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Analog simulation of stochastic systems in a metastable piecewise quasilinear
potential driven by band-limited white noise
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Stochastic dynamics in a metastable potential that is linear except for finite curvatures at the
bottom and barrier top has been treated using an analog simulator. Band-limited white noise is
applied and the response of the system is observed as the bandwidth is increased until the noise
becomes effectively white. Supplementary computer simulations have also been carried out. In the
oscillation regime, i.e., for low noise intensities, the power spectrum exhibits signi6cant deviation
from that for the harmonic oscillators. Average amplitudes of the driving force have been calibrated
so that peak positions of the power spectrum may produce identical results for the two simulations.
The amplitude distribution has been consistent among the analog simulation, the computer simu-
lation, and the Boltzmann distribution. For higher noise intensities, the Arrhenius plot from the
analog and computer simulations has reproduced a correct barrier height, but the pre-exponential
factor is about one-sixth of that obtained from Kramers's formula.

PACS number(s): 05.40.+j, 82.20.Fd

I. INTRODUCTION

From the Arrhenius law [1,2] to stochastic resonance
[3], nonlinear stochastic dynamics [4] offers an alternative
dimension in understanding nature. These processes can
be envisaged as a barrier crossing in8uenced by a random
force with or without another periodic force. Since only a
few potentials allow us to 6nd analytical solutions, sim-
ulation approaches [5—7] have been adopted by several
investigators to solve complex problems that defy exact
approaches, making it possible to assess the validity of
various theories. Of these approaches, analog simula-
tions [6,7] have a unique merit that immediate results
can be obtained, although the precision may be modest
compared to that of computer simulations. Furthermore,
dynamics driven by colored noise or by a superposition
of noise and deterministic force [8] can be investigated
with little difBculty.

We have developed a type of the simulator that works
in &equency space rather than in voltage space as in con-
ventional simulators [9]. Unique features of our simulator
include that the potential is piecewise quasilinear (PQL),
that is, it is a metastable linear potential having 6nite
curvatures at stationary points. The metastability is ad-
vantageous in treating escaping events if the escape is to
be de6ned as an event in which a particle never returns
the original state.

Somewhat related work dealing with metastable po-
tential is the study of escape &om metastable potentials
of the polynomial form —xs ——x under the in8uence
of both exponentially correlated colored noise and sinu-
soidal force [10,11]. A significant difference may be ex-
pected for PQL potentials because of small curvatures at
the stationary points. As a first step in the application
of the simulator, however, we have applied band-limited
white noise to the PQL potential in place of exponentially

correlated noise, since it is a logical and immediate exten-
sion of our previous experiments on a sinusoidal driving
force [12—14].

The use of band-limited white noise is another feature
of our analog simulator. This noise is characterized by
the spectral density 8 and the bandwidth B, the latter be-
ing in6nite for true white noise. This is advantageous in
comparing the experimental results with numerical ones,
which are obtained for 6nite integration step size h. Since
B is 6nite if 6 is finite, numerical results are actually ob-
tained for band-limited white noise. If one can observe a
phenomenon that depends on the average power but not
on B, then a close comparative study is made possible.
An example is the dependence of peak frequency f~, k of
the power spectrum. If both experimental and numerical
results yield an identical f~, g, then the two systems may
be regarded as equivalent. Thus numerical calculations
have also been carried out, demonstrating that the two
dissimilar simulations can be uni6ed in order to get a
deeper insight into the problem in question.

Nonwhite noise of recent interest seems to be exponen-
tially correlated noise, which tends to white noise in the
limit of short correlation time [7,8]. For finite values of
correlation time, however, the system obeys a general-
ized Langevin equation [15] and hence the system should
be able to distinguish the difference &om white noise,
whereas band-limited white noise can "cheat" the sys-
tem.

This paper is organized as follows. In Sec. II, follow-
ing a brief explanation of the experimental aspects of our
simulator, including band-limited white noise, a method
for translating experimental escape results into physi-
cally meaningful quantities is presented. A method for
straightforward numerical integration is also described.
Simulation results are presented in Sec. III. More em-
phasis is placed on the results of analog simulation, but
those of computer simulation are also included to show
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that the two give consistent results provided parameters
are chosen properly. Section IV concludes the paper.

II. METHOD OF ANALYSIS

A. Model

curacy of I' is about 30%. A more exact representation
for x consisting of a set of coupled difFerential equations
has been obtained, but Eq. (2.1) suffices in reproducing
essential features of the dynamics [17]. In what follows
the potential well is located at f„unless otherwise stated,
but it is possible to work with the inverted potential for
which the bottom is located at f .

The present simulator [9] is a feedback circuit consist-
ing of three major components: a phase detector, a loop
filter (i.e. , an integrator), and a voltage-controlled oscil-
lator (VCO). The &equency x of the simulator obeys, to
a good approximation, the following equation [16]:

dx dx K (+ —+ —V'(x) = Kpv „g(t),dt2 dt
(2.1)

V(x) = (f„—x) tan ' " +(x —f ) tan '

r r'+ (f. -*)'——lii
2 (

+ —x + coiist, (2.2)

where the value of the constant is conveniently deter-
mined so that V(f„) = 0. This expression is derived &om
the phenomenological phase angle 8 of the admittance

where ~, currently 10 ms, is an adjustable time constant,
the VCO delay time e is 2.5 ms, K = 8.3 x 10 s
and K0 ——2.54 x 10 HzV are fixed gain parameters,
and v „q stands for external noise signal. The interaction
potential V(z), depicted in Fig. 1, is piecewise linear to
a first-order approxixnation. Its form is determined by
the size of a piezoelectric resonator used in the simulator
and the mode of vibration (i.e. , fundamental, third order,
etc.) and can be well approximated by the analytical
formula

B. Band-limited white noise

S(~) = j R(t)e' 'd&, (2.5)

which equals the constant 8 for white noise, and the in-
verse is

1
R(t) = S(ur)e ' 'd(u.

27
(2.6)

The average power R(0) is infinite for white noise, but
it is finite for the present band-limited white noise since
Eq. (2.6) is reduced to

The noise we use is a band. -limited Gaussian noise
[18], which is obtained by applying a low-pass filtering
to white noise. It will be shown in Sec. III that es-
cape dynamics is indistinguishable &om that obtained
with white noise, provided the bandwidth exceeds a cer-
tain characteristic bandwidth B . To characterize the
noise, therefore, we start with the autocorrelation R(t)
for white noise

R(t) = (e,„,(t)v,„,(0)) = sb(t), (2.4)

where s is measured in units of V /Hz. It will be shown
below, however, that half of the real spectral density 28 is
compatible with the spectral density in physical systems
[see Eq. (2.23) below]. The power spectrum correspond-
ing to Eq. (2.4) is

V'(x)—:8(x) = tan " + tan + —,(2.3)r 1 2' R(0) = 2sB, (2 7)

where the resonance &equency f„= 68.1 kHz, the an-
tiresonance &equency f = 82.3 kHz, and I' 0.4 kHz.
The values of f and f are known precisely, but the ac-

30

20

where the effective bandwidth B is measured in units
of hertz. To calculate the power we measure the root-
mean-square voltage v, „which can be obtained as the
output of an ac-to-rms converter or as the average of
sampled voltages &om a fast Fourier transforin (FFT)
power spectrum analyzer. The former data were used
for the monitoring and the latter, made possible with a
NF R9211A analyzer, were used for data analysis. The
analyzer yields the average power in the form of v,
defined by

10

tn
2'U U' )FIS

4=1
(2.8)

where v; is sampled voltage and m, = 800, and Eq. (2.7)
becomes

60 80

x (kHz)

100

FIG. 1. Effective potential for the analog simulator. The
barrier height is 18.3 kHz.

28B = v (2.9)

The values of e, , were obtained &om 16 sets of wave-
form data.

The FFT analyzer actually yields relative values of
S(u) and therefore the proportional constant was deter-



3616 SHIGEO HAYASHI 52

mined by the computer so that the identity R(0) = vz

held. A typical power spectrum of noise is illustrated in
Fig. 2, where s = 3.8 x 10 4 Vz/Hz, B = 9.2 kHz, and
v, , = 2.63 V. It also shows the cuto8' characteristics of
the low-pass filter.

For numerical calculations, a random force ( is gener-
ated using the box Miiller formula [19]. From a pair of
random numbers rh and rl2 uniform in the range (0, 1),
we obtain two Gaussian signals (q and (2 as

(n(u)n(0)) = rs8(u), (2.15)

1 f t2Kpl
t, (sex, p

(2.16)

A similar scaled equation is also derived from the stan-
dard Langevin equation for the position of a particle:

where

(1 = vrmsf' cos tI r (2 = Vrxnsr S1I1P& (2.10) (2.17)

p = 2n.F2. (2.ii)
Numerical calculations have been confirmed to yield ( s
whose average really equals the preset v, , value.

where m is the mass, P is the friction coefficient, ( is the
random force, and the potential W(y) is similar in form to
that of Fig. 1 with a suitable scaling. The autocorrelation
function for ( is [15,20,21]

(((t)((0)) = PI Tb(t), (2.is)
C. Scaled Langevin equations

+cZ t=t u, (2.12)

Since the simulator works in the &equency space, we
need to change dimensions in order to make a comparison
with the dynamical systems of physical interest. With
the replacements

y = yozq t =tou, (2.19)

we obtain the coeKcients and autocorrelation compara-
ble to Eqs. (2.14) and (2.15):

where k~ is the Boltzmann constant and T the absolute
temperature. With the replacements

where z and u are dimensionless variables, Eq. (2.1) can
be reduced to a scaled form

ptpI m

2
I to

q
myo

(2.20)

where

Z 8Z+ p—+ qU'(z) = n(u), (2.i3)
and

2 k T
(2.2i)

tc
P

t2K
q=

67 Xc
(2.14)

and

W(y) = V(x)
yp 7z

Equating p to p' and q to q', we obtain

(2.22)
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(2.23)

where the potentials are defined so that their values van-
ish at the minimum and the extra factor v is introduced
to resolve the possible discrepancy arising &om the im-
proper definition of the spectral density; a sensible choice
turns out to be v = 2. The ratio of Eq. (2.22) to
Eq. (2.23) gives

(2.24)

where o, having a dimension of &equency, is defined by

—80
10 10 10 10 (2.25)

u/2n' (kHz)

FIG. 2. Typical power spectra of noise: (a) original spec-
trum froxn the FFT analyzer, [n (dB)j= 20 logos n; (b) scaled
spectrum.

and plays the role of thermal energy.
Typical values of x and t are suggested. here for con-

venience. It seems appropriate to use the results for si-
nusoidal v „q, in which the system is least stable at a
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&equency of t = 145 Hz. The value of x may be
taken as (f —f„), giving the barrier at z = 1 and the
bottom at z = 0. Thus the suggested values are p 2.76,
q 18.5 and r 2.70 x 10s Hz/V2. Since no unique
choice of x and t is possible, the experimental values
are presented without scaling.

With the simulator, we can observe the evolution of
x(t) or z(u) &om the miniinum of the potential, x = f„or
z = 1. Specifically, the simulator can register the values
of A, i.e., the lifetime for escape &om the potential mini-
mum to the location outside the potential barrier, fthm of
Fig. 1. The imaginary particle never returns the poten-
tial well once it passes thi. s point. Such a point is rather
arbitrary. The values of the lifetime were measured by
an on-board counter for a personal computer. For small
values of A, a modulation-domain analyzer (MDA) can
also be used, since it shows directly how x evolves when
it crosses the barrier. Thus the correlation between the
counter outputs and the MDA wave forms has given an
estimate of the counter performance: the time resolu-
tion 65 ms and the delay time 30 ms. These values set a
practical lower bound to the range of A, but a better per-
formance would be achieved with a stand-alone counter.

( )
i ~sin+t

(2.32)

Here p is defined by

12
'7 = gi 4p ~ (2.33)

III. RESULTS AND DISCUSSION

A. Dependence on the bandwidth of noise

If p is imaginary such that p =ip, cosset and sin(pt)/pt
should be replaced by coshpt and sinh(pu)/pu, respec-
tively. The integrals can be evaluated using the trape-
zoidal rule by dividing 6 into Np subintervals.

The numerical method here is not as eKcient as stan-
dard methods [5]. For example, the method with %~ = 2
is half as fast as the Runge-Kutta method. In both meth-
ods the numbers of noise samples are identical. Neverthe-
less, we adopted the method since numerical results were
used primarily for checking the experimental results.

D. Numerical solution of the Langevin equation

Consider the equation

Equation (2.9) suggests that the average voltage v,
is not an essential quantity for characterizing the driving
force of the dynamical system. We shall demonstrate,
from analog simulation, that the spectral density s is
more essential.

x dx
(2.26)

f. A.ventage escape rate

8(x) = q;(x —x;) + 8, , (2.27)

where

q, = 8'(x, ), x; = x(t;). (2.28)

Since the equations thus derived are those for harmonic
oscillators, Eq. (2.26) is solved by [21]

h

x;+i ——x; + dt' s(t; —t')((t')
0

[1 —c(h)]+ x; s(h)
8(x;)

Qi
(2.29)

and. for its derivative

h

x;+i—— dt'c(t; —t')((t') + 8(x,)s(h)+ x; c(h), (2.30)
0

where

1 g 1
c(t) = e ' c~spto——ps(t)

2
(2.31)

which is to be solved in the time interval [t;, t;+i] (i =
0, 1, 2, ...), with a fixed step size h = t;+i —t, . In the
present paper, we approximate V'(x) = 8(x) by lines

With s = 4 x 10 4 V2/Hz, 1000 samples of the lifetime
have been registered for various values of B. Reciprocals
of the average of A, i.e. , k' defined by Eq. (3.10) below,
are shown in Fig. 3(a). k' increases with the frequency in
the low-&equency region and, after an overshoot, levels
ofF to a plateau value, which can be regarded as the rate
for the true white noise. If the characteristic &equency
may be defined as the &equency at which the value in
question is half the plateau value, as is consistent with
the cutoK &equency of Fig. 2, then we have

B~q ~ 200 Hz.

This noise-induced escape may be related to escape
caused by sinusoidal force. Thus, for purposes of com-
parison, the critical amplitude a for escaping under the
inBuence of the following sine waves is plotted in Fig.
3(b) as a function of the frequency f„„,:

v,„,(t) = a sin(2m. f„„,t). (3 1)

The escape behavior varies, depending on whether Eq.
(3.1) is applied from t = 0 or a is increased as slowly as
possible from a suKciently small value, but the character-
istic frequency f,i of 145 Hz, for which the system is the
least stable is the same in either mode. The graph rises
steeply at another characteristic frequency f,2 of 200 Hz,
for which barrier recrossing was observed [14]. B,i, the
lowest of the characteristic bandwidths observed in the
present paper, is of the same magnitude as f,i and f,2.
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FIG. 3. (a) Dependence of the average escape rate on the

bandwidth of noise. (b) Critical amplitude for the sinusoidal
driving force.

FIG. 4. Power spectra of x for various bandwidths B of
noise.

the present paper, is of the same magnitude as f x and
2 ~

Still another quantity characterizing nonlinear oscilla-
tor is the width of distribution p(x —f ), which can be
observed directly on the MDA. The results are shown in
Fig. 5(b), where a characteristic frequency is

2. Most probable frequency of nonlinear oscillation
and rsidth of amplitude distribution,

B 3 500 Hz.

If the spectral density is reduced so that the escape
event can almost never occur, then the simulator system
can be looked upon as a nonlinear oscillator. The oscil-
lation can be characterized by the power spectruxn S(u)
and the amplitude distribution about the average p(Az),
both of which can be made possible with the MDA. The
power spectrum can be calculated conveniently as the
squared xnoduli of FFT's for about 2000 samples of x(t)
multiplied by Han. ning's window function [22].

For a spectral density of s = 1 x 10 4 V2/Hz, the
power spectra are depicted in Fig. 4 for several values of
the bandwidth B. They have a peak at ur/2rx = fp k. A
peculiar feature is that still another peak is seen around
~/2rx 500 Hz in the range R = 210—260 Hz. This peak
should be a genuine one since it was also observed for the
inverted potential with the bottom at f . In other words,
four peaks appear in the extended u range (—oo, +oo).
This is in contrast to the harminic oscillator driven by
colored noise, for which at most three peaks can be ob-
sereved [23].

The dependence of f~, x, on the bandwidth is shown in
Fig. 5(a). It has a characteristic frequency

B 2 220 Hz.
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FIG. 5. Dependence on the bandwidth of the noise in the
weak noise regime. (a) Peak frequency of the power spectrum.
(b) Width of the amplitude distribution.
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A similar B,s value was obtained for p(x —f ), but this
distribution was not preferable because of the shape be-
ing distorted probably due to an imperfection of the sim-
ulator. From these results on the B 's, it is seen that
the dynamical system experiences the noise as if it were
white when B )) B, = max(B i, B 2, B,s) and that the
characteristic frequencies increase as the noise power is
decreased. The bandwidth dependence may be observed
for other phenomena, but it seems unlikely that the mag-
nitude of B will increase significantly &om the present
value.
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As has been demonstrated in Sec. IIIA, the spectral
shape is unafFected by changing the bandwidth B, pro-
vided B exceeds some characteristic frequency B,. What
if the spectral density s is varied while the bandwidth B
is 6xed? It has been found that the dependence on the
amplitude v, , is more tractable than the dependence on
s oc v, , since the relationship is close to linear. Figure 6
shows how the power spectra change as v, , is increased
while B is fixed at 9.2 kHz, which is greater than B,.
Peaks of the spectra shift to lower &equencies with in-
creasing v, , This behavior should be peculiar to PQL
potentials since f~, i, is not affected by noise power in the
case of harmonic potentials driven by white noise [24] or
exponentially correlated noise [23].

The relationship between f~, i, and v, , is summarized
in Fig. 7, where numerical results are also included. The
numerical calculation has been carried out for an inte-
gration step width of 0.02 ms, a sampling interval of 0.08

v, , (V)

ms, and the number of trapezoidal steps Nh ——2, thus
incorporating two noise inputs within each integration
step.

We can use Fig. 7 for calibrating v, , 's for analog and
numerical simulations v, , „and v, ,„„,although no
calibration would be required if the value of B were some-
what higher. Since the two curves should converge on
the same value as v, , ~ 0, as discussed in the fol-
lowing paragraph, we compare the slopes and obtain the
calibration relationship

'Urms, an«« = K(B)&rms, nnm« (3.2)

with K(9.2 4Hz) 0.96. Note that the conversion factor
K depends on the bandwidth.

In the limit v, , -+ 0, fp, k converges on a finite value
fi„corresponding to small-amplitude oscillation at the
bottom of the harmonic potential, for which a power-
series expansion of Eq. (2.2) gives

FIG. 7. Dependence of the peak frequency on the noise
power. Circles, analog simulation; crosses, computer simula-
tion.
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Inserting Eq. (3.3) into Eq. (2.1) yields an equation that
is the same as Eqs. (2.26) and (2.33) with 8; = 0, x; = 0,
p = [0.4 x 10s (Hz)]t„and

t K
q, = - [4.2 x 10' (Hz)']t.'.

~v.t" (3.4)

The squared modulus of the Fourier transform of Eq.
(2.29) is a practical estimation of the power spectrum
[24]

atten=0. 8
lllllla))))a««„„„„„....,.„.........,....

«« ~ ~ I «« ~ « I «««« I ~ ~ «« I ««« ~ I « ~ « ~ I l ~ ~ « I ~ « ~
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u/27T (Hz)

FIG. 6. Power spectra of 2: for various values of the spectral
density s of noise. s =(attenuation) x 4.0 x 10 V Hz

- —1 - —1

s(ru) = s«(~ —Y)*+ (
—
) (~+ Y) + (

—
)

(3 5)

where sg is the spectral density for ((t). The frequency in
the low-power limit is thus given by the peak &equency
of Eq. (3.5)
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C. Amplitude distribution for the nonlinear
oscillator

A typical example of p(x) is shown in Fig. 8, where
s = 9.1 x 10 V2/Hz, B = 9.2 kHz, and v,
v, , „= 1.27 V. Here the distribution about f is
shown since that about f is distorted probably be-
cause of a low impedance of the piezoelectric resonator
at f„. Relative peak heights are the only parameters
that can be adjusted. The experimental results are in
good agreement with the numerical results calculated for
vrms, num = vrms, ana/&(9 2 kHz).

The figure also shows an analytical result correspond-
ing to the Boltzmann distribution

V x
p(z) = const x exp (3.7)

which can be derived Rom the correspondence, Eq.
(2.24), between the dynamics in the experimental phase
space (x, x) and that in the physical phase space (y, 'll).

An alternative derivation is to consider the random walk
that obeys Eq. (2.17) [25]. Here the value of o is eval-
uated for 2s using Eq. (2.25), where v, , „ is adopted
for v, , If the value of o were reduced by 20%, then
perfect agreement with both of experimental and numer-
ical data would be achieved, but it seems appropriate to
regard the discrepancy as representing the inaccuracy of
our analog simulator. The consistency among three sets
of data validates the choice of v = 2 for o. defined by Eq.
(2.25). In passing, we note that no correction would have

freaI ~ftrm -— -——
I

1' =58o Hz, (36)
1 (Kl ~

2rl tr "2rl (e'rI )
which is in good agreement with the experiment, as seen
from Fig. 7. The value of f~, I, would not be affected by
the spectral density of noise if Eq. (3.5) were valid for all
values of sg, and thus Fig. 7 shows a power nonlinearity
in piecewise linear potentials.

been required if we had adopted 4Pk~T for the density
[24] in Eq. (2.18).

D. Dependence of the escape rate on noise power

Distribution of the lifetime

Let us turn to the escape phenomena taking place for
the increased spectral density of noise. The behavior can
be characterized by an escape rate constant k, which may
be defined by the relationship

dN
dt

(3 8)

where N is the number of imaginary particles in the po-
tential well. Integrating Eq. (3.8) leads to the time de-
pendence of the probability P b, (t) for observing a par-
ticle at time t,

P b, (t) = P b, (0) exp( —kt).

P~ oc exp( —kA) (3.9)

and therefore a least-squares fit yields the desired rate
constant. A more practicable estimate of k is to calculate
the reciprocal average of the lifetime

PA

Q APp'

which will be equal to k if Eq. (3.9) holds.

(3.10)

2. A~heniue plot

Let PpdA be probability that the lifetime is within the
range between A and A + dA. Then it must be possible
to identify P b, as Pp. The distribution Pp can only be
inferred from sampling. A histogram of the distribution
for the noise data of Fig. 2 is shown in Fig. 9 for 1000
samples. The distribution is well represented by

.02. I I I I
[

I I ~ I I I I I
/

I ~ I I

Equation (2.24) suggests that Arrhenius law holds as
in the physical world where the law is manifested by

200

1.0—
O 100

0.0::=----

tx (kHz)
0

0

(s)
FIG. 8. Distribution of x(t). Shaded region, analog sim-

ulation; circles, computer simulation; line, Boltzmann distri-
bution.

FIG. 9. Typical histogram for the distribution of the life-
time A.
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E „'1
ltphys = &phys exP

~ a~r) (S.11)
10

where E,t is the activation energy. In the analog simu-
lation, the Arrhenius law should be expressed by

10

( bVI
~ana +ana exp

( o j (S.12)

A „=93Hz, LV = 18.4 kHz.

where LV is the equivalent barrier height in &equency.
The exact value of LV, 18.3 kHz, is readily seen kom
Fig. 1.

The plot of logq0 k „against 0 is shown in Fig. 10,
where the number of samples is 1000 for analog simula-
tion and 500 for computer simulation. Statistical errors
are approximately of the same order of magnitude as the
size of the symbols. The plot is linear in conformity with
the Arrhenius law, giving the parameters

10

10
0.0 0.2 0.4 0.6

(kHz )

FIG. 10. Arrhenius plot of the escape rate k vs the ef-
fective temperature cr. Circles, analog simulation; triangles,
computer simulation.

Since the correct barrier height is reproduced, the choice
of v = 2 is found be legitimate in Eq. (2.25). The consis-
tency between the rate constants from analog and com-
puter simulations confirms the choice of K. These points
have also been noted in Sec.III C.

The pre-exponential factor may be compared with the
Kramers formula [1,26j

+K ~
= f~ g& + (-4«f~ )' —(4«. f,', )

(3.1s)

where the imaginary &equency ifht, represents the pas-
sage over the barrier and the square brackets represent
correction to the transition-state theory. Numerically
we have fh, ——fh, , as seen &om Fig. 1. Since we

have (4mef h, ) O. l, Eq. (S.1S) leads to A K,
fh, =580 Hz, which is about six times higher than A „.
The disagreement is not surprising since the Kramers for-
mula is based on a power-series expansion of the potential
at stationary points of the potential. It seems likely that
the pre-exponential factor is somehow related to the char-
acteristic &equencies f q and f z of the sinusoidal driving
force discussed in Sec. IIIA1.

The complementary nature of the analog and computer

simulations is exemplified in Fig. 10; if the excape rate
is high, the analog simulation tends to yield poor results
due to finite time resolution, while millions of random
numbers need to be generated for the low escape rates.

IV. CONCLUSION

We have presented some experimental results, ana-
log and numerical, for a piecewise quasilinear potential.
A comparison with theory in the low-power regime has
yielded a correct relationship between the spectral den-
sity for the physical system and that for the simulator.
This has been made possible owing to the finite band-
width of noise. The finiteness has resulted in the emer-
gence of an extra peak in the power spectrum and the
appearance of characteristic bandwidths B 1, B 2, and
B,3. The lowest of these is close to the escape due to
the sinusoidal driving force and the highest of these to
the harmonic limit. The dependence of the escape rate on
the noise power conforms with the Arrhenius law, but the
pre-exponential factor is considerably smaller than that
predicted by the transition-state theory, necessitating an
improved theory.
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