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Block-analyzing method in cellular automata
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In this paper we introduce the block-analyzing method to describe the evolution of cellular
automata. A certain kind of one-dimensional cellular automaton is decomposed into a sequence of
several particular kinds of blocks standing consecutively. We can then view the evolution of the
whole automaton in terms of the evolution of these blocks. We show that this method is useful in
analyzing one-dimensional cellular automata.

PACS number(s): 05.90.+m, 02.90.+p, 01.70.+w

The subject of cellular automata (CA) has attracted
much attention in the past decade [1—10]. Theoretically,
cellular automata may be used as simple models for a
wide variety of physical, biological, and computational
systems. Analysis of general features of their behaviors
may therefore yield general results on the behaviors of
many complex systems and may perhaps ultimately sug-
gest generalizations of the laws of thermodynamics ap-
propriate for systems with irreversible dynamics. Wol-
&am had used cellular automata to discuss the undecid-
ability and intractability in theoretical physics [2]. Cellu-
lar automata have also found a great diversity of applica-
tion. Some examples are tapestry designs, simple models
for self-organizing phenomena in physical and chemical
systems, patterns of How in turbulent Quids, and biologi-
cal systems [4]. Apparently, the evolution of the cellular
automaton is a key problem in this field of study and
xnuch work had been done [1—10]. Wolfram first exam-
ined the behavior of one-dimensional cellular automata
extensively mainly by computer simulation [1]. In an-
other paper [3] Wol&am discussed the self-organizing be-
havior in cellular automata as a computational process
and he used formal language theory to extend the dy-
namical systems theory description of cellular automata.
Martin, Odlyzko, and Wol&am treated this problem in
a rather mathematical way. In their paper [5], algebraic
techniques are used to give an extensive analysis of the
global properties of a class of finite cellular automata.
These cellular automata exhibit the simplifying feature
of "additivity. " The configurations of such cellular au-
tomata satisfy an additive superpositon principle that
allows a natural representation of the configurations by
characteristic polynomials. The time evolution of the
configurations is represented by iterated multiplication
of characteristic polynomials (generating function) [6,7]
by fixed polynomials. The complete structure of state
transition diagram is derived in terms of algebraic and
number theoretical quantities. Urias discussed the cellu-
lar automata in arithmetic representation. One- and two-
dimensional cellular automata were described in terms of
arithmetic relations and were interpreted as finite state
machines [8,9]. Boccara discussed this problem by using
translation-invariant local subjective mappings [10].

In this paper we introduce a method to the treatment
of one-dimensional cellular automata in the case of r = 1
and k = 2 [1]. A one-dimensional cellular automaton is

decomposed into a sequence of certain kinds of blocks
standing consecutively. We can view the evolution of the
automata in terms of the evolution of these blocks. It
is shown that this method can help us understand the
evolution of this kind of cellular automaton.

First, let us begin with the general condition. A one-
dimensional cellular automaton consists of a line of sites,
with each site taking on a finite set of possible values,
updated in discrete time steps according to a determin-
istic rule involving a local neighborhood of sites around
it. The value of sites i at time step t is denoted as S, and
is an integer chosen &om the set

S = (0, 1,2, . . . , k —1).

At each time step each site's value is updated according
to the values of a neighborhood of 2r + 1 sites around it
by a local rule:

~' = f(~' r, ~' r+-i), ~'+-)) (2)

m = (mi, m2, . . . , m2„+i),

where m~, j = 1, 2, . . . , 2r + 1 is an arbitrary integer cho-
sen &om the set S. There are k "+ total such vectors
and we denote the set of such vectors as M.

First, we point out that every local rule defined by Eq.
(2) can be substituted by a polynomial which takes the
following form:

8; = ) d~P~ (modk), (3)

where q = k "+ and dz is an arbitrary integer chosen
&om set S. P~ has the form

P. S~i~ S i2 S i 2~+&
i —7 i —&+1 i+7 (4)

where S, represents the value of site i at time step t + 1
and S~,j = i —r, i —r+ 1, . . . , i +r represents the value of

g2r+1
site j at time step t There .are total %(k, 2r+1) = k"
kinds of different local rules according to Eq. (1) and Eq.
(2).

Define a (2r + 1)-dimensional vector that takes the
form:
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/where m~ = ~m~i, m&2, . . . , m~2„+i~ p ZvI, j = 1, 2, . . . , q
and different j correspond to different mz. In
Eq. (4) m~q, m~2, . . . , m~2„+q represents the power of
S; „,S; „+q, . . . , S;+„, respectively. According to Eqs.
(3) and (4) there are k" total different independent
polynomials which take the form of Eq. (3). They cor-

I 2t+1
respond to the Ic kinds of local rules de6ned in Eq.
(2). We call P~, j = 1, 2, . . . , q the independent factors
of the automaton and we can see that every local rule is
nothing but the linear combination of these factors. In
the case of r = 1, k = 2 there are eight total independent
factors as de6ned above. They are

Pi ——1, P2 ——S, g, P3 ——S;, P4 ——S;+g, P5 ——S, iS;,
Ps ——S;S;+g, Pr = S; gS,+g, Ps ——S; gS;S;+g. (5)

For the case of r = 1, k = 2, we consider a line with
N sites. We apply the periodic boundary condition:
S,+~ ——S;, which makes the line form a loop. We first
decompose the structure of the loop into a sequence com-
prised of six different kinds of "building blocks" struc-
tures, each of which consists of several consecutive sites.
Let Z+ be the set of the positive integers, and we de6ne

Ct ..

At. 00 . . 0 l &2,
Bt. 11 . 1, l &2,

0101 -.01, l = 2n, n g Z+,

Dt. 0101 010, l =2n —1, n C Z+,
Et .. 1010 . -10, l =2n, nGZ+,

Ft '. 1010 . 101, l = 2n —1, n E Z+,

where the subscript l denotes the length of the block, i.e.,
the number of sites contained in the block. Many blocks
of the same kind with different length l can exist in a
loop. Then the loop comprised of N sites can be viewed
as a loop of many consecutive blocks which take the forms
of Eq. (6). We must point out that consecutive blocks
like At, At, have no meaning because it can be coalesced
into a single block At, +t, . According to the definition of
the block structures in Eq. (6) we obtain Table I.

For instance, the block sequence BCAEBDBCAFAE
is a possible loop. Note that the block E on the right
end of the line is connected to the block B on the left
end of the line according to the periodic boundary con-

dition and we can see that this connection satisfies the
rules described in Table I. One may notice that the block
assignment of a certain configuration may not be unique,
but we can make the assignment unique by the following
rule of decomposition. One should first assign as many
At and Bt, l & 2, as possible. That means that as long as
there exists in a loop consecutive 0's or 1's whose length
& 2 one should assign them as At or Bt. Then the re-
maining part of the loop is some sequences comprised of
alternating 0's and 1's and these sequences can be as-
signed according to Eq. (6). Thus the block assignment
of any con6guration is unique.

Now we apply the eight independent factors in Eq. (5)
to these six kinds of building blocks. The results are
shown in Table II.

In this way we can simplify the evolution analysis by
only examining the evolution of the blocks. In the fol-
lowing text we use this method to analyze three certain
kinds of automata. In Wolfram's formulation their codes
are 232, 2, and 20, respectively [1].

The first rule's code 232 is also known as "voting" and
the rule can be written in the the form of Eq. (3):

S; = S, gS; + S;S;+g + S, gS,+g (mod2).

Applying Table II we get Table III.
In order to go on with the next step's evolution, we

must now redecompose the new loop obtained &om the
first step's evolution. According to Table I, only B blocks
can appear immediately to the left side of Ct and only
A blocks can appear immediately to the right side of Ct.
We consider the following block sequence's evolution:

Bt,Ct, At, ~ Bt,Et, At3 ~

Because Et has the structure 1010 . 10, we can coalesce
the first number 1 in block Et, into the left block Bt, and
coalesce the last number 0 in block Et, into the right
block At, ,'then we get the sequence in the new loop:
Bt,+~Ct, 2At, +i. We can get exactly the same results
for blocks Dt, Et, and Ft. This means that in every time
step all the blocks of type C, D, E, and F reduce their
length by 2. The automaton's 6nal structure evolving
kom an arbitrary initial state will be the consecutive
ABAB. . . sequence.

For the second rule, which has the code number 2,
Wolfram said that it will evolve into a "chaotic" state [1].
The rule can be written as follows:

TABLE I. Rule of possible block sequences.

Block

A
B
C
D

Possible kinds of blocks
immediately to the

left side of the block
B,C, F,
A, D, E

B
B
A
A

Possible kinds
of blocks

immediately to
the right side
of the block

B,E, J'
A, D, C

A
B
B
A

Factor/structure
Pg ——1

Pz ——Si
P3 ——S,

P4 ——Si+g
P5 ——S, gSi
P6 ——S,Si+g

P7 —Si —1Si+1

P8 = Si—iSiSi+i

Ai
A)

1A]
A)

AE gl
A]
A)
A)
A)

BI.
Bi

OB)
Bi

R—iO
OB)
B) gO

OB) zO

OB&—zO

Cg

C)

C)

A)
Ai
K
A)

Dl +l
R
DL +l
R A
A) A)
A) Ai
R A
Ai A)

p)

Di
A]
A]
D)
Ai

TABLE II. First step results of the six building blocks by
the eight independent factors in Eq. (5).
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TABLE III. First step results of the six building blocks by
rule 232. 1Az

Bz
I

c,
I

D,
I

S; gS;
S;S,+g

S, gS+g
+(mod2)

At
At
At
At
At

Bt
OBt —i

OBt gO

Bt

Ct
At
At

Fl
Ft

At
Ct
Ct

Ft
At

Dt
Dt

S; = (1 —S; q) (1 —S;)S;+q (mod2)
= S;+1 + S; 1S,+1 + S;S;+1

+S, qS;S;+z (mod2).

Similar to the treatment of the rule "voting" we can get
the following table according to Table II.

Az
I Bzl

S
I

Az-~1I Az
I

Az
I

At

S; = S; z (1 —S;) (1 —S;+z )
+(1 —S; z)S;(1 —S,+z) (mod2)

= S; z + S, + S;S;+g + S; z S,+z (mod2).

Similarly, we can get the following table according to
Table II.

We can easily see that after the first step's evolution
the system will evolve into the structure AE1AE1. . ..
Then after the first step the evolution of the automata
circle can be viewed as rotating one site to the left at each
consecutive time step. Because of the arbitrary choice of
the initial length of block A the evolution of the automata
may appear chaotic. But &om the analysis above we can
see that the evolution of the automata can be clearly pre-
dicted only after the first step. We could say that rule 2
is relatively simple.

For the third example we examine the rule 20, which
Wol&am considered "more complicated. " The rule can
be written as follows:

For the convenience of further discussion we list the
distribution of blocks after the fist time step in Table IV.

From the table we can get some characteristics of the
system after a sufhcient long period of time:

(1) Bz can exist only as B2
(2) Let us look at the evolution of Ez. It has three

different evolutions: (a): Ez —+ Fz q ~ Ez
(b): El M Fz+1 M '

i (c): El M CL 1M—El 2—
. Ez + Fz+q happens in the structure (B2)(A2)Ez(B):

B2A2EzB2 m Az~Fz+zAzii(l', l" & 3) m Az~ zEzB2 So.
the length of El has two trends: remaining constant or
decreasing. After a long period of time, if block El does
not reduce to F1 it must oscillate like El —+ El+1 —+ El
or El mFl 1mEl.

(3) Similar to (2), block Fz(l & 3) can only oscillate
like Fl + El+1 ~ Fl or Fl ~ El—1 ~ Fl

(4) According to (2) and (3), after a long period of
time, if blocks E,E do not vanish, they must oscillate
between each other. The blocks E,F are stable and this
determines that block A immediate to the left side of
blocks E,E can only take the forms of A2 or A3. This
further confirms that the final forms of block A can only
take the forms of A2 or A3 because if the block immediate
to the right side of A is B the B block will be soon
"swallowed" by the A block and the A block will sooner
or later encounter block E, F. It is worth remembering
that in this case block C, D does not exist. If blocks
E, F(Fz, l & 3) do vanish after a long period of time the
final structure of the system can only take the form of
F1A3B2 and this structure evolves as F1 + B2 ~ E1
B2. At a time step the typical configuration is as follows:
~ .AF1AF1AB2AF1 AB2AB2 ~

In the following text we concentrate our discussion in
the case that blocks E,E do not vanish after a long period
of time (assuming Fz, l & 3):

(i) Because structure AsB2 generates A4 and struc-

TABLE IV. The redistribution of blocks after the first step by rule 20.

Block
Ct
Dt

At
L&3

Ag

Structure before evolution" (B)Cz(A) ".
(B)Cz(B) .

(Az()Ez(B) . l' & 3" (B)(A2)Ez(B)".
(C F)(A~)Ez(B) ".

. (Azi )Fz(A) l' & 3
(B)(A2) Fz(A)

(C F)(A))Fz(B). . .
. . . (Az )Bz(A)
. . (Azi)Bz(D, C). . .
(D E)Bz (D C)" (B)A,(B)".
. (C, F)Az(B) .

. (C F)Az(E F) .
(B)Ag(B)

. . (B)(C, F)Ag (E, F)
referring to Et, Ft

Structure after first step
"(A)Ez 2(B2)".

(A)Fz 2(A) .
. . (Azi, )Fz g(A)

. (A)Fz+g(A) .
(B2)Cz (A)

(Az~, )Ez z (Bg)
(A)Ez+z (Bg). . .
(B2)Dz(B~)

~ .Ati+t-
~ ~ o At+2 o ~ ~

(A)Fj (A)
(B2)Az

(Bg)Az
(A)Fz (A) .

Resulting structure
Et 2Bq for l & 2 Et vanishes

Ft 2 for l ( 2 Ft vanishes
Ft-x
Ft+g
B2Ct

Et-iB~
Et+i B~

Ft-i
At'+t —x

At~+t
At+g

Fz Az i (l' & l)
B2Azi(l' & l)

BgAt
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structuresture I"i A2 (8, I" ) generates C, D,
A3Bz, EqA2 (E,E) are forbidden.

(ii) Because structure BzAs (E, I' ) generates
EiAz(E, P), structure BzAs(E, I') is forbidden [refer-
ring to (i)]. Besides the several forbidden structures
shown above, at any one time step the typical config-
uration of the system is the E,E sequence interpolated
with A2, A3, B2, Eq according to the rules of Table II. Af-
ter every two time steps the configuration of the system
rotates exactly two sites to the left.

In summary, we have introduced a block-analyzing
method to the treatment of a typical one-dimensional
cellular automata, i.e., in the case of r = I and k = 2. A
one-dimensional cellular automaton is decomposed into
a sequence of certain kinds of blocks standing consecu-

tively. We then view the evolution of the automaton in
terms of the evolution of these blocks. From the exam-
ples that we examined above, we can see that the block-
analyzing method is useful. Sometimes after the first
step's evolution we can predict the final configuration
of the cellular automata. Although our study is mainly
concentrated on a typical kind of one-dimensional cellu-
lar automata, we hope that this method may give some
insight to the treatment of higher-dimensional problems
and we think that more work should be done to apply
this method to some wider situations.

We thank Dr. H. F. Chau for helpful discussion and
critical reading of the manuscript.
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