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Breathing and wiggling motions in three-species laterally inhibitory systems
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We study the layer dynamics in a coupled set of reaction-difFusion systems describing the interaction
of one activator and two inhibitors. In some special limits, this set of equations is reduced to a
Bonhoeffer —van der Pol —type excitable system or a model for electric glow discharge. Dynamics of lay-
ers is investigated by an interfacial approach and complementarily by computer simulations. By chang-
ing the parameters, these layers undergo several sustained oscillations such as breathing, wiggling, and
quasiperiodic motions, which are due to the competition of two inhibitors and one activator.

PACS number{s): 47.35.+i, 02.30.—f, 82.20.Mj

I. INTRODUCTION

Pattern formation far from equilibrium has attracted
increasing attention for more than 20 years. Extensive
reviews can be found in Refs. [1,2]. The discovery of the
Belousov-Zhabotinsky (BZ) reaction [3] was a landmark
that both physicists and applied mathematicians began to
study intensively this field. Curious patterns such as con-
centric and spiral waves [4] have been considered by
analytical methods including approximate theories and
computer simulations [5]. Recent experiments [6,7] of
the ferrocyamide-iodate-sulphite reaction in gel reactors
have realized spatially periodic motionless domains as a
result of Turing instability [8].

The emergence of localized dissipative patterns has
also been observed in semiconductor devices [9,10] and
electric gas discharges [11,12]. In contrast to the chemi-
cal reactions, these localized domains undergo oscillatory
instabihties. In fact, complicated motions of discharged
domains as well as stationary periodic structures have
been observed in both one and two dimensions. In an
electric system some of the system parameters can be
controlled in a tunable way. This is one of the advanta-
geous features compared to chemical systems where, for
instance, the reaction rates are not changed freely in
some intervals. Thus the transition from one state to
another in the electric systems can be investigated sys-
ternatically.

From modeling view points, such pattern formation is
described by a class of reaction-diffusion equations in the
framework of activator-inhibitor systems. Throughout
this paper we use the terminology of an activator and an
inhibitor with the same meanings as widely accepted in
the literature [13—15]. Originally the notion of activator
and inhibitor was introduced in a two-component
reaction-diffusion system. A substance is called an ac-
tivator if it has a property of self-enhancement. The ac-
tivator produces another substance that is called an inhi-
bitor if it tends to suppress the growth of the activator.
An example will be given below in Eqs. (1.3). A remark-
able property of the system is that if the diffusion of the

activator is small compared to that of the inhibitor, a
motionless localized solution [16] and/or a spatially
periodic solution [14,17] can be formed. This is due to
the Turing instability of a homogeneous steady state. It
is remarked that the bifurcation is not necessarily super-
critical. Depending on the nonlinearity of the system, a
spatially periodic solution can appear as a subcritical bi-
furcation in a monostable state where a homogeneous
solution is linearly stable. In the opposite limit such that
the diffusion of the inhibitor is large, the system in a
monostable condition exhibits a stably propagating pulse
solution [18,19]. It is well known that the simplified
model equation for the BZ reaction belongs to a one-
inhibitor —one-activator system [20].

Recently it turns out that one has to consider an
activator-inhibitor system with multiple components.
For instance, the pattern dynamics in the electronic de-
vices and glow discharge mentioned above is modeled. by
a two-inhibitor —one-activator system. See the transfor-
mation of Eqs. (1.2) to Eqs. (1.5) below. More generally,
the interaction of multiple species of activators and inhi-
bitors is often observed in population dynamics. One
typical example is a population model system of N preda-
tor species and M prey species, both of which move by
diffusion. These are basically described by

a~i' =d, bu, +f, (u, v)u, (i =1,2, . . . , M), (1.1a)

aU~ =d bv +g (u, v)v (j=1,2, . . . , N),
at

(1.1b)

where u =(ui, uz, . . . , u~) and v =(vi, vz, . . . , v&) are
population densities of the prey species and the predator
species. The constants d; and d are diffusion rates of u;
and v1. The functions f; and gJ are the growth rates of u;
and UJ, which possess prey and predator mechanisms, re-
spectively. The readers should refer to [21] for specific
forms of nonlinearities f; and g ..

Theoretical work on pattern dynamics arising in
activator-inhibitor systems (1.1) has been intensively in-
vestigated from both theoretical and numerical
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viewpoints [2,5,22]. However, most of them are restrict-
ed to two-component systems (M =N =1) and, as far as
we know, there have been few attempts [23,24] to ap-
proach more multicomponent systems [25,26].

As the first step to theoretically understand such mul-
ticomponent systems, we propose one-dimensional
reaction-difFusion equations that describe the interaction
of two inhibitors (N =2) and one activator (M = 1). The
model equations take the following form for the activator
Q and the two inhibitory variables U and w with a
sufficiently small positive constant c.: =E +f (u) —w+k,BQ BQ

Bx
(1.4a)

Problems similar to those considered in Refs. [16,28,29]
have been investigated independently by Kerner and Osi-
pov [30,31]. Quite recently, Ikeda and Nishiura [32] have
analyzed the oscillatory behavior in further detail.

In the opposite special case of s =1, Eq. (1.2b) implies
that v (x, t) becomes asymptotically zero so that (u, w) be-
comes the so-called shadow system, which is also a one-
inhibitor —one-activator system

+f (u) —v —w+k,Bu pBu
Bx

(1.2a) p =r&u &
—w,Bw

at
(1.4b)

a(1 —q)
BU

Bt
8 U +r(1—s)u —v,
Bx

(1.2b)

Bw
aq =rs&u &

—w,
i3t

(1.2c)

=s +f(u) —v+k,BQ pBQ (1.3a)

BU

at
0 v + I'Q U

BX
(1.3b)

with a=a (1—q). This reduced system (1.3) has been in-
vestigated by singular perturbation techniques and an in-
terfacial approach [2,16,17,27—32]. Koga and Kuramoto
[16]predicted that a motionless localized solution of Eqs.
(1.3) undergoes a breathing motion when a is sufficiently
large. Later, the existence of a breathing motion was
proved in a mathematically rigorous manner [28]. Ohta,
Mimura, and Kobayashi [29] have extended these one-
dimensional results to higher dimensions. Oscillations of
interacting domains in a spatially periodic solution have
also been exploited [17]. One of the conclusions obtained
in Ref. [17] is that a coherent in-phase oscillation of
domains is the primary mode of oscillation in Eqs. (1.3).

where f (u) is N shaped such as f (u) =u —u and
f (u)= —u H(u) wit—h H(u)=+1 for u &~0. The pa-
rameters a, k, q, r, and s are constants. The angular
brackets & & mean the spatial average.

Because f (u) is an ¹haped function, one may expect
that Eqs. (1.2) admit a spatially nonuniform stationary
solution for suitable values of k, r, and s, which connects
two uniform solutions, say, Q

+ and Q . The width of the
boundary between Q+ and Q is of order c and is very
small for small values of c,. Hereafter we call this thin
boundary an internal layer or an interface. The motion
of internal layers characterize the time evolution of the
spatial pattern. For this reason, we are interested in the
dynamics of internal layers and especially the stability of
stationary internal layers by using a singular limit
analysis as c tends to zero, which is called an interfacial
approach [27].

Let us first brieffy explain Eqs. (1.2). When s =0, Eq.
(1.2c) is decoupled with Eqs. (1.2a) and (1.2b) and the
solution w vanishes asymptotically. Thus it turns out
that Eqs. (1.2a) and (1.2b) reduce to the one-
inhibitor —one-activator system with the Bonhoeffer —van
der Pol kinetics:

=s +f (u) —v —rs&u &+i,BQ 28 (1.5a)

Bv Bv
a = +r(1—s)u —v .

Bx
(1.5b)

A feature of this system is that the activator Q is inhibited
by not only v but also its own spatial average & u &. Equa-
tions (1.5) are essentially identical to the model equations
for glow discharge proposed by Radehaus et al. [34]. In
a gas-discharge system, the activator Q is the current den-
sity and the inhibitor U is the voltage drop across the gas
gap. Here we do not describe the derivation of (1.5) for
glow discharge because it is lengthy; for details see Ref.
[34]. There they have shown by computer simulations
that a localized solution of (1.5) exhibits a wiggling
motion. When s =1 in (1.5), the system is decoupled so
that Eq. (1.5a) reduces to a time-dependent Ginzburg-
Landau equation if one sets f ( u ) = u —u .

From the above consideration, Eqs. (1.2) can be inter-
preted as follows. For arbitrarily fixed a and r, the pa-
rameter s implies the ratio of the inhibitor magnitude of v

and w to an activator Q, while q implies the dynamics ra-
tio of U and w to Q. Furthermore, the activator Q diffuses
so slowly compared to U and w and the diffusion con-
stants of U and w are totally different in a sense that w
diffuses infinitely fast.

The purpose of this paper is to study dynamics of inter-
nal layers in Eqs. (1.2) in order to understand how two in-
hibitors inhuence pattern dynamics of the activator and,
in particular, from the stability viewpoint of equilibrium
solutions, to consider how (1.2) is different from the one-
inhibitor —one-activator system when the parameters are
globally varied. What we would like to emphasize is that
(1.2) exhibits not only breathing motion, which has al-
ready been obtained in a one-inhibitor —one-activator sys-
tem, but also wiggling motion and, furthermore, very
complicated oscillations such as quasiperiodic behavior.

As mentioned above, the model equations (1.2) are re-
lated, on the one hand, to BZ-like chemical reactions

with p=aq. The only difference between (1.3) and (1.4) is
the different diffusivities of the inhibitors U and w. Equa-
tions (1.4) have also been considerably studied by an in-
terfacial approach [33]. We note that the system exhibits
no oscillatory behavior.

On the other hand, if we set q =0, Eqs. (1.2) are writ-
ten as
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II. SIMULATIONS OF LAYER DYNAMICS

A. Interaction of two inhibitors and one activator

Before we treat the system (1.2), we should briefly men-
tion how it can be derived from the two-inhibitor —one-
activator system. The first system that we introduce is
the three-component system for (u, v, U2)

Bu 8 u=d +f (u) —c,vi —czv2+k, (2.1a)

Bv, 82v,
=d& +a&u —b&v, ,ax'

BV2 8 U2
=d~ +a~u b~v~, —

Bt (jx

(2.1b)

(2.1c)

where f (u) has appeared in Eq. (1.2a). It is obvious to
see that the kinetics in (2.1) is a straightforward extension
of the well known Bonhoeffer —van der Pol kinetics be-
cause, when di=d2=d i

= 2= »i =»2=»
ci =c2=c, and gi(u, v)=g2(u, v)=au bv, (2.1) redu—ces
to the essentially two-component system for u and v,

Bu 8 u=d +f (u) —cv+k,
dt ()x

(2.2a)

and, on the other hand, to electric discharge. However,
we do not intend to make a detailed comparison with the
experimental results. We are mainly concerned with the
global feature of the model and clarify the role of the in-
hibitors in the appearance of various types of oscillations.

The organization of this paper is as follows. In Sec. II
we carry out computer simulations of Eqs. (1.2). Various
domain motions are identified. In order to understand
theoretically these dynamic behaviors of patterns, we
derive, in Sec. III, an interface equation from (1.2), taking
the limit a~0. The linear stability analysis of the inter-
face equation of motion is performed in Sec. IV and the
stability diagram of equilibrium solutions with spatially
periodic structures is drawn. In Sec. V we carry out com-
puter simulations of the interface equation of motion and
compare those with the numerical results obtained in Sec.
II for sufticiently small but not zero c. Finally, we make
concluding remarks and discussions in Sec. VI.

stants. Here we consider the situation where the
diffusivity of u is so slow compared with those of v and w
that we may assume s to be sufticiently small. Further-
more, we assume that the diffusion rate D approaches
infinity. Then, under the zero-Aux boundary conditions,
w(x, t) becomes spatially homogeneous, say, w(t) and,
taking the spatial average of (2.3c) with respect to x, we
obtain

Bw
aq =rs(u ) —w,

Bt
(2.3d)

where (u ) means the spatial average of u. Equations
(2.3a), (2.3b), and (2.3d) constitute the model system (1.2)
demonstrated in the Introduction.

B. Numerical simulations

In this subsection, we numerically solve the system
(2.3a), (2.3b), and (2.3d) with sufficiently small e) 0 in a
finite interval 0&x &L under the zero-Aux boundary con-
ditions at x =0 and L and show what kind of asymptotic
states appears in the system, depending upon the values
of q and s. The other parameters are suitably fixed to be
c.=0.02, k =0.5, a =600, r =1.5, L =1.5, and
f (u)=u —0.008u .

In our simulations, we restrict our consideration to the
situation where only two internal layers exist in the inter-
val in such a way that u (x, t) exhibits a one-pulse solu-
tion as in Fig. 1. Here we simply call such an equilibrium
solution with internal layers an equilibrium solution
without confusion. We note that any solution with no
reAection symmetry with respect to x =L/2 is spatially
periodic with the period 2L because of the reAection
property at the system boundaries with zero-Aux bound-
ary conditions.

We demonstrate the asymptotic states of the solutions
in the (q, s) square region. These are basically classified
into five patterns depending on the values of q and s, as in
Fig. 2: (i) equilibrium state, E; (ii) breathing (in-phase)
motion, 8; (iii) wiggling (antiphase) motion, W; (iv) quasi-
periodic motion, Q; (v) another complicated pattern, C.
In Fig. 3 we illustrate schematically the breathing and
wiggling motions of domains. The existence of these pat-

Bv, 8 U=d' +au —»v .
dt

(2.2b)

By setting d =s, c&=c2=1, di=i/[a(i —q)],
a, /d, =r(1—s), bi/di =1, dz=D/(aq), Da2/dz=rs,
and aqb2=1, the set of equations (2.1) is rewritten in
terms of u, v =v&, and w =vz as

Bu 28 u +f(u) —v —w+k,
a&'

a(1—q) = +r(1—s)u —v,a
Bt

Bw 82w
aq =D + rsu —w,

(2.3a)

(2.3b)

(2.3c) X

where a &0, r )0, 0&q &1, and 0&s &1 are all con- FIG. 1. Equilibrium solution obtained by simulations.
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domains, say, L+, where u & 0, and L, where u (0, as
in Fig. 1. The former is often called an excited domain,
while the latter is a rest domain. Therefore when c. tends
to zero, we may regard internal layers as structureless
geometrical interfaces in such a way that time evolution
of the spatial pattern is described by the dynamics of ei-
ther excited or rest domains, which is given by the
motion of interfaces between them.

For the explicit computation, we specify the function
f (u ) as a piecewise linear form

I —u —1 for u(0
—u+1 for u )0. (3.1)

Li2— 0.0
I

Ei2

Note that this definition off (u) is different from the pre-
vious one [17,29].

First, we assume that an equilibrium solution with two
internal layers with width 0 ( E ) has symmetry with
respect to x =0. Note here that the origin of the x coor-
dinate is different from that in Sec. II. Actually the ori-
gin is shifted by the factor L /2. Therefore, if one extends
this solution in the whole interval R under the reAection
with zero-Aux boundary conditions, one obtains the spa-
tially periodic equilibrium solution with the period L. By
taking the limit c—+0, this solution is discontinuous at
the interfaces, say, x =+l/2, in such a way that the
period and the excited domain width are respectively L
and I. For a general domain configuration, we introduce
the right (left) interface position X+ (X ) such that
u (X*,t) =0 for x =X . It turns out that X*=+I/2 for
the equilibrium solution. It should be noted that when
the domain undergoes wiggling motion, the period is 2L
because, in an antiphase oscillation, adjacent domains os-

FIG. 8. Equilibrium solution of Eqs. (1.2) in the limit a~0.

ciliate with a phase difference m. Then the spatial aver-
age ( u ) is given as

(u)= f dx u(x t) .
0

(3.2)

Now we express Eqs. (1.2b) and (1.2c) for U and w in
terms of X*. In the limit a~0, Eq. (1.2a) can be solved
as

u = —v —w+k+H(u), (3.3)

where H(u) =1 for u )0 and —1 for u (0. In terms of
the interface positions X and X as in Fig. 8, H(u) can
be explicitly written as

H(u) =8(x —X )8( —x +X )+8(x L+X+)8(——x +L —X )

—8 x+—8( —x +X ) —8(x —X }8(—x +L —X )
—8(x L+X )8( —x +—'L)—L + +

2 2 (3.4)

where 8(x)=1 for x )0 and 0 for x (0. The spatial
average ( u ) is given from (3.3}and (3.4) by

dCD
a (1—q) dt

(u ) = —(U) —w+k+ —(X —X ) —1 .
2 +
L

(3.5)

r(l —s) Co+w——k+1——(X —X )
L

Equation for n %0 is given from (1.2b) and (3.4) by

(3.7a)

By using the Fourier expansion of the variable v,

U (x, t) =Co(t)+ g C„(t)cos x ——mn L
L 2

(3.6)

where

+ r (1 s)B„, —

dC„ ~na(1—q) = — 1+r(1—s)+
dt L

2

(3.7b)

Eq. (1.2b) can be written in terms of the Fourier com-
ponents C„(t) (n =0, 1, . . . ). From (3.5) and the fact
that ( U ) =Co, it follows that

8
sinB

mn
(X+—X ) cos (L —X+ —X )2L 2L

(3.7c)
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Similarly one may write Eq. (1.2c) as

aq = —rs Co+w —k+1 ——(X —X ) —w .dw 2 +
dt L

IV. LINEAR STABILITY OF THE LAYER STRUCTURE

First we solve the stationary problem for the interface
equation obtained in Sec. III. From (3.11) one has
c( V)=0 so that (3.10) implies

(3.8) k vi +w (4.1)

We now derive the equations for the interface positions
X+ and X . In the limit a~0, we could expect that the
spatial variation of v is weak compared to that of u.
Therefore we may regard U in Eq. (1.2a) as a constant in-
dependent of x [17,29]. Actually, when we are concerned
with the motion of X*, we may set
v (x, t) =v (X*,t) =Ul* The. value of u at the interface is
given from (3.6) by

vI =Co(t)+ g C„(t)cos X~n ~ L
n=1

(3.9)

Furthermore, the effect of other domain boundaries is
negligible since e/1 «1. Thus the time variation of X+
can be obtained from an isolated interface as shown in
Fig. 9. Under these conditions, a steady propagating
solution of (1.2a) can be readily obtained [35]. The veloc-
ity is given by

rs 2l
w = k —1+—1+r L

(4.2)

and

r(1 —s) 2lCo= k —1+—
1+r L

(4.3a)

The equilibrium solution of the Fourier components C„' '

for n %0 is given from (3.7b) by

C(o)— 8

mn

r(1 —s)

1+r(1—s)+
L

em, mn
-2 sin l cos

(4.3b)

The equilibrium values of w and Co are obtained from
(3.7a) and (3.8) with X*=kl /2, respectively, as

2Vc(V)=—
{(1+V)(1 —V)]'

(3.10)
Note that this is 6nite only for even integers of n, i.e.,
n =2m. Substituting (4.2) and (4.3) into (4.1) and some
manipulation yield

with V=vl*+w —k. Thus one obtains the equations for
X*

k = —r 1 ——+(1+r)y2l 2
L m=i '™1+ +

2

X =kc(V) .
dt

(3.11)

In this way one arrives at the complete form for the inter-
face equations of motion (3.7)—(3.11) for the unknown
variables [X*(t),v (x, t) ].

Finally, we make a remark about the nonlinear func-
tion f (u) defined by (3.1). One can make a transforma-
tion to the system with the previous definition [17,29]
f (u) = —u for u & 0 and —u + 1 for u & 0 by the follow-
ing replacements: u —+2u, v ~2v, w ~2w, and
k~2k +1.

27TmX sin (4.4)

1.0

where y=r(1 —s). By solving this with the summation
truncated at m =100, the domain width l is given, de-
pending on k. We thus 6nd that equilibrium solutions are
obtained as a function of k, r, and s. The result is shown
in Fig. 10. Especially when l/L =

—, it is readily seen that

0.5

0.0
-1.5 0.0

FIG. 9. Spatial variation of the activator u inside the internal
layer (interface).

FIG. 10. Scaled domain width l/L as a function of k for
r =1.5, s =0.5, and L =1.5.
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k =w =Cp =0. This originates from the fact that the
nonlinear function f (u) given by (3.1) is an odd function
of u.

Next we explore the stability of the equilibrium solu-
tions. By numerical simulations in Sec. II, we already
know that it crucially depends upon the values of q and s,
that is, equilibrium solutions become unstable through
two different types of Hopf bifurcation such as in-phase
and antiphase instabilities.

A. Wiggling motion

First we consider the stability of stationary interfaces
under wiggling disturbances. To do it, we introduce devi-
ations g as

0.0
0.0 0.5 1.0

X*=6—+gl
2

(4.5)

where we set g+=( =g. The interface equation of
motion obtained in Sec. III is linearized in terms of g.
Note from (3.7a) and (3.8) that the deviations of Co and w

vanish asymptotically. Hence Eq. (3.11) can be written
up to 0 (g) as

FIG. 11. Phase diagram obtained by the linear stability
analysis of the interface equations of motion. The full line is the
Hopf bifurcation threshold for breathing instability whereas the
dashed line is that for wiggling instability. The parameters have
been chosen as a =18.0, r =1.5, I =0.75, and L =1.5.

d == —25vt,
dt

(4.6)

where we focus, without loss of generality, on only the
right interface and hence 5ut is given by

(2m —1}el.
5ui= g 5C2, (t) cos

m=1 L 2

00

m=1

with l =L —l. An equation for 5C„(t) is obtained from
(3.7b) up to linear order of the deviation by

Equation (4.9) has been solved numerically for
1/L =l/L =

—,
' truncated the summation at m =50. The

stability threshold where the real part of A, vanishes is
plotted by a dashed line in Fig. 11. The imaginary part is
always Anite so that a Hopf bifurcation occurs on the
line. In the region marked by 8' one has a wiggling
motion of domains.

B. Breathing motion
2

8 . mn . m.nl+gy —sin sin

d5C„ m.na(1 —q)
" = — 1+y+

L

(4.8)

In order to examine the possibility of breathing
motion, we have carried out the stability analysis by set-
ting g+ = —

g =g. Equation for g is given, in this case,
by

16
L

cos (2m —1}
n.l

2

Because of the factor sinn. n/2 in the last term, 5C„(t) is
finite only for odd integers, as has been incorporated in
Eq. (4.7). Putting g and 5C„(t)~exp(At) in (4.6)—(4.8),
we obtain the growth rate A,(%0}as

d = —2(5u +5w ),
where 5vt is obtained from (3.9) as

5vt =5Co+ g 5C2 (t) cos
m=1

+ g C' 'g(t)sin
L

2am l
L 2

2~m l

L 2

(4.10)

(4.11)

sin m

2

a (1—q)A, + 1+y+ L
Equations for 5C„and 5w are obtained by linearizing
(3.7) and (3.8), respectively, as

21Tm

L

'2 (4.9) d 5Cp 4
a (1—q) = —

I 1+y I5CD r(1 —s)5w+——yg,0

(4.12)
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Figures 12 summarize the results of the simulations.
These are the asymptotic results after eliminating initial
transient. The figures on the left-hand side show the in-
terface motions in the space- (vertical axis) time (horizon-
tal axis} plane while those on the right-hand side plot the
orbits in g, (horizontal) and gz (vertical) plane. Figure
12(a) is the typical wiggling motion obtained for
q =0.055 and s =0.41. When one decreases s, the oscil-
lation deviates from the sinusoidal curve and a phase
difFerence between g, and gz appears. This can be clearly
seen in Fig. 12(b) for q =0.055 and s =0.12. If one fur-
ther decreases the value of s as q =0.055 and s =0.0738,
one enters a quasiperiodic regime as in Fig. 12(c). Al-
though not shown in the figure, we have verified that this
is indeed quasiperiodic by a Lorentz map in the same
manner as in Fig. 6. For slightly smaller values of s, a
breathing motion appears as in Fig. 12(d), where

q =0.055 and s =0.06. Note that the time and space
scales are the same in all the figures. Thus the frequency
of the breathing motion [Fig. 12(d)] is larger than that of
the wiggling motion [Fig. 12(a)]. Figure 12(e) is an exam-
ple of period-doubling oscillation. This emerges for
s =0.3 and q =0.2. It is interesting to see that the main
oscillation with lower frequency in Fig. 12(e) is a wiggling
motion while the secondary oscillation is a breathing
motion. Thus we note that the period doubling is a result
of competition between these two fundamental motions.

The results shown in Fig. 12 are qualitatively con-
sistent with those in Figs. 4—6 obtained by direct simula-
tions of Eqs. (1.2) with a small but finite value of s. One
exception is the almost chaotic oscillation in Fig. 7. Al-
though we carried out simulations in the q-s plane very
carefully, we could not find any chaotic behaviors in the
solutions of the interface equation of motion.

In the boundary region where the breathing and wig-
gling motions complete with each other, more complicat-
ed motions appear. In fact, computer simulations reveal
several interesting spatiotemporal patterns such as
period-doubling, quasiperiodic, and almost chaotic oscil-
lations. However, their theoretical understanding is still
in progress.

When we were preparing this manuscript, a paper by
Niedernostheide et al. [36] was published. They also
carried out computer simulations of the set of equations
quite similar to Eqs. (1.5) and found breathing, wiggling,
and quasiperiodic motions of a domain. However, the
present study of the extended model Eqs. (1.2} is more
general. Niedernostheide et al. considered only the par-
ticular limit of Eqs. (1.2), i.e., for q =0. One of the essen-
tial differences from their results is the existence of a dou-
ble Hopf bifurcation point in the q-s plane as shown in
Fig. 11. Almost chaotic oscillations, which were not ob-
tained in Ref. [36],have been found near this point. Fur-
thermore, we have applied the interfacial method to draw
the precise stability diagram.

In this paper, we were restricted to dynamics of solu-
tions with two internal layers. Of course, multilayer dy-
namics is also interesting, as shown in Fig. 13, which was
obtained by the simulations of Eqs. (1.2) and where three
different types of pattern of four-layer dynamics are
shown. These results suggest that more variety of oscilla-

4000

VI. CONCLUDING REMARKS

What we have shown in this paper is that multispecies
activator and inhibitor systems exhibit a variety of spa-
tiotemporal oscillating patterns compared with one-
activator —one-inhibitor systems. To show the difference,
we have studied pattern dynamics in a simple but non-
trivial model of an interacting one-activator —two-
inhibitor system given by Eqs. (1.2). Motions of excited
domains have been investigated by both direct simula-
tions and the interfacial approach. The global phase dia-
gram for the oscillating instabilities has been drawn in q-s
space. When the value of s is small, the system reduces to
the one-activator —one-inhibitor system that was studied
previously. It was predicted that an in-phase oscillation
of domains is dominant for I /I. =—,

' whereas an antiphase
oscillation can appear for l /I. «1 [17]. Later, this prop-
erty has also been studied in further detail by Ikeda and
Nishiura [32].

For small values of q, the wiggling motion is the pri-
mary motion of domains. This is one of the characteris-
tic features of the present system. Radehaus et al. [34]
have obtained an antiphase oscillation in their numerical
simulations of Eqs. (1.5), which is a particular case of
Eqs. (1.2) with q =0. Thus their result is well consistent
with the present analysis.

0

4000

0

4000

0
X

FIG. 13. Three di8'erent types of motions in four-layer dy-
namics of Eqs. (1.2) for s =0.5 and (a) q =0.4, (b) q =0.35, and
(c) q =0.3. Other parameters are the same as in Fig. 4.
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tion, which cannot be seen in the dynamics of the small
number of layers as shown here and previously, is expect-
ed in an assembly of interacting excited domains. For
this purpose, simulations of the partial differential equa-
tions such as (1.2) and the interface equation of motion
are time consuming. A further coarse-grained approach,
such as nonlinear coupled oscillators [37], would be more

useful. We hope to return to this problem elsewhere in
the future.
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