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Scaling anti intermittency in Burgers turbulence
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We use the mapping between the Burgers equation and the problem of a directed polymer in a random
medium in order to study the fully developed turbulence in the N-dimensional forced Burgers equation.
The stirring force corresponds to a quenched (spatiotemporal) random potential for the polymer. The
properties of the inertial regime are deduced from a study of the directed polymer on length scales small-
er than the correlation length of the potential, which is not the regime usually considered in the case of
polymers. From this study we propose an ansatz for the velocity field in the large-Reynolds-number lim-

it of the forced Burgers equation in N dimensions, which should become exact in the limit N~ ~. This
ansatz allows us to compute exactly the full probability distribution of the velocity difference u (r) be-
tween points separated by a distance r much smaller than the correlation length of the forcing. We find
that the moments ( u (r}) scale as rt' ' with g(q }—= 1 for all q ) 1 [in particular, the q = 3 moment agrees
with Kolmogorov's scaling g(3}=1].This strong "intermittency" is related to the large-scale singulari-
ties of the velocity field, which is concentrated on an (N —1)-dimensional frothlike structure, which is in
turn related to the one-step replica-symmetry-broken nature of the associated disordered problem. We
also discuss the similarities and differences between Burgers turbulence and hydrodynamical turbulence
and we comment on the anomalous tracer Auctuations in a Burgers turbulent field. Since this replica ap-
proach is rather unusual in turbulence problems, we provide all the necessary details of the method.

PACS number(s): 47.27.—i, 05.20.—y

I. INTRODUCTION

The theory of statistical turbulence is more than 50
years old, but its status is still not fully satisfactory.
The simplest and surprisingly robust approach is
Kolmogorov's dimensional analysis, which leads to the
celebrated k ~ law for the velocity cascade [1,2]. How-
ever, analytical calculations immediately lead to
diKculties: the simplest closure scheme to deal with the
nonlinear term in the Navier-Stokes equation [direct-
interaction approximation (DIA)] does not reproduce
Kolmogorov's scaling [3,2,4]. Much effort has been de-
voted, in particular by Kraichnan, to understand why
this was so. More refined schemes were proposed to re-
cover the k law and even to calculate adimensional
constants [5,6,2], but they are based on uncontrolled as-
sumptions [such as the renormalization-group (RG) ap-
proach] or lead to enormous calculations, which are
dificult to manipulate and are not fully transparent from
a physical point of view [5].

More recently, a tremendous activity has developed on
the intermittency (or multifractal) corrections to
Kolmogorov's scaling: higher moments of the velocity
field do not seem to scale with the one originally predict-
ed by Kolmogorov. Many interesting suggestions have
been put forth to describe and explain this feature, start-

ing by Kolmogorov himself [7—14].
In recent years, nonlinear partial difFerential equations

with noise have been the focus of quite a number of stud-
ies in the context of growing interfaces, with the Kardar-
Parisi-Zhang (KPZ) equation standing out as a paradigm
[15—17]. This equation is in fact a variant of the Burgers
equation and has (together with its many relations) a wide
range of applications in different physical contexts [17].
Interestingly, this field is also related (through an ap-
propriate Cole-Hopf mapping) to the physics of disor-
dered systems, in particular elastic strings in random
media (directed polymers). The Burgers problem in N di-
mensions is then equivalent to the problem of a directed
polymer in X+ 1 dimensions, which is the space-time of
the original problem. The forcing term in the Burgers
equation translates into a random potential for the direct-
ed polymer, which is quenched in space-time: to each
realization of the stirring force in the Burgers language
corresponds one sample of a directed polymer. This en-
ables one to adapt techniques originally devised for spin
glasses and obtain original results on the underlying non-
linear equation (or vice versa) [19—24]. It is the aim of
the present paper to exploit in detail this mapping, which
allows us to propose an original ansatz for the velocity
field for the randomly stirred Burgers equation, which
should become an exact solution in high dimensions and
in the limit of large Reynolds number. Scaling in the
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II. FROM BURGERS TURBULENCE
TO DIRECTED POLYMERS: DICTIONARY

AND DIMENSIONAL ANALYSIS

The problem we shall consider is that of a randomly
forced potential fiow in N dimensions, which follows the
Burgers equation (the density of the fiuid is taken to be
equal to one)

+(U V)v=vV U+f(x, t),
Bt

(2.1)

where v is minus the gradient of a velocity potential
h (x, t) and f is a randomly fiuctuating force, which is
also minus the gradient of a potential P(x, t) Uand x are.
X-dimensional vectors and there is no constraint on V.v.
Here we wish to describe the problem of a Quid that is

randomly stirred only at Uery large length scales. We
shall thus take P to be Gaussian, with fiuctuations given
by

P(x, t)P(x ', t') = eb, N5(t t')exp ——(x —x')
2ND

(2.2)

inertial range can then be precisely discussed: we obtain
in a closed form the full probability distribution for ve-
locity differences. In particular, the third moment of the
velocity difference grows linearly with distance, i.e., in
the manner of Kolmogorov. In fact, Kolmogorov's di-
mensional analysis should be directly applicable to
Burgers turbulence. We find, however, very strong inter-
mittency effects, which we relate in a quantitative manner
to the existence of large-scale structures, in the form of
singularities concentrated on time-dependent hypersur-
faces. Although not exact in finite dimension, we expect
that our (variational) description remains qualitatively
correct even in one dimension. We also obtain the
dynamica1 evolution of the velocity field: we find that the
field is convected away by the largest structures, corre-
sponding to a dynamical exponent equal to z =1 rather
than the one obtained from Kolmogorov's scaling zz =—', .

In the bulk of the paper, we primarily focus on the
"dictionary" between Burgers turbulence and disordered
systems and discuss a number of physical points, relegat-
ing more technical points to various Appendixes. We
show that Kolmogorov's scaling has a counterpart in the
directed polymer language, where it is known as the
Larkin-Ovchinnikov scaling. It is, however, easy to see
that this "naive" scaling cannot hold, as is confirmed by
the full calculation. We describe in physical terms the
nature of the velocity field and argue that there should be
a large distance regime (beyond the injection scale)
characterized by a nontrivial exponent. We briefIy dis-
cuss the problem of a passive scalar in such a velocity
field. In the Conclusion, we compare our results to other
approximation schemes and comment on the possible
differences with "true" Navier-Stokes turbulence.

force correlation thus reads

f"(x,~)f (x', r')

(x —x ')"(x —x ')'
=e5(r ~') 5"'—

(x —x')Xexp-
2%5

(2.3)

As will be clear below, this ensures that the injected ener-
gy ger unit time, defined as the increase of kinetic energy
—,U, is equal to (N/2)e (note that the dimension of e is
[x ]/[t ]). The dependence of the force correlations on
the dimension X has been chosen in order to ensure the
existence of the large X limit.

The typical velocity at the injection scale is, from di-
mensional considerations, vz (eb.)',——which allows us
to define the Reynolds number as

' 1/3
vb ~ E'6Re= (2.4)

v

We shall be interested in studying the statistics of the ve-
locity field at large Re.

Let us now use the standard techniques to transform
this problem into a directed polymer. Integrating once
Eq. (1), with U= —Vh, one finds the so-called Kardar-
Parisi-Zhang equation

= —[Vh (x, t)] +vV' h (x, t)+P(x, t),
at 2

(2.5)

which describes, in particular, the growth of a surface un-
der a random "rain" of particles, the Qux of which is
given by P(x, t). At this stage, the crucial diff'erence with
previous work on the KPZ equation is in the correlations
of the noise P(x, t) We sh. all thus be mostly concerned,
in the following, with the velocity field statistics at length
scales smaller than b, ; for length scales larger than b„the
KPZ scaling prevails. Now, as is well known, the KPZ
equation (2.5) can be transformed (through a Hopf-Cole
transformation} into a linear problem describing a direct-
ed line (polymer) in a random potential. Setting
h (x, t)=2vlnZ(x, t), one finds that Z(x, t) obeys the
equation

=vV Z(x, t)+ $(x, t)Z(x, t), (2.6)

which is the equation for the partition function of an elas-
tic string in a random potential V(x, t)=(1/2v)$(x, t),
subject to the constraint that its end point is fixed at
(x, t) In other wo.rds, the solution of Eq. (2.3) can be
written as a path integral (sum over all configurations}

Z(x, t)= Jp(xo)dxo J d[x(~)]exp( —&) .
0

(2.7)

Here 4 is the injection length over which the forcing is
roughly constant. The correlation time of the forcing
was set to zero; a finite (small) correlation time, however,
would not affect the following conclusions. The stirring

+ V(x (r), w)

The Hamiltonian & is given by

c dxm=f d~—
0 2

(2.8)
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The dictionary between the two problems is the follow-
ing. The temperature scale of the polymer has been
chosen to be equal to one. Then the elastic modulus of
the polymer is

[v(x, t) —v(x', t')]

ix —x'i
(2.15)

1c=
2v

(2.9)

The random potential seen by the polymer V has a
Gaussian distribution, with a second moment given by

V(x, r) V(x', r') = WN5(t —t')exp— (x —x')
2NE

(2.10)

where the strength of potential fluctuations 8' is related
to the energy density e through

eh
4v

(2.11)

v(x, t =0)=—2vVp(x) . (2.12)

and the length scale of fluctuations of the potential is
equal to 5, the length scale at which the Burgers fluid is
stirred. The probability distribution p(xo) of the initial
point of the polymer is related to the initial conditions of
the velocity through

If this last scaling form holds, the Galilean invariance of
the Burgers equation implies that the two terms in Bu /Bt
and (v V )v should scale in the same way under a rescal-
ing x ~bx and t ~b '~~t, which implies co =2g 1—
[19,18]. (Another way to argue about this identity direct-
ly on the polymer problem is by observing that the fluc-
tuations of elastic energy in the directed polymer scale as
x /t = t '~& "=t .) So we are left with only one scaling
exponent.

An important point that was discussed in [26,27] is the
existence of two distinct scaling regimes in the case where
the random potential has a large correlation length h.
The regime that is studied the most for directed polymer
is the large-time regime where the transverse fluctuations
of the polymer are much larger than b. But there also
exists a short-distance regime where the transverse fluc-
tuations of the polymer are smaller than the correlation
length of the potential. This is obviously the regime that
interests us most for the turbulence problem (although we
shall return to the long-distance regime later on). This
regime holds for time differences shorter than a typical
time scale ~*, defined from

The nonlinearity has disappeared from this formula-
tion and has been replaced by the famous problem of
disordered systems, which is to average the logarithm of
a partition function (in order to calculate various mo-
ments of the velocity field v ). In Sec. III we shall deal
with this problem using the replica trick and a variational
method that becomes exact in the limit of very large di-
mensions N.

Before turning to this calculation, it is useful to give
some kind of qualitative (more or less dimensional)
analysis of the directed polymer and to enrich our dic-
tionary by stating its counterpart in the turbulence
language. The study of an elastic structure such as the
directed polymer in the presence of a random potential
has been discussed in several works recently [25,21]. In
the phase where the disorder is strong, one expects a scal-
ing behavior of the lateral fluctuations of the polymer de-
scribed by a wandering exponent g

([x(t)—x(t')]'& = Hit t'~'& . —(2.13)

The thermal fluctuations are irrelevant at a large distance
and this scaling also holds in the zero-temperature limit
or for the disconnected correlation [(x(t) x(t') & ] . —As
for the free-energy differences for two polymers finishing
at points t, x and t', x ', they scale as

I

[h (x, t) —h (x', t')] = ix —x'i ~gl, . (2.14)

The t ~ t ' limit then implies that the free-energy
difference at points x and x' scales as ix —x'i ~& and
therefore the difference of velocities in the Burgers equa-
tion should scale as

([x(t+r') —x(t)] & =6 (2.16)

One expects to be allowed to linearize the random poten-
tial in this slowly varying regime and to study the much
simpler (linear) problem of a polymer with a random
force, defined by the Hamiltonian

2
C dXm=f dr—

0 2 ft. (r) x(r) (2.17)

(where the random force is of order ifL i=&&/b, ).
This random force problem was studied by Larkin and
Ovchinnikov a long time ago [28]. In this regime there is
no metastable state and the problem is easily solved for
one given sample. Assuming for simplicity periodic
boundary conditions, one obtains the Fourier transform
of the average polymer's position

&x(~) &= (2.18)
CCO

A dimensional analysis of the Fourier transform would
lead to

&x(t) —x(t') &'= it —t'i',
2g2

(2.19)

from which one deduces the scaling exponent in this re-
gime and the value of ~,

1/3
C2g4

~»=2/» —1=2, r*=

(2.20)

This result looks very nice when translated in terms of
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turbulence, since it predicts [using (2.15)] that the
difference of velocity between two points at a distance r

a)~ /g~ —1
will scale like r =r' and also that time scales
and length scales are related through t -r, with gx =—',&rc

(Richardson diffusion). Note that r* is simply the con-
vective time across the injection length A.

These results thus precisely reproduce the Kolmogorov
scaling, which is derived here from a very simple argu-
ment on the directed polymer problem. However, it
turns out that this result is wrong because we must go
beyond the linear approximation.

Technically the reason is in the integration that leads
from the expression (2.18) of the average position in
Fourier space to the scaling expression (2.19). Clearly the
corresponding integral over frequencies cu is divergent at
small co and it turns out that the result is proportional to
(t —t') 7; where V' is the total length of the polymer.
One sees that, even if t —t'&~, the scaling depends on
time scales that are larger than h. Therefore one cannot
work out the scaling behavior at small length and time
scales within the linear, random force approximation. In
the polymer problem one must study the case of a ran-
dom potential, which is a nonlinear problem with many
metastable states [21,26]. Translated into the turbulence
language, these correspond to intermittency effects,
which are crucial and cannot be neglected. The full solu-
tion derived in Sec. III indeed 6nds a Kolmogorov scal-
ing, but only for the third moment of the velocity
difference [u(x, t) —u(O, t)] = ~x ~. The other moments do
not agree since all the moments [u(x, t) —v(O, t)]~ with q
larger than or equal to 1 scale like ~x ~. Furthermore,
length and time are related by a convective scaling, corre-
sponding to the dynamical exponent z = 1/g= 1.

III. REPLICA VARIATIONAL APPROACH

A. Replica solution

8'N g f drexp
2

a, b

[x,(r )
—x&(r) )

21VA
(3.1)

where we have added a mass term p for regularizing in-
termediate computations, which we will set eventually to
zero. We furthermore consider periodic polymers, for

We now turn to the problem of computing the average
free energy lnZ(x, t) of the directed polymer over the
random forcing V(x, r). The procedure we use is stan-
dard and is followed closely [21,26]: we first express
lnZ(x, t) as the zero-replica limit lnZ =lim„o(Z"—1)/
n, then average Z", which generates an effective attrac-
tion between replicas, which we treat using a Gaussian
variational ansatz. The quality of this approximation,
and the regimes of dimension and Reynolds number in
which it becomes exact, will be discussed in Sec. III C.

We proceed as usual by writing the average of Z" as
the partition function of the n-replica Hamiltonian &„,
which reads

'2
dxm„=—yfdr c

2 ) 0 d7

which x(t)=x(0). This is not exactly the same problem
as the one with free ends, which is in direct correspon-
dence with the Burgers equation. We shall erst work out
the periodic case and in Sec. III C we discuss the changes
for the free case.

In order to handle the problems of the metastable
states, the idea is to use a variational method and approx-
imate &„byan effective Gaussian Hamiltonian &„
which we write in Fourier space as

=—g f deux ( cu)6 y (co)xb(co)
a, b

(3.2)

where f dco stands for f + "dco/2m. Note that &„is iso-
tropic in real space; however, its structure in replica
space is arbitrary. The trial free energy obtained with &„
depends on G,b and reads

V„[6]= (&„)„——Tr lnG, (3.3)

where ( )„means averaging with the Boltzmann weight
associated with the trial Hamiltonian %,. Remember
that the temperature scale has been set to one. The cal-
culation of (&„)„using Gaussian integrals is straight-
forward and leads to

Q f dcu(cco +p)G„(cu)

B,b
Nb,

—N/2

(3.4)

—N/2 —1

[G '],~(c0)= — 1+
NA

(aWb) (3.5)

and

6„(cu)+g 6,&(co) —=6, (cu) = 1

bra P+&~
(3.6)

The task is now to solve these equations using some an-
satz on the structure of G,b. This has been discussed in
full detail in [21]. We keep here to dimensions N) 2.
There are two regimes of Reynolds number, separated by
a critical value Re, = [2(1—2/%)" ']'~ . For
Re&Re„the solution is a replica symmetric one with
G,&(co)=5,&6,(cu)+6(co). The two propagators G, and
G are easily computed. Translated in terms of the veloci-
ty, this just corresponds, for an infinite size system (but
for a finite injection length b, ), to a vanishing velocity
field. For a finite box of length L =+v/p, one finds that
v =v(x —xo )/L, where xo is a random (Gaussian) time-
dependent variable depending on the forcing history.
When one increases the forcing beyond Re, the correct
solution is the so-called one-step replica-symmetry-

where T is the total length of the polymer and
8,&

——fdcu[G„(co)+6&I,(co) 26,&—(co)] The v. ariational
statement is that V„[G]is greater than or equal to the
true free energy. We thus look at the optimal G,b such
that c)9'„[6]/c) G,~ ( co ) —=0. This leads to the self-
consistent equations
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breaking scheme. This amounts to parametrizing the
oF-diagonal elements G,b (co) with two functions
Go(co), Gi(co), depending on whether the replica indices
belong to the same block or to different blocks. The size
of these blocks is furthermore parametrized by a number
m ranging between 0 and 1, fixed by imposing that
B9'„[GO,Gi, m]/Bm =0. We refer the reader to [29,21]
for a more detailed discussion of this construction, but
will recall below its physical interpretation on which we
shall heavily rely to discuss our results in the turbulence
language. The relevant formulas for inverting such ma-
trices are given, for completeness, in Appendix A, togeth-
er with the basic calculation steps needed to solve Eqs.
(3.5) and (3.6).

One important final equation is the one fixing m. We
find that

2m
N

'
1 —N/2

=2m =—m Re
8' 1

v 2
(3.7)

where we have used the definition of the Reynolds num-
ber [Eq. (2.4)]. Note that Eq. (3.7) is well behaved in the
limit E +Do, wh—ere it becomes 2e =(mRe) . We shall
see later that when Re & Re„the breaking of replica sym-
metry corresponds to a nontrivial structuration of the
flow into large-size structures that are cells of size 6, in-
side which the velocity is of order U~-Re(v/b. ) (in-

dependently of the box size I.) We sh.all thus identify
Re, as the critical Reynolds number for the onset of tur-
bulence.

B. Physical description of the solution

Let us see how this is encoded in the one-step solution,
by first looking at equal time correlations. Within the
Gaussian variational ansatz, one finds that the probabili-
ty distribution i is given by:

P[[x,(t)] ]=Z '+exp —
—,'g[Q ']~, ) ~b)x, (t)xj, (t)

a, b

(3.9)
In the very-large-Reynolds-number limit, on which we

focus now, the parameter m scales as 1/Re and one finds

Q —Qi —-md, . The physical interpretation of the replica
probability distribution Eq. (3.8) has been worked out in
[21] and is particularly simple in the present case, where

Qp is zero and Q, —Qo is very large. Remember that one
is dealing with a polymer in a random environment. For
each sample 0 [i.e., for a particular realization of the dis-
order V(x, t)] the probability distribution Pn(x ) for the
end point of the polymer x has a certain shape. The one-

(3.8)

where Q,b
= fZco G,b(co) and g denotes the sum over

all the n! permutations of replica indices. Taking the lim-
it where the mass term p is zero, we find that (see Appen-
dix A)

mA
Q.-u~"-'-0, Q, -Q.--, Q

—Q, =
2m
1V

step replica-symmetry-breaking variational approach as-
sumes that this distribution can be written as a weighted
sum of Gaussians

Pn(x)=QW exp [x —r ]' (3.10)

2S — [1 cosco(t ——t') ]dco
2m ceo (ceo +S)

(3.11)
J

where S=1/[4c(Q —Q, ) ]. Equation (3.11) shows that
a characteristic time scale appears, given by
&c/S =2'~ (b. /v Re), which is nothing but the Larkin-
Ovchinnikov time ~' encountered above and corresponds
to the convective time across the injection length. For
r))~, one finds that C(r)=2 b, (rlr*), whereas for
r(&~', one finds C(r)= ,'b, (r/r") . —

Equations (3.10) and (3.11), together with the value of
m and 5, are the central results of this paper, from which
we shall derive in Sec. IV the very interesting statistical
properties of the velocity field, in particular the exact cal-
culation of the full probability distribution of
u(x, t) u(x', t). Befo—re turning to this computation, we
first discuss the validity of this replica solution.

C. Discussion of the replica solution

One is not able to solve exactly the directed polymer
problem. The variational method to which we have
resorted is, however, known to be a good approximation
to the real behavior of the directed polymer [21,30]. An
interesting advantage of this approach is that it gives ex-
act answers for the thermodynamics in the limit of a
large number of dimensions N ~ 0O . Technically, as
shown in [21], this comes from the fact that this varia-
tional ansatz can be seen as a resummation of the Hartree
diagrams in the perturbation theory for the correlation
function, which are the only ones surviving in the large-N
limit. However, beyond the thermodynamic potentials,
there are some quantities for which this approach fails to
give the right answer, even for N —+ 0O. It is unfortunate-
ly the case of the velocity correlation function defined in
(2.15), for which our calculation inay only become exact
in the large-N and large-Reynolds-number limit. The
problem can be understood as follows. The replica calcu-

where 5—:Q
—Qi, W are random weights chosen with a

probability proportional to W ' (1—W) ', and r
are uniformly distributed in the box of size I. (a more for-
mal description of the solution is presented in Appendix
B, together with useful technical details). The W and
the r encode the particular features of the sample Q and
must thus eventually be averaged over.

The above construction was restricted to a certain time
(or length of the polymer). Similar considerations also
enable us to construct two-time correlation functions and
the result is very simple: it amounts to letting the r ac-
quire a time dependence. More precisely, r are indepen-
dent Gaussian, time-dependent variables such that (again
taking the p=0 limit)

C(r t') =—( [r (r) —r (t') ]')
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lation is expected to reproduce faithfully the thermo-
dynamical behavior of the system by correctly describing
the low-lying energy states. The weight of these low-lying
states is found to be distributed proportionally to
W ' (1—W) '. Hence the moments [Pn(x ) ]",
which are primarily determined by the low-lying states
(i.e., by those with large weights), are expected to be ac-
curate, while those that are sensitive to the 8"—+0 part of
the distribution are not. This is the case when g(m, in
particular for 1nPn(x ), which we need in order to calcu-
late the velocity in the Burgers language. Hence, only
when m —+0, i.e., at infinite Reynolds number, can the
method be reliably used to determine exactly the statisti-
cal properties of the velocity field. To summarize this
discussion we expect that this approach may be exact
only when N~ ~ and m ~0. This issue can be studied
from the solution by a study of the correlation identities,
some of which will be checked in Sec. IV C. In any case
the picture that emerges from the discussion in Sec. IV is
an appealing one that seems to be a good approximation
even at small N.

Eventually, we want to discuss an important detail.
The previous replica calculation was performed, for sim-
plicity, in the case of a periodic polymer, i.e., one for
which x(t)=x(0). From the Burgers equation point of
view, however, the end point of the polymer must be left
free. As argued by Nelson and Vinokur in a different
context [31], the difference between points far inside the
chain and boundary points is the fact that the statistical
weight of the former is given, in quantum-mechanical
language [32], by the product of two propagators, while
the end point only needs one. If the ground-state wave
function of the corresponding quantum-mechanical Harn-
iltonian decays exponentially on a characteristic length
scale I, this means that the lateral Auctuations of the
polymer's end point decay on length scale I, while the
fluctuations for points in the bulk decay on a length scale
I/2. The study of the system with periodic boundary
conditions, which we performed in Sec. III A, only deals
with these fluctuations in the bulk. The simple conse-
quence of this analysis for our problem is that formula
(3.10) can be used for free end points as well, although
the value of 5 must be doubled, i.e.,

We shall study the statistical properties of this velocity
field at large Reynolds numbers. We recall from the pre-
vious analysis that we have 5=2mb =2 ~ 6 /Re. Typi-
cal snapshots of such a velocity field in N = I or 2 dimen-
sions are given in Figs. 1(a) and 1(b). Very clearly, a cel-
lular structure appears. Within each cell, the velocity
field is radial u (-2v/5)(x r—), with a rapid variation
(shocks) across the boundaries of these cells.

This structure can be understood qualitatively from
Eq. (4.1), using the important property that the weights

1d Velocity field

(a]

5=2m 6 (3.12)

IV. STRUCTURE OF THE VELOCITY FIELD

A. Qualitative arguments

We can now use our dictionary between the two prob-
lems, in particular the fact that the velocity field is given
by the derivative of the free energy of the polymer prob-
lem with respect to x. For a given realization of the forc-
ing, this free energy is simply the logarithm of the proba-
bility distribution Po(x ) given in Eq. (3.10); one can thus
express v as

—(x —r ) /25a8' e

—(x —r ) /25
gW (x r)e-

2v av=
5

(4.1)
FIG. 1. Typical snapshots of the velocity field as given by Eq.

(4.1}, with m =1/Re=10, in (a) one dimension N=1 or (b)
two dimensions N =2 (where we have plotted in gray levels the
modulus of the velocity field).
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8' have a very broad distribution. More precisely, we
know that $V =exp( f~—)/grexp( f—r ), where the f
are independent random variables with an exponential
distribution increasing as exp( mf). For m small, there is
a very strong hierarchy between the smallest f appearing
in the sum. For instance, the gap between the smallest

f and the next scales as 1/m a- Re. So the low-lying f,
which are the only terms contributing to the sum, behave
at large Re as f =f~Re and the velocity field in this re-
gime takes the form

3.0

g 2.0

~ W

1.0
C4
C4

(x r)~—
p7/3g2

+exp Re f—(x r)2—
27/3g2

g(x —r~)exp Re f-
2v a

(4.2)
0.0

0.0 2.0 4.0 6.0
I

8.0 10.0

FIG. 2. Comparison of the numerically determined velocity
correlation function [directly from Eq. (4.1)] and our analytical
formula (smooth curve), obtained after integrating Eq. (4.7),
multiplied by u . Note the linear regime at small x —y.

The velocity field is thus strongly intermittent, with a
multifracta1 spectrum given in Fig. 2. Note, however,
that the q =3 moment scales in the manner of Kolmo-
gorov, i.e., as in the real turbulence problem. The pres-
ence of large-scale structures (shocks) forming an N
dimensional frothlike pattern [see Fig. 1(b)] is responsible
for such a strong intermittency. Large-scale structures in
true turbulence are similarly thought to be the origin of
the experimentally observed intermittency, which is,
however, much milder (see Fig. 2). The main reason of
this difference is probably related to the dimension of the
large-scale singularities, which is N —1 in the present
case and only 1 for vortex lines in hydrodynamic tur-
bulence.

This strong intermittency, due to the cell and shock
structure, has already been discussed in the one-
dimensional Burgers turbulence in the decaying (un-
forced) case [33—35]. To the best of our knowledge, the
forced case has not been studied. Furthermore, we are
able to derive the exact form of the probability distribu-
tion function of velocity differences, to which we now
proceed.

P„(u)-(1—p)5 u — +p f2vr 1 u

5 vg va
(4.3)

where f ( ) is a certain scaling function. This is true in
the limit Re~Do where the internal structure of the
shocks can be neglected. We will see below that precisely
such a form is obtained from an exact calculation. Let us
now estimate the various moments of u using expression
(4.2),

For a given x and a large Re, the major contribution to
the sum comes from the largest term. This dominant
term will suddenly switch from, say, a to P when the
space-dependent Gaussian factor compensates for the
weight difference, i.e., when (x —r ) —(x '

r&)—
+5/m. This leads to a typical size of cells of order
v'5/m ~ b„i.e., the injection length itself. The width l of
the shock separating two cells is obtained by writing that
~x —r ~l/5-1, i.e., l ~b, /Re&&A„which shows that
the notion of cells is indeed well defined at large Reynolds
number. This construction allows one to guess the struc-
ture of the probability distribution of the velocity
difference between nearby points. Let us present the ar-
gument in N =1 dimension (its generalization to higher
dimensions is straightforward) and call x and x +r these
two points. The probability that a cell wall is present
within the interval [x,x +r] is obviously given by
p =r/b, . In the limit where p is small, the velocity
difference u =v(x+r) v(x) is equal —to 2vr/5 with
probability 1 —p and of order 2vb, /5-vRe/b, =vz with
probability p. Hence

U&ru~-(1 —p) +pA vg,q
(4.4) B. Exact results at infinite Reynolds number

ru~=A vg— (4.5)

whereas for q ( 1, one finds

7u~~vg (4.6)

where &~ =f du u~f (u) In the lim. it where l &&r &&b„
one finds that for aO q larger than 1, one has

Using the direct evaluation of the moments of the ve-
locity difference from Eq. (4.1), one can establish, after
rather long manipulations detailed in Appendix B, the
following form for the full distribution of longitudinal ve-
locity differences. Let us first start by the equal time case
and write u =v'(x ) —v'(y), where the component 1 is
along the x —y axis and l =(y' —x')/b, V2 (the other
components would be treated in a similar manner). The
result then reads
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'1/2 '

2v 5
S,(u)=5 u —l

m

—I /8

1/2

+ili f dh f Dt f Ds5 u+(t+s) sgn(l) [R (h, ~l ~ )] (4.7)

where R (h, l) = [e "'~ Jato(h l/—2)+e"' Jkfo( —h —l/
2)] ' (JKo is related to the standard error function; see

—x /2Appendix B}and Dx =(dx/v'2n. )e " ~ . Note that Eq.
(4.6) has precisely the structure that we guessed using
qualitative arguments [Eq. (4.3)]. We have tested this for-
mula numerically by generating a one-dimensional veloci-
ty field using Eq. (4.1), for Re=100, and directly comput-
ed the second moment u as a function of r, which we
compare in Fig. 3 with the exact formula for Re~~
obtained by integrating (4.7). For b, /Re « r «b„
corresponding to the inertial range, one
finds u =(16Re v /~m. h )(~x —y~/6) or in terms
of the "traditional" energy spectrum E(k}
:—k '(v(k)u( —k)), E(k) ~k for all N. Note the
saturation for distances much larger than the cell size 6,
on which we shall comment later. We have also comput-
ed the weight of the 5 peak and compared it to the one
obtained analytically, again with good agreement.

We have also extended our analysis to two interesting
situations. First of all, one may consider the case of a
finite Reynolds number. The calculation of the second
moment u shows that a new length scale appears,

u~= r', r & l„"',
2v

(4.8)

which is the standard result (up to the numerical prefac-
tor) obtained in turbulence for length scales smaller than
the dissipation length (see, e.g., [36]). Note that the dissi-
pation length ld depends on the moment of the velocity
one wishes to calculate: this is another consequence of
intermittency. Matching the regular behavior (4.7) with
(4.4) or (4.6} suggests that the qth-order dissipation length
scales as ldq'=6 Re ' ', only for q =3 does one recov-
er the usual Kolmogorov dissipation length
l"'=a/Re'".d

From our ansatz for the velocity field (4.1) and the fact
that r (t) evolve according to (3.11), one can see that the
full velocity correlation function has the scaling form (in
the limit b /Re « r « b, )

id''=5/Re (note that ld2' is the width of the shocks l in-

troduced above) separating the above linear regime of u

at larger distances from the regular, quadratic behavior
at small length scales:

[u(x+r, t) v(x, t')] =—r g v'2C (t' t)—(4.9)

2.0

1.5

0.5

0.0 L
0.0 2.0 4.0 6.0

where C(r) is defined in Eq. (3.11) and g ( ) is a certain
scaling function. We have obtained the precise form of g
in the case where t and t' are well inside the polymer, but
did not attempt to compute it for end points, where addi-
tional numerical factors would appear (see the discussion
at the end of Sec. III C).

In the limit t t'«r* [see Eq. (3.—11}],V2C(t t')—
=va ~

t t'~: Eq. (4.9) then m—eans that fiuctuations travel
in a ballistic way with a velocity fixed by the injection
scale. For larger time scales, the dynamics recovers a
diffusive character, since v 2C(t —t') ~blitt t'~/r . —
Note, however, that the effective diffusion constant
v,„,b

=5 /r~ ~ Rev is enormously enhanced compared to
its bare value v, as is the case for usual turbulence. From
Eq. (4.9} in the limit r~0, one finds that for coinciding
points, the velocity difference grows with time as

FICr. 3. Sketch of the "multifractal" spectrum g(q), giving
the r dependence of the qth moment of the velocity field both
for the forced Burgers equation (triangles) and hydrodynamical
turbulence (circles); see, e.g. , [13]. Note that g(3)=1 for both
models (Kolmogorov scaling). Intermittency corrections [l.e.,
the departure of g(q) from q/3, as given by the dashed line] are
much stronger in Burgers turbulence: this is due to the fact that
singularities are concentrated on (N —1)-dimensional structures
rather than on vorticity tubes.

[v(x, t) —v(x, t')] ~ V'2C(t —r') . (4.10}

C. Sum rules and the large-Reynolds-number limit

There are a number of sum rules that the correct solu-
tion of the Burgers equation should satisfy, allowing us to
test our prediction for the structure of the velocity field,
as given by Eq. (4.1). The first and most interesting one
physically is the energy conservation, i.e.,
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~2
1 BU =0= —v.(u.V)v+vv. b, +u f .
2 at

(4.11}

V. DISCUSSION

There are quite a number of points worth discussing
under the light of the previous results before commenting
on the similarities and differences with the "real" tur-
bulence problem.

A. Burgers turbulence in small dimensions

As stated above, our results are a priori only exact for
large dimensions and Reynolds number, the method we
have used becoming a variational approximation in finite
dimensions. By comparison with other problems where
this approach was used, however, one expects that our
solution describes faithfully the physical situation, even
for relatively small values of N. Furthermore, all the sum
rules that we have checked so far (Sec. IV C) are satisfied
for any X in the limit Re~ Do. Hence we believe that the
forced Burgers equation in, say, N=3 dimensions will
produce a cellular arrangement of the flow pattern, as de-
scribed above. It would be extremely interesting to test
this prediction numerically, as well as to measure the in-
termittency corrections.

For N ~ 2, one, however, knows from previous studies
that the structure of the replica solution changes: instead
of a one-step breaking, a full continuous breaking scheme
is needed. This raises the interesting question of knowing
whether such a scheme could describe a more complicat-
ed behavior of the moments of the velocity field than the
one encountered above. %'e do not have a complete
answer to this question, but it seems that the solution ob-
tained for X ~2 does not lead to a qualitatively different

The last term of this expression is the injected energy and
is equal to +(N!2)e T.he two first terms represent the
dissipated energy: notice that contrarily to the in-
compressible Navier-Stokes case, this dissipation is non-
local (i.e., it cannot be expressed in terms of velocity
derivatives only). We find [see Appendix C, Eq. (Cl 1)]
that the total dissipation is given by —(N/2)e(1 —m).
Hence we find that the energy conservation is indeed ex-
actly satisfied in the limit m ~0 (Re~ ~ ) atgxed e (i.e.,
for h~ ca or v~O). Interestingly, in this limit, this sum
rule is true independently of N. Equation (4.11) can also
be interpreted slightly differently. Suppose that at t =0
the forcing is switched off. The subsequent evolution of
the energy density is then given by the dissipative terms,
i.e., Nb, ~ (de ~ /dt) = (Ne/—2), leading to e-(b, /t ),
or else for the velocity scale vz(t) —6/t.

We have also checked that B(v ) /Bt =0 in the limit
Re~ oo for all N, while dV u/dt =0 identically for all N
and Re. The calculation of velocity correlations for non-
coinciding points, such as (8/Bt)v(x)u(y), are much
more intricate and are currently under investigation.
Hence these direct checks of certain (local) correlation
identities suggest that our ansatz might be exact for large
Re.

As discussed in Sec. II, the main difference between
this work and previous studies on the directed polymer
problem lies in the regime of length scales. Usually, in
the directed polymer problem, one assumes that the
correlation length of the potential 6 is very small and one
is interested in the long-distance x »5 scaling behavior
of, say, the free energy, where nontrivial exponents ap-
pear. On the other hand, in line with most studies of the
turbulence problem, we focused on the contrary on the
sma/l-scale x «6 regime, where an inertial range ap-
pears, characterized by an energy cascade E(k) ~ k
The existence of these two regimes for the Burgers equa-
tion suggests that a similar situation may also occur in
real turbulence, where a nontrivial scaling regime could
exist for x »6, characterized by a velocity correlation
converging towards its asymptotic value as a power law

[v(x+r )—v(x )]i=2[u(x )] — +
r 2(1—co/g)

r » b, (5.1)

or, equivalently, by a new exponent for the energy spec-
trum E(k) ~ k' ' ~~', where co and g are the generaliza-
tion of the exponents defined for the polymer problem in
Eqs. (2.13) and (2.14), corresponding now to the usual
large-scale situation r »6 studied in directed polymers.
Numerical results on directed polymers in 3+1 dimen-
sions [17] give $-0.6, co=2/ —1-0.2. It would be very
interesting to analyze experimental data beyond the injec-
tion length b, along these lines. This implies, for each ex-
periment, a detailed study of the correlation of the forc-
ing at large distances.

C. Passive scalar dispersion

A subject of recent debate is the behavior of a passive
scalar in turbulent flows, which also shows experimental-
ly anomalous density fluctuations, in particular exponen-
tial tails [39]. Although a detailed study is beyond the
scope of the present paper, it is interesting to discuss
qualitatively this problem for Burgers turbulence. Let us
suppose that the diffusing scalar obeys a Langevin equa-
tion of the form

8x =v(x, t)+g(t),
dt

(5.2)

where v(x, t) obeys the forced Burgers equation Eq. (2.1)

picture, the reason being that all the length scales appear-
ing in recursive construction of the sample-dependent
measure Pn [21] (i.e., the width of the Gaussians), as well
as the m parameters describing the weight distributions,
are all of the same order of magnitude. Thus forced
Burgers turbulence in one dimension is expected to look
very much like the picture shown above [Fig. 1(a}], as
indeed is well known from studies of decaying turbulence
from random initial conditions [33—35].

More work on this aspect would certainly be interest-
ing, in particular to study a variant of the present prob-
lem for N =1, where f, rather than P, is a random noise
(see [37,38]). In this case also a full breaking of replica
symmetry is needed to describe the velocity field.

8. Long-distance scaling of the velocity Beld
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and rt(t) describes the molecular diffusion, with diffusion
constant equal to D. In the adiabatic limit where the evo-
lution of the velocity field can be assumed to be small
compared to the equilibration time (i.e., D »uzi. ), the
tracer concentration 8(x, t) is simply given by the
Boltzmann equilibrium

8(x, t) ~exp- h (x, t)
(5.3)

where h (x, t) is the velocity potential introduced in Eq.
(2.5). Using h (x, t) =2v lnPn(x, t)+ const, one finds that

8(x, t) ~ [Pn(x, t) ] (5.4)

Now the full distribution function of Pz can be exactly
calculated and is found to be a totally asymmetric Levy
distribution t.„with index p=m. This in turn allows one
to obtain the full distribution of 8 as

p( g) g
—1 D/2vL —

( g
—D/2v) (5.5)

D. Turbulence versus Burgers turbulence

The differences between Burgers turbulence (coined
"Burgulence" by Fournier and Frisch in [33])and hydro-
dynamic turbulence have been discussed many times.
First, the most important one is the absence of vortex line
singularities in a potential Row, which are thought to
play an important role in turbulence [42]. In our case,
singularities are concentrated on N —1 structures, giving
rise to much larger intermittency corrections.

Second, the energy is only dissipated by viscosity at
small length scales in turbulence, while there is an addi-
tional dissipation term in Burgers turbulence (which is, as
discussed above, nonlocal and actually dominates over

Hence we find that the tail of the tracer density distribu-
tion is a power law for small 8, P(8)-8 '+ ", which
becomes broader and broader as the Reynolds number
increases (m o- Re '). For large 8, P(8)-8 " 'exp[ —constX8 / ]. Note, however, that
our adiabatic assumption breaks down precisely when
Dm/v& 1, i.e., where our solution for po(x, t) holds. It
would be interesting to understand the nature of the Quc-
tuations of 8 in the large-Reynolds-number regime.

Hence we have argued that the fluctuations of tracer
concentration are strongly anomalous in Burgers tur-
bulence. In more physical terms, Eq. (5.2) shows that the
tracer is convected towards the shock regions, where the
concentration piles up. High-density "sheets" of parti-
cles spontaneously form, revealing the "frothlike" struc-
ture of the Bow. This is similar to what happens for the
Burgers equation with random initial conditions (but no
forcing) [40] and might be relevant for astrophysical ap-
plications [41].

Finally, it must be noted that the temporal dispersion
of tracers is conUectiue at short times since it essentially
follows the velocity field, which evolves according to Eq.
(3.11). This is, as noted above, in contrast with
Richardson's diffusion, which states that x = t

viscosity). This might be another important difference,
although, as shown above, it does not prevent the ex-
istence of a well-defined inertial range where the energy
spectrum follows a k decay.

A third difference invoked by Kraichnan is that in
Quids, the incompressibility condition is maintained by
the underlying pressure field, which would play an impor-
tant role in the dynamics of the fluctuations and be at the
origin of the Richardson-Kolmogorov scaling x - t in-
stead of the convection law x -U&t found here. On the
other hand, the Burgers and incompressible Navier-
Stokes equations look very similar, in particular from a
dimensional analysis point of view, which is at the heart
of Kolmogorov's argument; furthermore, the third mo-
ment of the velocity difference indeed scales in the same
way (at least for large N).

On a technical level, the simplest closure scheme for
turbulence is Kraichnan's DIA, which leads both for the
Navier-Stokes equation and for the Burgers equation to a
convective dynamics x -v ~t and to a k energy spec-
trum. However, DIA's extension to Lagrangian coordi-
nates (LDIA) was argued by Kraichnan [5] to reproduce
exactly Kolmogorov's scaling for the Navier-Stokes equa-
tion, but not for the Burgers case, where results similar to
some of ours are obtained. (Although the situation inves-
tigated by Kraichnan was that of decaying turbulence
and the intermittent corrections were not discussed. } It
would be interesting to investigate the precise relation be-
tween the two seemingly very different approaches and in
particular to compare LDIA to our results.

VI. CONCLUSION

We have thus used a method inspired by spin glasses to
investigate a toy model of turbulence and to propose an
ansatz for the structure of the velocity field, which should
become exact in high dimensions and when the Reynolds
number is also large. We find that beyond a critical Rey-
nolds number, there exists a well-defined inertial range
where the energy spectrum decreases as k . The scaling
variable is x/ut, t, where ut, is the velocity at the injection
scale h. The third moment of the velocity difference
scales linearly with distance, in the manner of Kolmo-
gorov, but strong intermittent corrections come into play
due to the presence of shocks localized on a frothlike,
cellular pattern. The full distribution for the velocity
difference is obtained exactly. Interesting scaling results
are also argued to hold at scales larger than the injection
scale and we suggest that experimental data on grid tur-
bulence could be analyzed accordingly. Our results are
presumably qualitatively correct in low dimension; nu-
merical simulations would be welcome. We have dis-
cussed qualitatively the passive scalar problem and we
have found power-law tails in the concentration distribu-
tion, rejecting the localization of the tracers near the
shocks.

From a technical point of view, it would be interesting
to understand the precise relation between the present
approach and Kraichnan's Lagrangian DIA, which gives
the same scaling as the ones obtained here. From a
different point of view, one could also generalize this
work to the case of a space-correlated forcing term
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f (x, r) with a pointer la-m correlation function. This is the
starting point of the RG analysis of turbulence: the ex-
ponent describing the decay of the power-law function is
chosen as to reproduce Kolmogorov's scaling and a RG
procedure [6] is applied to obtain adimensional prefactors
(the Kolmogorov constant). The model studied here
could provide an interesting benchmark to discuss the va-
lidity of such a procedure. In fact it can be used to test
all the various approximate methods that have been in-
troduced in the study of fully developed turbulence.

Finally, our ansatz for the velocity field [Eq. (4.1)],
which is inspired from our replica approach to the prob-
lem, has some interesting mathematical properties (see in
particular Appendixes B and C). It could be fruitful to
generalize Eq. (4.1) to describe rotational flows.
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APPENDIX A: SOLUTION
OF THE SADDLE-POINT EQUATIONS

The starting point of the one-step replica-symmetry-
breaking calculation is the expression of the free energy
in terms of G(co), Go(co), G, (co), and m. Using the ex-
pression (AII.11) given in [21] for the trace of the loga-
rithm of a one-step Parisi matrix, we find that

9'= —f des(ceo +p)G(co)+ (1—m) 1+I — 2 — 8' 81
2 2

' —N/2
Bo

+m 1+
—X/2 '

f dco
1

2
1

in[6(co) —mGO(co) —(1—m)Gi(a) }]

+
G(co) —m Go(co) —(1—m )G, (co)

1n[G(co) —G, (co)] (A 1)

where B;:2fd—co[6(co) 6;(co—)]. (We have set the tem-

perature to T =1.) Differentiating P with respect to
G(~), Go(co), Gi(co) yields Eqs. (3.5)—(3.6) specialized to
the one-step solution, with

G, (co):—G(co) —mGO(co) —(1—m)G, (co) S=—m[6 ],=
m8' 1+ 1

Nb, &Sc

—1 —N/2 (A7)

Inserting these values into Eq. (3.5) then leads, in the lim-
it p —+0, to

IG '] -o

and

1 = 1

[G '], (@+ceo )

'1

(@+ceo )

(A2)

(A3) 1=2m 8 1+
Nb. Sc

(A8)

DifFerentiating now (Al) with respect to m, after a few
manipulations, leads to

1/2 -N/2S

G, (co)—Go(co) = 1 S
(A4)

(@+ceo ) m(@+ceo +S)
where we have introduced S—:m ([G ']~—[G '], ). Us-
ing the definitions of B0,B„weobtain the equations

Equations (A7) and (AS) allows us to obtain both S and m
as

1—N/2

4m O'6c= 1—2m

2 — 1 SB —B = — de1 0 p+cco p+cc0 +S
and using (A2)

mBO+(1 —m)B, =2fden[6(co)

(A5)

2m

S=
4m b, c

(A 10)

—mGo(co} —(1—m)G, (co) ]

2f dco (A6)
p+ ceo

from which we can deduce B0 and B, as a function of S.

Using Eqs. (A2) —(A7), we thus obtain in the limit @~0,
1

Qi —Qo= ~ Q —Qi =
pc 2m pc 2 Sc

(A 1 1)
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Qo N/4
2

Qo
—Q)

Q, [Q, +m (Qo —Qi })
(A12)

and Qo ~ p '. From this we also obtain the inverse R
of the matrix Q as

1R = =2&)((,c R
C

Q
0

C C

The sum over e goes from 1 to M. The points r are uni-
formly distributed in the volume [ L—/2, L/2] . The
weights 8 are random numbers drawn as follows. First
one chooses M energies f at random, which are identi-
cally distributed independent random variables with a
probability distribution

APPENDIX B: PROBABILITY DISTRIBUTION
OF THE VELOCITY DIFFERENCE

P(f}=me ' 8(f, f) . — (B2)

gW (x r)e-
2v a

5 —(x —r ) /26aS" e

(B1)

In this appendix we compute the probability distribu-
tion function (PDF} of the difference of velocities between
two points x and y, projected onto x-y, at large Reynolds
numbers. We shall proceed in three steps. First we show
how to compute the first few moments for general Rey-
nolds numbers. Then we show how the expression
simplifies for large Re. This simplification is such that we
can finally extract in this large Re limit all moments and
deduce from it the PDF.

Our starting point is the result from the replica compu-
tation, which provides the following random process to
build up the velocity distribution: at a given time, the ve-
locity field is given by

Then the weights are given by

f(3—
p

(B3)

We shall let M, L, and f, go to infinity together, keep-—mf
ing the density of states Me '/L fixed. The r and f
are uncorrelated. We shall denote by E, and Ef, respec-
tively, the expectation values with respect to these two
sets of random variables.

Let us first evaluate the second moment. We take x —y
along the first axis and compute the longitudinal correla-
tion

r

2v
ui(x)u, (y) = E„f

fe fp —((x r) +(y —r) ]/25—

a,p
—f —f —[(x—r ) +(y —r ) ]/25

a,p

(B4)

We shall compute separately the two contributions to this correlation that come from the terms a =p and a~p in the
numerator of (84). We thus write

2
2v

ui(x)ui(y) =
5

(g 11 +g 12 ) (B5)

~her~ g» and g12 contain, respectively, the terms a =p and a&p in (B4).
To compute g» we write the denominator of (B4) in integral form, which gives

f —(x —r ) /2$ —
(

—r ) /25g11™rfJ dA, J d)((, e (x r~), (y r~), e .
—— exp[e

f (ge
" ) +~e (1' " ' ~2s)j

p (Wa)
(B6)

(B7)

After taking this average over the free energies, (B6) becomes

or the mean over the free energies, we shall use repeatedly in this appendix the following formula, lid fo 1 f, :
r

(f f )
—f m—e ~ 1(k m) if k&1

c e
—kf —Ae

OO 1(1—m) if k=0.m
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g» =ME„f dA, f dp(x —r ),(y —r ),e
0 0

'r(2 — )(k
—(x r—a) l25+ —(y —ra /25)m —2

—(x —r ) /25 +

P (Aa)
(88)

We now average over the values of r and rf3, with a uniform measure in a box of size L, . In the limit of large
L,M,f, at fixed density we get

—mf

e
—((x r) +(y r) ——] /2 5(g e

—(x —r) l25+ e
—(y r)—/25)m —2

Xexp
M f,

I (1 m) f dr(ge
—(x —r) /25+pe —(y —V) /25)m (89)

It is convenient to rewrite p —+kp and integrate over A, , which gives

g» =(1—m) f dp —(x —r) l25+ e
—(y —r) l25)m

(810)

(In this expression the f dr is over a single r variable, namely, the component of r in the direction of x —y; the other
components have already been integrated out, their contributions canceling between the numerator and the denomina-
tor. We denote x =x ( and similarly y =y, .)

It is straightforward to perform the same steps for the second contribution g, 2 in (85). One finds

g =m dp f dr(x r)e 'x r)'25—(e
—(x r)'—/25+p—e y —r) l25)m —)

12

f d ( )
—(y —r) /25( —(x —r) /25+ —(y —r) /25)m —) 1 e

~ ~ 2

~e
~ ~ 2

(
—(x —r) /25+ —(y —r) /25)m

(811)

It should be clear that these techniques allow us to write
the velocity correlations of low order in a relatively
closed form (this means reduced to some finite-
dimensional integrals, where all the averages over r and f
have been taken care of, as well as the limits I—+ao,
L —+ 00, and f,~~ ). However, the expressions are com-
plicated enough, especially when one goes to high mo-
ments, and we have not found a closed form for the PDF
in general.

Fortunately, the situation simplifies in the limit of large
Reynolds numbers. Let us first work out the expression
of the second moment in this Re~ ~ limit. We know
from the replica solution that in this limit the width 5
scales as 5=2m b, , where b is the scale at which energy
is injected and m, the breakpoint in Parisi s replica sym-
metry broken solution, behaves as m =2' /Re. Hereaf-
ter we shall use m of Re and we want to understand the
small-m limit of the velocity PDF.

We proceed and first work out the small-m limit of the
two-point correlation. In g&& we change the variables to
x =x&5/m, y =j)'&5/m; we shall take the m ~0 (large
Re) limit keeping x and y fixed. The algebraic distance
between the two points is measured by
1 = (X—y ) = (x —y )) /(b, v'2). We also change the dum-
my integration variables in (810) from r to
z =rV5/m —(x+jr)/2 and from p to
h = —m In(p ) /I 1I. This gives

g» =(1—m) lll f dh e
I, , (h)

m I() ()(h)
(812)

Xe
—z /2+1z(k —k )/2m1 2

/2 + —h~1~/ —1 /X~e +e
(813)

Their small-m limit is easily worked out by a saddle-point
integration. The result for k, ~ 1, k2 ~ 1 is

—h /2k
&
+ kz h) I~(k2/m —) /2) e

o Ill &2m.

x Ill +h
2

+h
2

r(k, )r(k, )
X I'(k, +k2)

while the results for k&k2 =0 read

(814)

where we have introduced the functions (defined for in-
teger k„k2)

(h)—= f "' (1/2 —z) '( —1/2 —z)"'
k), k2
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Ih o(h) —e / sgn(l) 'Ath —h-l2/8

m~o 1 2

I „(h)—e' s n(1) 'At h-—e sgn
m~0 2 2 (B15)

eI'rs hlII/2—
e hlII, /2A—t h

~l~ +ehl(II/2A/t0,0
—e e

2 0

In these equations we have used the definition

At (x)=I" ' z"e-"/2
Z 27T

Therefore we get for the m ~0 limit of g»

(B16)

1/2
5 2

0
I /8 —h

~ I) /2At h0

h I /—4

+e h
/ I/ /2At h0

(B17)

The small-m limit of the second contribution to this second moment can be worked out with the same technique. One
gets

5 —lg)2= h e

e' /' e h") 'At h — + "" At —h—
2 (B18)

We remember that from (B5) the velocity two-point correlations between points at distance l 6&2 equals
(2v/t)) (g»+g22). It is therefore finite when m~0. It is interesting to work out its small-l limit, which gives the
correlation between two points whose distance is small with respect to the injection scale 6 but large with respect to the
dissipation scale (since we have taken the limit Re~ ao or m ~0 first):

(u, (x)u, (y) &
=— 8v x —y

n-m 262 (B19)

We now turn to the computation of higher-order moments. We are interested in arbitrary moments of the velocity
difference u(x )—u(y ) projected onto the direction of x —y (chosen as the 1 direction). The starting point is analogous
to (B4),

' p+p'
2v

u, ( x )I'u, (y )r =
—(f + +f +fp + +fp )

E g g ) p

a)» ~ ~ ~ » a P)» ~ ~ »P

X (x r~ )) (x r— ) &exp—
(x r)2+ —+ (x r)—

a& a

X(y —
rII )& (y r& )&exp—

(y rII ) + —. . +(y —
r& )

—f (x r) /25——
X e

a
(B20)

We shall proceed as for the second moment. The first
step is to exponentiate the denominator in (B20) using

p —1 p' —1
I —(A, A +pB)

AI'BI' o o I (p) I (p')

In order to perform the averages over the values of the

free energies f and the positions r in (B20) we need to
distinguish how many indices in a„.. . , a~, p(, . . . , p~
are distinct from one another. Let us suppose that there
appear in this sequence k difterent indices, which we call
y&, . . . , yk. We shall call q- the number of indices in
a&, . . . , ap that are equal to y - and q'. the number of in-
dices in p„.. . , p~ that are equal to y~. Such a
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configuration of indices, characterized by the
number k R [1,2, . . . ,p +p'] and the sequences

I
qi, . . . , qk, qi, . . .qk (such that qi+ . +qk=p,
q', + +qk =p', and for every j, q +q' 1) appears a
certain number of times, which we call C "'

in the sum over a&, . . . , a„,P&, . . . , P~ of (B20). For each
configuration of indices, we just do the same transforma-
tions as for the second moment. We shall not repeat
them here and just give the final result, which generalizes
(B12) to

2v
v, (x)"v, (yP =

5

p+p' ' ~p+p')/2
5 1

—p'hlil/~ p+p'
x f" dh ', y r(k)m'-' y e'"

I I
&l . . - &k &i

I (q)+qj' m)I—,(h)

Io,o(h)
(B22)

—( h 2/2+ I2/8)e
&2m.

sgn(l) +~' f dh +h
2

Let us now work out the leading behavior of this expression in the small-m (large-Re) limit. From the integrals I,(h)
g ~, q ~

we get a factor exp(hill+ q'/m), which exactly compensates for the explicit e "'" . Using 5=2m', we find that
the contribution to (B22) from a given value of k scales as (v/5/+~ (5/m) '~+~ ' m'"'. A close look at the behaviors
of the integrals I~ ~. shows that a (k) is zero for k =1,2 and it is strictly positive for k 3. So we can neglect the terms
with k ~ 3 in (5.5). The term k =1 is easily worked out. The only allowed configuration of indices has q& =p and

q& =p' and its degeneracy is 8z'~. =1. For the k =2 term we keep only the leading terms that correspond to q =0,
q2 =p, q', =p', and q2 =0 or to q1 =p, q2 =0, q 1 =0, and q2 =p', which also have a degeneracy 1. Altogether the lead-
ing contribution to this moment at large Re is

2v 5
p +p ~p +p )/2 P

vi(x) vi(y) 5 m 2
+h

xR(h, ltl)+( —1) ltlA P 2

x JR~ h — [R (h, ill )] (B23)

—(h /2+1 /8)
sgn(t)~ f dh ill~

217

It is a simple exercise to sum these moments and get the qth moment of the longitudinal velocity difference

q q/2

[v, (x ) —v, (y) ]q= 2v 5
5 m

+( —1Pltl f e—a —Iiln V2m.

x f" "'
e ""(t+s)~[R-(h, ltl)]', (B24)

~ —liln v'2w

where

R (h, l) = [e '~ JRo(h t/2)+e"—'~ JRo( —h —l/2)] (B25)

Under this form the moments can be inverted and we obtain the explicit form of the PDF P(u) of the velocity
difference u —= v

&
(x)—v

& (y) between two points at a distance x —y = lb, &2 at large Re:
1/2

P(u)=5 u —l e ' f e " R(h, ill)
5 m &2m.

1/2

+Ill f dh f . '"f -' e- "5 u+(r+. )—& —IIIn +2& a —lsln V2n. 5
sgn(l) [R (h, ill)] (B26)
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APPENDIX C: CORRELATION IDENTITIES

In this appendix we check that the solution we have
found does satisfy some necessary identities of correlation
functions, in the limit of large Reynolds numbers. We
shall perform the explicit check in the case of the energy
balance. From the Burgers equation one finds

quenched disorder. ) With these definitions we have

&u~&,
2v
5

2v 1

(C3)

(v "v")= A +B+C,1a
2 Bt

'v "—8"-(v ~v ~), B= vv "8"B~vt', C =f~v~, —
2

(Cl)

which leads to the following expression of A:
3

E,f —
& u" &(u" &+—(u~&(u" & & u~u" &

2v 1

with a convention of summation on the repeated vector
indices p, p from 1 to X, which will be used in this whole
appendix. The overbar denotes the expectation value
with respect to various realizations of the force f. We
shall compute successively the three contributions A, B
(from our solution), and C (from a direct computation of
the energy injected). In the end we shall check that their
sum vanishes at large Reynolds number, as implied by
the stationarity of the forced How.

We use the ansatz for the velocity given in (4.1) and
developed in Appendix B. It will be useful to introduce
somewhat more compact notations and define

——&u~&&u~)(u~)(u~) . (C4)
1

+-,' & u~) (u~u~u~)

—
—,'(u )(u"u")(u )] .

The partial cancellation leaves

(C5)

The same steps give the expression for B,
'I 3

5E„f[—(u )(u")((u u") —(u )(u"))1

u"=—x"—r" (C2)
3

where r" is a random variable that takes the value r"
with a probability W~exp[ (x r)/—25].—We shall
denote as before by angular brackets the expectation
values with respect to this process with fixed 8' and r,
while the averaging over W and r [corresponding to
the overbar in (Cl)] will be denoted as in Appendix B by
E„f (In term. s of the directed polymer, (0) denotes a
thermal average and the overbar denotes an average over

~+B= E„,—&u~)(u~)+ (u~&(u~u~u~)2v 1

1
&u~)&u~u~&&u~&

25
(C6)

We now evaluate each of the terms in this expression.
The first term is given by

E„f((u~)(u") ) =E„f
( )~ )~

—[(x r) +(x rp—) ]/25—
a,P

'2—(x —r ) /25
Wze

(C7)

E„,(& && "&)= 5N .
m

(Cg)

Using the technique of Appendix B, one finds after some
work that the only nonvanishing contribution comes
from the a =P term in (C7) and gives

The sum gives in the end

1 2vA+B = ——
2 5

3

(Cl 1)

The same technique can be applied to each term in (C6).
One obtains

and

E„f((u~)(u"u "u)'))= 5 (N +2N) (C9)

E„f((u~)(u"u")( u)))=
2

5 (N +(2—m)N) .

(C10)

One should notice that the terms of order N vanish au-
tomatically due to the structure of the velocity field (4.1)
and independently from the value of m.

We now proceed to the evaluation of the last term C in
the correlation identity (Cl). This point needs a little
care because one must be more precise about the correct
prescription of the forcing term, whether it is of Ito or
Stratanovitch type. To settle this issue in a pedestrian
but safe way, we have discretized the time in units of
~0«1. The Hopf-Cole mapping can be carried out in
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this case and we deduce from this computation

C = ,'f"f—"='~Ne— (C12)

Using the value (3.12) of 5, 5=2m b, , the relation (3.7)
between m and the Reynolds number
(1—2m/N)' =

—,'m Re, together with the definition
(2.4) of Re, Re =eh, /v, we finally get

Z ( x t )
+ ~~Z (y t )

+ ~2

1=cg'exp —QR, b

Ioj a b

1 —0 1+cda + a
3'

1 —0 1+0b + b
X (D2)

lim A+B+C=O (E fixed),
Re~ oo

(C13)

which establishes the correlation identity for the energy
balance (C1). Using the same techniques, we have also
checked that the correlation identities corresponding to
BV u/B.t =0 and B[(v ) ] /Bt =0 also hold for any N in
the limit of large Re.

Ak=g 0'~ '''CTg (D3)

where the +I )
is over n Ising spins o, =+1, with the

constraint that g, o, =0.
As an intermediate step to this computation, we first

compute the action of gI )
onto a polynomial in the

spins. Let a&, . . . , ak be k dÃerent replica indices. We
define

APPENDIX D: REPLICA COMPUTATION
OF THE VELOCITY TWO-POINT CORRELATION

cgexp —gR~ )~b)x (t)xg(t)
a, b

(D 1)

We shall compute Z (x, t)" Z (y, t)"~, which can be writ-
ten as

The aim of this appendix is to compute the two-point
correlation u (x, t)v (y, t) directly from the replica method
of Sec. III. This will provide a check that the intermedi-
ate physical representation (Bl) is safe. In the course of
this computation we shall also establish useful replica
identities, which can be of wider interest. To keep the
computations simple we consider only the one-
dimensional case N = 1. We start from the result (3.8) for
the partition function for n replicas of the polymer arriv-
ing at time t at the points x„a=1, . . . , n:

Z(x „t). . Z (x„,t)

Clearly A
&
=0. As for A 2, one can use

0=+, b gI~) o,o 1,
= n +n (n —1)A2 to deduce A2 = 1/

(1 n) T—he g. eneral result can be deduced from an itera-
tion of the above procedure:

0 ifk is oddA„=]
1 —n 3 —n

k —1

k —1 —n
if k is even

(D4)

and this can be written in the form

2n +1
Ak = I dy [cosh(y) ]"/2[tanh(y) ]" .

t

(D5)

This expression is well defined for n (0 and can be con-
tinued analytically to positive n. B is the Euler beta func-
tion [43]. From this expression of Ak one can deduce the
generating function

r

n

g [h, . h„]:—g 'exp gh, cr, = //cosh(h, ) g A„
a a k=0 a & &a

1 k

tanh(h, ) tanh(h, )
k

2n+1 n

8 n2, n /—2—f dy + cosh(y +h, ) . (D6)

Formula (D6) is a replica identity, which may turn out to be useful in other contexts. Here we will use it to compute
u (x)u (y). Starting from (D2) and using the fact that gkR, b =0 (derived in Appendix A), we have

Z(x, t)" Z(y, t)" =cg'exp —QR,bo, ob
IaI a, b

where a is defined as

(D7)

(x —y)a= (D8)

We call as usual r, r„rothe various elements of the hierarchical R,b matrix. Using the fact that r0=0, we get from
(D6)
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Z(x, t)" Z(y, t)"
pn+1

pg oo n/m
exp a—(F r, )

—f dho fDh cosh ( ha+ hV ar, )

pn+1
exp a (—r r—

) +mr) )

(D9)

n/m

~„)2m+„-n/m
X I dh()e JDh (1+e

where Dh: dh—/&2' exp( —h /2). Changing variables to @=exp( —2ho) and h =mar)(z —x)sgn(x —y) and using
the fact that r —r, +mr, =0, we derive

Z(X r)n/2Z( r)n/2
~ dP —n/2 (

d (
™((z—x) /2+ ™((z—P) /2)mm r r z—

8 ( —n /2, n—!2) o (tt 2m.

Having computed Z (x, t)" Z (y, t)", the velocity correlation is easily deduced as

v(x)v(y)=4v = lim Z(x, t)"/ Z(y, t)"/Z'(x) Z'(y) . 16v2 a2

Z(x) Z(y) n o n2 BxBy

(D10)

(D 1 1)

It is straightforward to check that this replica computation agrees with the direct physical space computation of Ap-
pendix B. More precisely we recover the expressions (B5), (B10), and (Bl 1) for the correlation, using the fact that
mr)5=1.
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