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The evolution of randomly modulated solitons in the Korteweg —de Vries (KdV) equation is in-
vestigated. The cases of multiplicative and additive noises are considered. The distribution function
for the soliton parameters is found using the inverse scattering transform. It is shown that the
distribution function has non-Gaussian form and that the most probable and the mean value of the
soliton amplitudes are distinct. The analytical results agrees well with the results of the numerical
simulations of the KdV equation with random initial conditions. The results obtained for the KdV
equation is used to discuss the evolution of randomly modulated smaO-amplitude dark solitons in
optical 6bers and pulses in a nonlinear transxnission lines.

PACS number(s): 02.50.—r, 05.40.+j, 52.35.Mw

I. INTRODUCTION

The investigation of the evolution of randoxnly modu-
lated pulses in nonlinear dispersive media represents an
important problem for many branches of physics. A par-
ticular case of this problem is the propagation of non-
linear random waves in systems described by integrable
or near-integrable equations [1—4]. Progress in this do-
main is achieved by the possibility of reducing the Cauchy
problem for nonlinear partial difFerential equations to
solving sequences of linear problems [5]. In the case of
dispersionless nonlinear media described by the Burgers
equation and its generalizations, the solution of the prob-
lem has been found by means of Cole-Hopf transforma-
tion. The Cole-Hopf transformation reduces the Burgers
equation to the linear di6'usion equation. This approach
makes it possible to study the evolution of the random
initial fields in order to find the spectrum of turbulence
of waves excited by a random external sources and some
related problems [6].

For nonlinear wave processes in a dispersive media the
inverse scattering transform (IST) plays the role of the
Cole-Hopf transformation [5). To date, progress has been
achieved for the analysis of presolitonic and near-solitonic
initial conditions. The evolution of a random presolitonic
initial wave in the framework of the IST was considered
in [7] for the case of nonlinear Fraunhofer diffraction in
a medium with Kerr-like nonlinearity. The near-solitonic
initial condition is attractive both due to a relative simple
analysis and because of wide application of solitons for
the explanation of many physical phenoinena. In [8] the
Langmuir turbulence of soliton gas was studied for difFer-
ent modifications of the nonlinear Schrodinger equation
(NLSE). It was shown that soliton states are the statis-
tical attractors. This is another argument in favor of
investigations of near-solitonic initial states.

The evolution of the near-solitonic fields in NLSE was

II. FORMULATION OF THE PROHI EM:
BASIC EQUATIONS

Let us consider the problem of evolution of a randomly
modulated initial soliton state in the KdV equation

u, —6uu + u. = O. (2.1)

We will consider two models of random initial conditions:
multiplicative and additive noises. The initial condition
for the multiplicative noise is

uo(*) = u. (~) [1+e(~)l = u. (~)+&u(~) (22)

For the additive noise the initial condition is

uo(x) = u, (x) +e(x)Qsech (px), (2.3)

studied in [2,9] for difFerent kinds of random initial mod-
ulations. Analogous problems for the sine-Gordon and
Korteveg —de Vries (KdV) equations were investigated in
[1,4].

In [2,4,9] the soliton parameter corrections caused by
the random initial modulation of the soliton shape were
calculated analytically. In this article we present the
analytical and numerical calculations of the distribution
function of the soliton parameters in the cases of multi-
plicative and additive noises. The analytical part of the
calculations is based on the IST and cumulant method.
The incan values, the standard deviation, and other sta-
tistical characteristics of soliton parameters are obtained.
Good agreement of the analytical results with direct nu-
merical calculations is demonstrated. The application of
the results to the evolution of randomly modulated dark
optical solitons and pulses in nonlinear transmission lines
ls discussed.
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where u, (x) = —2q sech (qx) is the single-soliton solu-
tion of the KdV equation. Below we will consider the case
of broad noise, when p &( q. For example, in experiments
[10] the dynamics of dark solitons with 1—2 ps duration
on a 200-ps-duration background pulse was investigated.
So the value of the ratio p/q for a randomly modulated
background is 0.005 —0.01. In formulas (2.2) and (2.3)
the function e(x) is the random Gaussian function with
the properties

(e(x)) =o (e(x)e(y)) = &(x —y) «1. (2.4)

LQ=E@, E=k (2.5)

Here angular brackets () denote averaging over all re-
alizations of the random process e(x) and B(x) is the
correlation function of the noise.

According to the IST method for solution of the
Cauchy problem (2.1) and (2.2) it is necessary to find
the spectrum of the linear operator L associated with
the KdV equation

value of the ainplitude ]Al are

~v = 4AE = Lgv + 42v,
LA = —2LE = LgA+ 424 (2.12)

where L~ and L2 denote the first- and second-order cor-
rections in e(x), respectively. It is possible to represent
the solution in the form of a single soliton plus weak ra-
diation, when the perturbation expansion in (2.9) for the
eigenvalue E of the L operator is valid. A crude condition
for the validity of such a representation can be obtained
by using the mean field method [ll] and the condition
is (AE)/(E) « 1. It leads to the condition 0.2q « 1
for the case with multiplicative noise and the condition
o Q /q « 1 for the case with additive noise. The noise
can also generate small-amplitude solitons embedded in
a radiation field. This efFect does not change the above
estimate essentially.

where

d
L = — + up(x) . (2.6)

@i(x) = Qq/2 sech(qx) . (2.7)

The functions of the continuum spectrum are

1 K —iq tanh(qx)
K e'

K+iq (2 8)

Below we shall consider b,u(x) as a perturbation of the
potential in the problem (2.5). Using the expressions
(2.7) and (2.8) it is possible to represent the correction
to the eigenvalue LE = E —Eq for the multiplicative
noise (2.3) as a functional series of perturbation theory
in power of a random process e (x)

up(x) is given by the expression (2.2). For e(x) = 0 it
follows Rom (2.5) that there exists only one discrete level
Eo ———q, with the corresponding eigenfunction

III. DISTRIBUTION FUNCTION

Let us calculate the distribution function for the soliton
parameters generated by the random initial pulses (2.2)
and (2.3). To do this we use the cumulant method [12].
It follows from (2.9) that the corrections to the soliton
parameters are the nonlinear functionals of the random
process e(x). So the distribution function has a non-
Gaussian form. In accord with the cumulant method, the
first and the second cumulant define the parameters of
the Gaussian distribution function. In turn, the deviation
from the Gaussian distribution function is described by
the third- and other higher-order cumulants. The third-
order cumulant describes the asymmetric distortion of
the distribution function resulting in the distinction be-
tween the mean and most probable values of a random
quantity.

For the calculation of cumulants we make use of the
relations between cumulants and moments of a random
quantity 4 [12,13]

LE = c x a x dx+ e x e y 6 x, y dxdy+ Ki ——Mi - (E2) + (E4) + 0(es) (3.1a)

where a(x) = —qssech (qx) and

(2.9) Kz ——M2 —Mi (b.i) + (b,2)
-(b,2)2 + 2(b, ib, s) + O(es) (3.1b)

I 4b(x, y) = ——q sech (qx) sech (qy) e
2

x (cosh[q(x + y)] —qlx —yl(cosh[q(x —y)]
+»nh[(qlx —yl)])) (2.10)

A = —2q +2LE,
v = 4q —4LE.

(2.11a)

(2.11b)

Thus the corrections to the velocity and the absolute

According to the IST method the soliton amplitude A
and velocity v are

K3 —M3 3MQM2 + 2M~
= 3(A b, ) —3(b, )(b. ) + 0( ) . (3.1c)

Here K and M are the cumulants and moments of nth
order, respectively. In expressions (3.1) all cumulants
are written up to fourth order in e since K3 is of order

e . However, as it will be shown below, calculating the
cumulants Kq and K2 up to order e2 is enough.

Using the formulas (2.9), (2.10), and (3.1) we obtain
the following expressions for cumulants describing the
statistical properties of the soliton amplitude for mul-
tiplicative noise initial conditions (2.2):
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Kg = —2 dxdyB(x —y)b(x, y) = 1.2qso.2, (3.2a)

dxdy B(x —y) a(x) a(y) = 3.7qso2,

K3 ——+24 dx].dy].B xz —y~ b x~, yz dx2dy2B x2 —y2 a x2 a y2

—24 dxydx2dx3dx4 E' xy E' x2 8' x3 E' x4 a xy a x2 b x3 x4

(3.2b)

= 7.4q'o-4 . (3.2c)

For simplicity we assume that the random process is b
correlated, i.e.,

However, the mean value (AA) is

(AA) = Kg ——1.2q o (3.6)
B(x —y) = o h(x —y) . (3.3)

The cumulants describing the statistical properties of the
soliton velocity are K [v] = 2"K„[A). It is worth noting
that for the Gaussian random process e(x) the cumulant
of fourth order K4 is sixth order in e'(x). We have cal-
culated K~ and K2 up to order e and K3 up to order
e . The explanation for this approximation will be given
later. According to the cumulant method, the logarithm
of the characteristic function of the random quantity, i.e.,
the logarithm of the Fourier transform of the distribution
function, can be expanded in a power series. The coefE-
cients of this series are the cumulants of the correspond-
ing order. Making use of this representation we obtain
the expression for the distribution function

(AA) —(b,A)Mp = Ks/2K2 --q cr, (3.7)

i.e. , it is proportional to q . It means that the asymmetric
distortion of the distribution function is larger for solitons
with larger amplitudes.

From Eq. (3.4) it is also seen that the cumulant Ks
appears only in the ratio Kz/2K2. The combined con-
tribution of K2 and K3 is of order e . This circumstance
proves the validity of calculating K3 up to order e and
Kq and K~ up to order e . So the most probable value
and the mean value of the soliton amplitude are

i.e., 6 times larger. The difference between these two
values is

1
P(b, A) = — dvcos[v(AA —Kq) + sKsv ]e2'

AMp ———2q (1 + O.1qo ),
(A) = —2q2(1+ 0.6qo2),

(3.8a)
(3.8b)

1 &~~-~.~' K, (AA —K,)2K'g ]
+2~K2 2K22

Ks(b, A —Kg)s
6K23

(3.4)

In Fig. 1 we show P(AA) &om Eq. (3.4) as function
of EA for q = 1 and o = 0.1 [Fig. 1(a)], o = 0.5 [Fig.
1(b)], and o = 1.0 [Fig. 1(c)] (solid curves). In or-
der to show the distortion due to K3 more clearly, the
Gaussian distribution function with K3 ——0 has been
added (dashed curve). The asymmetric distortion due to
K3 is apparent. In the curve for P(AA) there exists a
region with negative values of the distribution function.
It is a well known peculiarity in the theory of cumulants
arising &om truncation of the cumulant series [13,14]. In
our case this region is beyond the validity of the per-
turbation theory and its contribution to the statistical
properties of the soliton parameters is negligible.

Using the expressions (3.4) we can calculate the statis-
tical characteristics of the soliton amplitude and velocity.
For example, the correction to the most probable (MP)
value (AA)Mp of the soliton amplitude is

4Q4
K2 = o. qQ'a2, (n) + a22(n),

g2

Ks ——o. Q as2(n),

(3.9b)

(3.9c)

where n = p/q and /„= 1/p is the soliton and noise
lengths ratio. For o, &( 1 we obtain the approximate
expressions for a;~

aq2 ——0.25(2.66 —5.72n ), a2q ——0.5(1.66 —0.86n ),
(3.1Oa)

a22 ——0.125(1.44 —4.61n ), as2 ——0.75(0.3+ 0.66n ).
(3.1Ob)

respectively. The analogous formulas are valid for the
soliton velocity. Thus, &om Eqs. (3.2c) and (3.4) it
follows, that during propagation, part of the energy of
the stochastic component is transferred to the soliton.

For the case of additive noise (2.3) we obtain by per-
forming analagous calculations, the following expressions
for the cumulants:

o2Q2
Kg —— ag2(n),

(EA)Mp ——Ky — 0.2q o
2K2

(3.5)
It is dificult to obtain analytical expressions for arbitrary
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values of o.. The n-independent terms are the same for
other noise models with finite duration. We have calcu-
lated numerically the a;~. The results agree well with the
expansions (3.10) and show that the parameter as2 has
a maximum at a = 0.6. The other functions a;~ decrease
as a increases. It should be noted that for p ~ q and
Q = 2q2 the result (3.9) coincides with Eq. (3.2). The
mean correction to the amplitude is

202 2

(AA) = (s.ii)

The inverse dependence on q is natural because, as the
soliton amplitude is increased, the inQuence of the ad-
ditive noise is reduced. This is in contradiction to the
multiplicative noise case (3.8). The most probable am-
plitude correction is

~2Q2
(AA)Mp = 0.53

g
(s.i2)

It follows that the orders of magnitude of (b,A) and
(b,A)Mp are the same. In distinction &om the multi-
plicative noise case we have

f &2Q2 )
AMp = —2q

~

1+0.25 (s.is)

i.e., AMp is increasing and (A)

~ ~ ~ ~ ~ I ~ ~
I

I ~ 0 ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I 0 ~ F ~ I ~ ~ ~ ~
I—04 0 08 1

hA

cr2
(A) = —2q'

~

1+ sq' )
(3.14)

As seen &om (3.14) the absolute value of the mean am-
plitude increases in comparison with the amplitude 2q .
The coefBcient characterizing the deviation of the distri-
bution function P(A) &om the Gaussian form is ps ——

%3jK2 and it is proportional to ~c, where c = o q
for multiplicative noise and c = o'2Q2/qs in the case of
additive noise. So we can conclude that in the case of
multiplicative noise the asymmetry is larger in compar-
ison with additive noise. When l„—+ l„ the asymmetry
grows. The inBuence of the noise on the soliton parame-
ters is stronger when the widths of the noise and soliton
are of the same order.

(b)

o
I

~ ~ I \ ~ I ~ ~ ~ I ~ ~ K I 5 ~ ~ ~ ~
l

~ ~ ~ I ~ ~ ~ ~ ~
/

~ ~ ~ f ~ ~ I I ~
l ~ ~ I ~ I ~ ~ I ~

/
~ ~ I f l ~ ~ I

0 8 4 6
hA IV. NUMERICAL SIMULATIONS

C)
C$

~ ~ ~ ~ 8 I I ~ ~
f

I ~ I ~ I ~ ~ ~ l
/

~ f ~ ~ ~ ~ ~ ~ ~
l

~ ~ ~ l ~ ~ ~ 1 ~

-10 —5 0 5 10
hA

The KdV equation (2.1) has been solved numerically
by means of the Fourier split step method [15,16] in the
interval x C [ L; L], L = 40—, with periodic boundary
conditions. The number of discretization points in the x
direction is 1024 and with L = 40 this leads to a space
discretization step dx of size dx = 0.0781. The random
initial condition (2.2) results in small-amplitude radia-
tion modes that propagate away &om the back part of
the emerging single soliton. Due to the periodic bound-
ary condition, those modes will run out at x = —L and
reenter at x = +L, propagating toward the soliton &ont.
As we need to find the amplitude of the undisturbed
emerging soliton, we must avoid collision between the
reentering modes and the soliton. Therefore, we have
inserted an absorbing boundary at x = +L in order to
destroy the radiation modes. This is done by solving

FIG. 1. Graphical display of the distribution function in
Eq. (3.4) for q = 1 (solid curves). (a) cr = 0.1, (b) cr = 0.5,
and (c) o = 1.0. For comparison the Gaussian distribution
function (Ks ——0) is added as the dashed curve.

ug —6Q, 'u~ + tc~~~ + (x(x)v = 0 1 (4.1)

where the function n(x) is localized at the boundaries
and otherwise chosen rather arbitrarily as
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/*+II
a(x) = Ag sech

~
(4 2)

u, = 6uu. + ~(x)u,
t = —~ex~ .

(4.3a)
(4.3b)

The solution is advanced in small time steps dt by solving
Eqs. (4.3a) and (4.3b) in turn. Assuming u to be con-
stant during the short time interval [t; t+ dt], we advance
Eq. (4.3a) according to

u(x, t + dt) = u(x, t) exp[(6u + n(x))dt] . (4.4)

The space derivative of u is determined numerically using
Fourier transforms. The linear part (4.3b) can be solved
analytically, thereby advancing the solution according to

In the computations we have chosen Ag = 500 and m =
0.4 throughout.

In the Fourier split step method, Eq. (4.1) is divided
into its nonlinear and linear parts according to

sen to propagate the soliton until t = 2, before measuring
its amplitude.

In Fig. 3(a) we depict the statistical results of N =
2000 realizations of the initial condition (2.2) propagated
&om t = 0 until t = 2 for q = 1 and o = 0.1. The
solid curve is a histogram counting the number of ini-
tial conditions leading to amplitude deviations LA be-
tween LA & AA ( LA + dA with dA = 0.04 and
LA = ndA, n being an integer. The curve is normal-
ized by the factor 1/(NdA). Figure 3(b) shows the asso-
ciated histogram for o = 0.5, using N = 1197realizations
and with dA = 0.3. The numerical results are compared
with the result &om Eq. (3.4) (dashed curve). The the-
oretical prediction 6ts well the statistical estimate &om
the simulations. For cr = O. l [Fig. 3(a)] the variance is
so small that the asymmetric distribution is barely ob-
served How. ever, in the case of cr = 0.5 [Fig. 3(b)] the
asymmetry is clearly observed, con6rming the redistribu-
tion of energy from the linear modes to the soliton.

u(x, t+ dt) = F (F[u(z, t)] exp(ik dt)), (4.5)

where F denotes the Fourier transform with respect to x
and F its inverse. The wave number is designated by
k.

In the initial conditions (2.2) we have used Gaussian
distributed random numbers generated by a standard
subroutine. In order to take proper care of the discretiza-
tion in the space variable x, we must divide the Gaussian
random numbers by Qdx, dx being the space discretiza-
tion step, before inserting into the initial condition [17].

Figure 2 shows the evolution of one realization of the
initial condition in Eq. (2.2) using q = 1 and rr = O.l.
The small-amplitude oscillatory waves rapidly propa-
gates away from the back of the emerging single soliton.
At time t —1 the soliton has clearly separated &om the
small-amplitude waves, allowing for the measurement of
its amplitude. In the statistical treatment we have cho-
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FIG. 2. Evolution of a random modulated soliton [Eq.
(2.2)] for q = 1 and o = 0.1.

FIG. 3. Histograms of the probability distribution of the
amplitude deviation AA obtained from numerical simulations
of 1V=2000 samples using q = 1. (a) cr = 0.1 and (b) cr = 0.5.
The dashed curves show the theoretical calculated distribu-
tion of b, A from Eq. (3.4).
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V. APPLICATION TO THE RANDOMLY
MODULATED SOLITONS PROPAGATION
IN A NONLINEAR TRANSMISSION LINE

AND IN AN OPTICAL FIBER

Here we will consider two physical applications of the
results obtained for multiplicative and additive noises.

the new variables

7 = s(t —4upx), g = —4upE' x, EK = vup

and the expansion

V —8' Vp + 6' Vy +2 4

(5.7)

(5.8a)

(i) As an example of the multiplicative noise effect
on a soliton, let us consider the propagation of electro-
magnetic solitons excited by a noncoherent source in a
nonlinear LC-transmission line. The line is represented
by the LC-cell chain, with the nonlinear capacitance
C(V) = Cp —C~V, where V is the voltage. We can
derive the KdV equation in the form (2.1) for the di-
mensionless voltage u = —V/Vp, Vp = Cp/C~ where the
dimensionless variables are introduced

V'=&V'O+& V'&+ ''
)

3

we obtain the KdV equation for vp

&Oy 6+0&07 + &OTTT 0 )

with the soliton solution in the form

(5.8b)

(5.9)

1 1 2(A —a~pT)
T) (dp = ) X 5.1

3urp
'

QLCp
'

Here a is the LC cell size. The solitonic solution in the
physical variables has the form

vp(y, r) = —2K sech v(~ —4r y) . (5.10)

For the randomly modulated initial soliton (2.2) we ob-
tain, using the formula (3.6), the expression for the mean
value of correction to amplitude of the dark soliton

2

V, (X,T) =A, sech
i

' i, A, = . ( 2)L, ) CN

2cr2 2

(&(2~')) = (5.11)

au —u„+ 2iui2u = 0.
The dark soliton solution has the form

(5.3)

u, = up[(A —iv) + exp(z)][1+ exp(z)] 'e '"o

z = 2vup(t —tp —2Aupx), A = 1 —v, (5.4)

where up is the amplitude of background and v is the
amplitude of the dark soliton. When v && 1, i.e., in. the
small-amplitude dark soliton case, we obtain

u, = up[1 —2v sech (z/2)]exp[2iupx+i&p(x, t)], (5.5)

where &p(x, t) = —2v/(1 + e ) and z = 2vup(t + 2upx +
up v x) . Using the representation

(5.6)

It follows &om (3.14) and (5.2) that (Av, ) = 0.4q 0 vp,
where vp is the unperturbed soliton velocity in the line.
If we take Cp ——700 pF, C~ = 140 pF/V, L = 6.8 mkG,
a = 2 cm, vp ——2.86 x 10~ cm/sec [18], and cr2 = 0.1, we
have velocity fluctuations of order 10s cm/sec.

(ii) The results obtained above for the additive noise
case has important applications to the problem of the
randomly modulated dark soliton propagation in optical
fibers. The random modulation can be induced, for ex-
ample, by the amplifier noise in fibers. As is known,
the small-amplitude dark soliton in optical fibers can
be described as a KdV soliton [19]. Indeed, the pulse
propagation in optical fibers in the region of positive
group dispersion (K" ) 0) is described by the nonlinear
Schrodinger equation

Because the velocity of the dark soliton is a random pa-
rameter, so is the arrival time on receivers. For this rea-
son there is a finite probability for simultanious arrival of
two solitons on the receiver. This leads to a loss of trans-
mitted information, which is defined by the width of the
soliton velocity distribution function [20]. It should be
noted that in the work in Ref. [21], the influence of in-
finite length additive amplifier noise on dark solitons of
large amplitude has been studied. In the case of n m 0
our results qualitatively agree with the results of [21].

VI. CONCLUSION

In conclusion, we review brieBy the results achieved
in this work. We have derived the distribution func-
tion for the parameters of KdV solitons generated &om
stochastic initial conditions. This distribution function
has non-Gaussian form. We calculate the mean and the
most probable values of the formed soliton amplitudes.
The peak of the distribution function for the amplitude
deviation AA is at the point Kq ——2o2Q2/3q (additive
noise) and at Kz ——1 2qscr2 (m. ultiplicative noise). The
numerical modeling of the KdV equation with the ran-
dom initial conditions demonstrates good agreement with
the analytical results. The values of the asymmetry coef-
ficient are larger for higher soliton amplitudes in the case
of multiplicative noise and inversely proportional to the
soliton amplitude for additive noise perturbation. We
can conclude that during propagation in the medium,
part of the energy of the stochastic component is trans-
ferred to the soliton. The results obtained are applied
to the evolution of randomly modulated dark solitons in
optical fibers and electromagnetic solitons in the non-
linear transmission lines. It should be noted that the
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problems concerning the evolution in the case of colored
noise and large (multisoliton) random initial conditions
are still open (some results on this matter were obtained
in [4]). A second class of problems is represented by
the evolution of random initial conditions in the systems
described by the nearly integrable nonlinear equations.
This problem will be considered separately.
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