulation far away from the stability limit, in
which the voidage locally becomes —1.

The same equation as in [12] has been investigated in
[27] in the context of Rayleigh-Benard convection, lead-
ing of course to the same amplitude equation (5.22)
without the k contribution (see also [21]). In addition,
the authors of [27] have considered the stability of the 1D
periodic solutions and the numerical behavior for small
and large box sizes admitting single or multiple pulses,
respectively. If the system is small, such that there is
only one unstable wave number, namely, A, = 1 (scaled),
and the bifurcation is subcritical, they did not find any
stable finite-amplitude solution. In the case of a large
system they observed the saturation of the amplitude of
the fastest growing pulse and the evolution towards a
train of pulses for a given value of the perturbation pa-
rameter ( F) and values c4—&cz. For values c4 larger
than the threshold value cz, which approaches —,', as F is
decreased, the size of the pulse grew unbounded; this pro-
cess could involve the collision between two pulses.

Although our focus has been on Quidized beds, we are
not restricted to this particular application. Similar
equations are used to describe other multiphase Aows,

e.g., polymer-solvent mixtures [28], roll waves down an
open inclined channel [29], and traffic jams [30]. All
these models fall into the general class of wave-hierarchy
problems with dissipation, a mathematical treatment of
which has been presented in [31]. Due to this common
feature of all of the above-mentioned models, and because
the reduced wave equation derived in this paper is fairly
complete in the low-order terms, it should describe, in
one or the other form, the behavior near the stability lim-
it in all the models. Finding exact or approximate solu-
tions of these reduced wave equations would give valu-
able insight into the formation of two-dimensional pat-
terns in two-phase How systems.
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APPENDIX A: VERIFICATION
OF THE NONLINEAR TERMS

where

f, =(1+k )$(1—P)

X [co(1—Po)P —v(1 —co)go(1 P) ]/R, —

f2= —2(1+k )[co(1 Po)P—
(A2)

+v(1 —co)go(1 —P) ]/R,
f3= —p(1 —$)[(1+k )$ (1—p) G($)+co (1 po) p-

+5$o(1—co) (1—P) ],

(A3)

(A4)

f4=/ (1—y}'[B(y)[yo(i—oi)+y(oi —yo)]
—(1—5)$ (1—$) ]/F . (A5)

Of course, the uniform state is a solution for all m, i.e.,

(A6)

Inserting the double expansion of

f;(P,co) =f;(Po+Fg, d Fro)—
=f; +F(f P f;„9)+—

into (Al) yields in O(F ') and O(1)

f4= f4(4'o d)=0 f4, =~V—4(ko d}=0

f4—:8+4(go, d) =0,

(A7)

(A8)

respectively; the first two relations are in accordance with
(A6), while the last determines the value of d. Omitting
the tildes, we get in 0 (F)

To check the nonlinear terms of the reduced wave
equation (3.35) we apply the same but much simpler
asymptotic analysis to the ordinary di8'erential equation
(4.4) describing plane voidage waves:

(Al)
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f id" f—30'+f 4', 4~ f—4'0'/2
= —F( f—', ~4"+f'0'0" f—'(0')'+f', ~0'

f3'—44'+f ",'.~0'/2 f"—'4'«)
+O(F ) .

fg', F04' f~"—0'/2+f i0"=f34' F~— (A10)

(A9) with
l

Solving the O(l) part of (A9) for toP and using this ex-
pression to eliminate co from the 0 (F) part leads to

f4', ~=f'f i, 0'" (f'f'—
, +f',43)4"' f', 4—"(4')"/2+(f'f', f'f"—

,
' /2)44"

+«4'f",' /4 f',4"'/6)0' fb"', —(0')'+f', 4'0'"+(f',4" fl'f' —+f3f"",' /2)(N')'/2 .

Stating some of the coefficients gives more insight:

f4, =0'o(l —0'o)'&o f i =(1+k')&2f4',

f, „=(1+k )b3 f4„,
fz

= —2(1+k )(b6 a& b—3 )f4

f3, = 2»f~,—

f3
= —No(1 —4o)'[( I +k'4 oGo+ 4'od'

+5(1—Po)(1 —d) ]

=F(K'b, —c )f'

(A12)

According to our scaling, k and f3 are O(F) quantities,
so that their contributions to S vanish. The remaining
equation has to be compared with (4.5), which is the ver-
sion of (3.35) for vertically and oblique traveling plane
waves. Replacing P' by (P )"/2 —PP" in (All) shows
that the structure of the two equations is exactly the
same, as claimed in Sec. IV.

overdot. Then (5.3) assumes the form

a,u 4—A 'a,u+ A a,u'+ A 'a', u

Fu+— 88su —AxoBsu+N(u), (82)

where N(u) represents the transformed operator on the
right-hand side of (5.3). It is decisive that N contains
terms proportional to 0 p gyp and Q„stemming from
the second-order y derivatives. However, Q and Q are
of the order of F ', while Q -O(F ). Performing the
expansion of u with respect to the Froude number,
u =uo+Fu&+F u2+, leads in O(F ') to

4A J'a, A'dr a',u, =o. (83)

Assuming J 3~A dr%0 yields uo=uo(r, r,y), since u

should be bounded for 8—++ 00. Similarly, one obtains in
the next order

4A JB A dr u, =f(r, r,y) and 8 uo=O. (84)

APPENDIX B: TRANSVERSE
SQLITGN PERTURBATIONS

a. Aa, , a. a. 4A'a, +Fa,+—F "8—Ax, a, ,

a, a+ ' e—~x,„a,—dna, , (81)

where we denote the derivative with respect to ~ with an

Here we argue that the amplitude of the one-soliton
perturbation must not depend on the transverse variable.
In order to transform the wave equation (5.3) into a sys-
tem moving with the anticipated solitary wave, we gen-
eralize the usual one-dimensional ansatz (see, e.g.,
[14,21], and the references therein) and introduce

8= A (r,y)[x —Q(r, y) —xo(r,y)],
with a=Fr and 8 Q=4A /F in order to match the 1D
soliton. Shifting a pure function of y into xo, we may
write Q =4f A d r/F Hence the op. erators become

One could go on and find further restrictions on u0 and
u&, or claim u ~0 as 8~ 00 (cf. Sec. VB), upon which
ua, u&, and also u2 would vanish. But it is already obvi-
ous that one can never get the KdV soliton in leading or-
der, unless the above assumption 8 f A dr%0 is aban-

doned.
We notice that Barcilon and Lovera [23] tried a similar

perturbation of a one-dimensional solitary wave solution
of a somewhat different wave equation. To leading order
they obtained two solvability conditions for a phase shift
perturbation 8' ' (corresponding to our xo), which they
viewed as incompatible. Taking them literally, however,
leads to 6I' '=8' '=0, showing that a perturbation to
nearby oblique traveling plane waves is still possible (the
dependency on the slow time scale is more restrictive
than in our case). Anyway, their investigation indicated
that the 1D solitary wave is unstable to two-dimensional
perturbations. On the other hand, they showed that their
equation possesses isotropic solutions, which depend on
(x cot) +y only (th—is remains doubtful in our case).
Obviously, such solutions cannot be reached by a pertur-
bation of one-dimensional single solitary waves.
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