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The foundations of the chaotic scattering theory for transport and reaction-rate coefBcients for
classical many-body systems are considered here in some detail. The thermodynamic formalism of
Sinai, Ruelle, and Bowen [D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, MA,
1978)] is employed to obtain an expression for the escape rate for a phase-space trajectory of a
system to leave a 6nite region of phase space for the first time. This expression relates the escape
rate to the difference between the sum of the positive Lyapunov exponents and the Kolmogorov-Sinai
entropy for the fractal set of phase-space trajectories that are trapped forever in the finite region.
This relation is well known for systems of a few degrees of freedom and is extended here to systems
with many degrees of freedom. The formalism is applied to smooth hyperbolic systems, to cellular-
automata lattice gases, and to hard-sphere systems. In the last case, the geometric constructions of
Sinai and co-workers [Russ. Math. Surv. 25, 137 (1970); 42, 181 (1987)] for billiard systems are
used to describe the relevant chaotic scattering phenomena. Some applications of this formalism to
nonhyperbolic systems are also discussed.

PACS number(s): 05.40.+j, 05.45.+b, 05.60.+w

I. INTRODUCTION

In a previous paper (hereafter referred to as I) [1], we
extended the chaotic scattering or escape-rate method
of Gaspard and Nicolis [2] for the coefficient of diffusion
of the moving particle in Lorentz gas systems so as to
apply to a wider class of transport coefficients for a sim-
ple, classical Quid and to chemical reaction rates. The
line of the argument in I was as follows. (i) One can
associate with every transport process in a Quid a mi-
croscopic, dynamical quantity called a Helfand moment
[3]. (ii) For large enough systems and for long enough
times, the mean square Quctuations of the Helfand mo-
ments about their initial values grow linearly with the
time t in the case that normal hydrodynamic processes
take place in the Quid. The coefficient of the linear term
in t for each Helfand moment is, apart &om numerical
factors, the relevant transport coefffcient. (iii) This "dif-
fusion" of the Helfand moment can be regarded as the
result of chaotic scattering processes in an appropriate
phase space. The dynamics of the Helfand moments be-
come more difFusionlike as the system size increases and
as the time becomes longer, due to the occurrence of
more and more individual scattering events taking place
as the time gets longer. (iv) One can characterize this
diffusionlike process in phase space in terms of an es-
cape rate of trajectories from regions where the Helfand
moment lies within some prescribed bounds into regions
where the value lies outside these bounds. This is the
phase-space analog of characterizing Brownian motion
by the rate at which Brownian particles pass into an ab-
sorbing boundary. (v) One then relates this escape rate

for a Helfand moment to a transport coefficient on one
hand, and, on the other hand, to the sum of the pos-
itive Lyapunov exponents and to the Kolmogorov-Sinai
(KS) entropy that characterizes the set of trajectories
in phase space where the Helfand moment lies forever
within prescribed bounds. These trajectories form an
unstable fractal set in phase space, a &actal repeller, de-

noted by 'Rz, where o. denotes the transport coefficient

associated with a time-dependent Helfand moment G~
which on the &actal repeller remains within the bounds

—~/2 ( GI ' ( +~/2,

where y is real and positive.
The main result of I is that

n = lim — lim ) A;(R ) —hKs(R„), (2)
y —+oo ~ Vmoo

A;&0

where P& o A;(7Zx ) is the sum over all positive I ya-
punov exponents for the trajectories on the &actal re-

peller and hKs(7Zx ) is the Kolmogorov-Sinai entropy
for trajectories on the repeller. Here the limit V -+ oo
denotes the thermodynamic limit, taken before the limit
QM 00.

The purpose of this paper is to discuss the chaotic scat-
tering theory that leads to the relation between the es-

cape rate px of the Helfand moment from the region (1)
and the dynamical quantities A;(7Zx ) and hKs('Rx ),
that is,
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A, &0
(3)

This result is already well known, due to the work of
Kantz and Grassberger [4], Eckmann and Ruelle [5], Bohr
and Rand [6], Tel and co-workers [7], Grebogi, Ott, and
Yorke [8], and Kadanoff and Tang [9], for systems with
a few degrees of &eedom. Our goal here is to extend
these previous discussions to systems with many degrees
of freedom and to provide the necessary foundations for
the application of this method to a number of systems
of physical interest. These systems include smooth, hy-
perbolic as well as some nonhyperbolic systems, cellular-
automata lattice gases, and systems of hard-sphere par-
ticles. In the last case a more delicate analysis of phase-
space trajectories than that needed for smooth systems
must be carried. out due to the discontinuous nature of
the hard-sphere potential.

Our work will, in the main, draw upon two mathe-
matical developments, both stimulated by problems of
interest to statistical mechanics. The analysis of the
connection between chaotic scattering and escape rates
presented here, like that of some other workers [6,7], is
based upon the thermodynamic formalism for describing
dynamical systems [10—13]. In this analysis, the escape-
rate formula Eq. (3) is a consequence of the properties of
the Ruelle, or topological, pressure that arises naturally
in the thermodynamic formalism. In this context, we
mention a recent work by Chernov and Markarian, which
came to our knowledge at the completion of the present
paper, where the escape-rate formula (3) as well as re-
lated ergodic properties have been rigorously proved in
the case of smooth repellers of Anosov diffeomorphisms
[14]. Our principal contribution here is to present the
method in a way that it applies to systems with many
degrees of &eedom, to emphasize some of the mathemat-
ical literature that has a direct bearing on problems of
physical interest and to show how the method can be
applied to some systems of current physical interest, in-
cluding some nonhyperbolic systems.

The other mathematical development that we will use
is the analysis of the dynamical properties of hard-sphere
systems based on a "ray optics" description given by
Sinai and co-workers [15,16]. This description involves
a careful study of the differential geometry of the phase-
space trajectories for hard-sphere systems and leads to a
continued-&action expansion of the so-called second fun-
damental operator. This result is of deep fundamental in-
terest for describing the ergodic properties of hard-sphere
systems. The second fundamental operator can be used
to compute quantities such as Lyapunov exponents and
Kolmogorov-Sinai entropies for such systems. An im-
portant application of these and related methods to the
triangular Lorentz gas has recently been given by Gas-
pard and Baras [17,18]. Furthermore, van Beijeren and
Dorfman [19]have shown that there is a clear connection
between the differential geometry analysis of Sinai et al.
and the kinetic theory of gases. This leads us to believe
that it should be possible to reformulate kinetic theory
in such a way that its reliance on the chaotic behavior of

gases is clearly well founded upon a mathematical anal-
ysis of the underlying dynamics rather than assumed, as
is usually done. This task awaits further study and will
not be considered here.

The plan of this paper is as follows. In Sec. II
we present the thermodynamic formalism for smooth
"closed" and "open" hyperbolic systems. We use the
expressions "closed" and "open" systems, with quota-
tion marks, to distinguish them &om the usual defini-
tions of open and closed systems in statistical mechan-
ics, whereby systems may or may not exchange parti-
cles and/or energy with a reservoir, or from the usual
open and closed sets in mathematical discussions. By a
"closed" system we mean a system in which all the tra-
jectories are con6ned in a compact phase space and the
Helfand moment can take on any value consistent with
the initial speci6cation of the trajectory, not necessarily
confined by the bounds given by Eq. (1). In contrast, an
"open" system has a phase space that is not necessar-
ily compact: some trajectories may remain in a bounded
phase-space region but others may leave this region, as
in scattering systems, or, particularly for the discussion
here, when their Helfand moments exceed the bounds
given in Eq. (1). In this section we derive the escape-
rate formula &om the properties of the Ruelle pressure
and extend the analysis to nonhyperbolic systems. In
Sec. III we apply the geometric methods of Sinai et al.
to describe the dynamical properties of hard-sphere sys-
tems in terms of the second fundamental form. In Sec. IV
we show that the ideas of the thermodynamic formalism
can easily be applied to cellular-automata lattice gases,
which are of interest as simple models that exhibit hydro-
dynamic phenomena typical of real Quids. This topic is
explored in considerable detail in related work by Ernst,
Dorfman, Nix, and Jacobs [20]. In Sec. V we present a
brief discussion of related methods for describing trans-
port phenomena in terms of the underlying dynamical
properties of the system and we conclude in Sec. VI with
a number of remarks outlining open problems and direc-
tions for further work.

II. LARGE-DEVIATION OR THERMODYNAMIC
FORMALISM FOR DYNAMIC INSTABILITIES

In this section we apply the large-deviation, or thermo-
dynamic, formalism of Bowen, Ruelle, and Sinai [10—13]
to study the statistical properties of the phase-space tra-
jectories of systems with smooth potential energies and
that obey Hamiltonian mechanics. The purpose of this
formalism is to use statistical properties of the trajecto-
ries in order to construct invariant probability measures.
These measures in turn can be used to compute phase-
space averages which are needed for computing effects
of the chaotic scattering phenomena of physical interest
here. The large-deviation formalism that we use goes
beyond a linear or quadratic deviation of some quantity
from its reference value. For example, the chaotic behav-
ior of a system depends upon exponential separation of
trajectories in phase space. The large-deviation formal-
ism is designed to treat such circumstances.
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A. Linear stability and Lyapunov exponents solutions can be expressed as

Phaae apace and tangent epace

Consider a mechanical system of N particles with
a Hamiltonian H(q, p), where (q, p) is a 2N f
dimensional vector space with q = (qi, q2, . . . , q~),
where q; is the (f-dimensional) coordinate of particle i,
p = (pi, p2, . . . , p~), and p; is the (f-dimensional) mo-
mentum of particle i. The Hamiltonian function has the
form

H(q, p) =) * + V(q),

bX = O' (Xp+bXp) —4' (Xp)
OC '(Xp)

b'Xp ——M (t, Xp) bXp,
p

(8)

with

M(t, Xp) ='I' exp d~,
' BF(4 Xp)

p

where a time-ordered exponential is indicated. The fun-
damental matrix thus obeys the evolution equation

where V(q) is the potential energy of the interaction be-
tween the particles. To avoid bound states and orbiting
collisions, we assume that the potential energy is a sum
of central, short-range, repulsive pair potentials. Hamil-
ton's equations of motion are

OH(q, p) . OH(q, p)
q =

Op Bq) P=

We will suppose either that the boundaries of the sys-
tem are hard walls with infinite mass whose shape will
be discussed later or that periodic boundary conditions
are applied. In both cases the total energy is conserved
and in the case of periodic boundary conditions the to-
tal momentum is also conserved. We will always con-
sider a system at one fixed energy E and therefore the
2N f-dimensional phase space reduces to the (2N f —1)-
dimensional constant energy surface M defined by the
condition that H = E. A point on the surface will be
denoted by X. The trajectory of a phase-space point, ini-
tially at Xp, will be indicated by a flow 4 such that the
phase-space point at a time t later is given as Xg=4 Xp.
Finally, we denote by &M(X) a linear vector space that
is tangent to JH at the phase-space point X on the con-
stant energy surface.

In Eq. (8) we have set Xp and bXp to be the value of X
and bX at t = 0 and M (t, Xp) is the fundamental ma-
trix solution of Eq. (7). We mention for use in Sec. IID
that the construction of the fundamental matrix requires
us to follow two nearby trajectories through their full
evolution over a time interval of duration t. Our primary
interest resides in characterizing the rate of separation or
of approach of two nearby trajectories in terms of char-
acteristic exponents, called Lyapunov exponents. In a
stability analysis, stable and unstable directions are de-
termined by the signs of the Lyapunov exponents in an
obvious way.

The multiplicative ergodic theorem of Oseledets
[21—23j allows us to clearly identify the locally stable and
unstable directions. This is accomplished through the use
of the property of the matrix M(t, Xp) as a multiplicative
cocycle. That is, M(t, Xp) satisfies the important group
relation

M(t + s, X) = M(t, 4'X) M(s, X)

for any positive time s. This is just a restatement of the
time evolution property of the solution of Eq. (7). Next
we define a Lyapunov homology as a local, linear trans-
formation between the cocycle M and another cocycle m

of the form

2. The fundamental matr iz and its decomposition M(t, X) = C(C'X) rn(t, X) . C '(X) (I2)

X =F (X),
which is a simple rewriting of Hamilton s equation, Eq.
(5), and one for the trajectory that deviates by an in-
finitesimal amount &om the reference trajectory Xz
4 ~Xp,

bX = F (X + bX) —F (X) = (7)
BF (X)

ax
to linear order in bX. Since Eq. (7) is linear, all of its

An important characterization of the trajectories is
given by their stability and, in particular, by their linear
stability that controls the way infinitesimal perturbations
evolve with time in the tangent space. These perturba-
tions can be calculated by integration of a coupled set of
equations, one for the trajectory that passes through the
point X

such that the transformation matrices C have no expo-
nential time dependence, that is, such that

lim —ln C(4 X) = 0.
t—+oo t

M(t, X) = ) e&(C'X)A„(t, X)f„(X), (s4)

where ei, (X) are vectors with components eI, ,(X)
C;i, (X) and fi, are vectors with components fi, z(X) =
[C i(X)]zg. Here the superscript T denotes a transpose.

One can easily check that the cocycle M satisfies Eq.
(ll) provided the cocycle m does also. The purpose of
the Lyapunov homology is to find conditions under which
the cocycle M might be reduced to a diagonal cocycle m

such that
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These vectors form a set of biorthogonal pairs satisfying

The functions Ai, (t, X.) are called stretching factors in the
directions (ei, ). They must also satisfy a multiplicative
cocycle relation

Ag (t 4- s, X) = Ag (t, O'X) Ai, (s, X) .

We emphasize that this construction is not a diagonal-
ization of the matrix M in the usual sense because the
vector fy is evaluated at the initial point X while the
vector eA, is evaluated at the 6nal point 4 X. It is also
important to note that ei, (4tX) and fg (X) are not, in
general, mutually orthogonal. The decomposition (14) of
the fundamental matrix is also referred to as the Mather
spectrum [24].

When the matrix M is applied to one of the direction
vectors eI, one obtains

The value Al") (X) is obtained from Eq. (19) when
the tangent vector e belongs to the subset V(")(X) (
V ( + )(X) (that is, the set of points in V( ) but not in
V& + )), where (V( ) (X)j" i are nested linear subspaces
of the tangent space

7M(X) = V ' (X) 0 V(' (X) D . D V(')(X)

such that m(") (X) = dim[V& ) (X) $ V("+i)(X)]. The lin-
ear subspace V& ) (X) is spanned by the set of unit vectors
(e;(X)),.&1&„~ such that the corresponding Lyapunov ex-

ponents in Eq. (20) satisfy A;(X) ( A( )(X) for i p I(

8. Stable and unstable manifolds

The stable and unstable manifolds W, (Xp) and
W„(Xp), respectively, associated with the trajectory at
Xo play a central role in dynamical systems theory
[5,24,27,28]. These manifolds are defined by

M(t, X).ei, (X) = Ai, (t, X)ei, (C'X). (i7) W, (Xp) = (X e M: O'X —O'Xp —i 0

According to the Lyapunov condition Eq. (13), the vector
e~ (4'~X) has no exponential time dependence, so that the
entire exponential behavior, if any, on the right-hand side
of Eq. (17) is contained in the function Ai, (t, X). Since
the Lyapunov exponents measure the rate of exponential
separation or of approach of two nearby trajectories in
diferent directions in phase space, we see that the Lya-
punov exponent associated with the direction ei, (X) is

1
Ag (X) = lim —1n~Ag(t, X)~ .

A(X, e) = lim —ln~[M(t, X) e~~
1

(i9)

If the initial perturbation bXO ——e points toward an ar-
bitrary direction in the tangent space, its time evolution
will be determined by the largest among the stretching
factors for which the scalar products fA. e do not non-
vanish as we can conclude from the relation (8) defining
the fundamental matrix and its decomposition (14).

In this way Oseledets's theorem shows that the Lya-
punov exponent associated with an arbitrary tangent vec-
tor e,

for t ~ +oo) (23)

and

W„(Xp) = (X e M: O'X —O'Xp m 0

for t ~ —oo), (24)

where
~~ ~~

denotes a distance that we may take to be
a Riemannian metric distance on the constant energy
surface. The stable and unstable manifolds are global
objects extending in phase space, as illustrated in Fig.
1. The stable and unstable manifolds are tangent re-
spectively to the stable and unstable directions given by
the corresponding vector fields (ei, (Xp) j of the tangent
space. The union of all the stable or unstable manifolds
of all the points of a trajectory LI &i&+ W, „(O'Xp)
is invariant under the time evolution.

The concept of stable and unstable manifolds allows
us to obtain an alternative method of calculation of the
Lyapunov exponents. If in the definition of the invariant
manifolds Eqs. (23) and (24) we replace X by Xp + bXp,

takes its value &om a discrete set called the spectrum of
Lyapunov exponents, which satisfy

Al') (X) & A('& (X) » . . Al~) (X) (20)

with Inultiplicities

(2i)

which sum up to the dimension of the tangent space M =
dim7 M = dim&(

(22)

FIG. 1. Schematic representation of the stable W (X) and
unstable W„(X) manifolds of the trajectory from initial con-
dition X. Z is a surface of section transverse to the orbit.
The invariant manifolds are shovrn on the respective sides of
Z that are used for their construction.
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we obtain the definitions of the stable and unstable di-
rections tangent to the manifolds in terms of the distance

iibxgii = bXp M (t Xp) M(t Xp) bxp, (25)

which defines a positive definite quadratic form. We re-
mark that this quadratic form is strictly internal to the
tangent space at the only initial point Xo, so that there
is no explicit reference to the infinitesimal vector bXq at
another point on the trajectory. As a consequence, the
local structure of the stable and unstable manifolds, as
well as the problem of linear stability, can be solved lo-
cally at each point Xo of the Bow. Of course, the stability
problem requires an integration of the linearized trajec-
tory in the tangent plane to the constant energy surface
at Xp and this information is contained in M (t, Xp) and
M(t, Xp) in Eq. (25).

The quadratic form in Eq. (25), MT M, can be diago-
nalized in terms of eigenvalues (o; (t, Xp)) and orthonor-
mal eigenvectors (u; (t, Xp)) as

cycle property (16) and the definition (18). Our purpose
here is to introduce the local stretching rates that under-
lie the local Lyapunov exponents and could be varying
functions along each trajectory. With this aim, we differ-
entiate Eq. (17) with respect to time to get an equation
of evolution for the stretching factors AA,, (t, X). Using the
evolution equation (10) of the fundamental matrix and
the biorthogonality relation (15), we obtain

AI, (t, X) = yi, (4'X)Ag(t, X)

or

t
Ai, (t, X) = exp yA,. (4 X)dr,

0

where we introduce the local stretching rate in the direc-
tion ei, (X) by

M (t, Xp). M(t, Xp)

2Nf —1

) u, (t, Xp) cr; (t, Xp) u; (t, Xp), (26)

where we have used the fact that the eigenvectors must
span the (2%f —1)-dimensional space 7 M (Xp) tangent
to the constant energy surface at Xo. The local Lyapunov
exponents of the trajectory at initial point Xo may now
be defined as

1
A; (Xp) = lim —ln cr, (t, Xp)

t—+oo 2t (27)

which gives results that are equivalent to Eq. (18). De-
pending on the sign of the Lyapunov exponent A, (Xp),
the corresponding directions are stable (A; ( 0), unstable
(A; ) 0), or neutral (A, = 0). The neutral directions in-
clude the direction of the flow (and, if we wish to include
it, the direction perpendicular to the energy surface). We
note that the orthonormal eigenvectors u, (t, Xp) are not
directly related to the directions (ei, (Xp) j, which are not
orthogonal. As a result of these considerations, we are
able to express the tangent space at Xo as a direct sum
of three linear subspaces

yA, (X) = f„(X) (X) eI, (X)

—f„(X) (X) F(X). (3o)

These quantities have been considered, in particular, in
Ref. [25]. The rates (30) are defined locally at each phase-
space point. Accordingly, the local Lyapunov exponents
are given by

1 T
AA,.(x) = lim — yg(C'X)dt

T~oo T
1 +T

lim
T +~ 2T yi, (O'X) dt,

u(x) = ) yg (X) (32)

where we use the equivalence between the limits T —+
+oo. We remark that, for linear vector flelds F(X) = LX,
the first term of Eq. (30) directly provides the local Lya-
punov exponent Ak. The linear stability analysis shows
therefore that all of the I yapunov exponents are defined
in terms of the local stretching rates yi, (X). The sum of
the local stretching rates

rw(x. ) =s„(x,) ~z, (x,) ~e. (x.), (28) Af, )0

spanned by the unstable, the neutral, and the stable di-
rections, respectively, by merging together linearly inde-
pendent directions of the subsets V~"l (Xp) $ V~"+i~ (Xp)
with A~ ~ ) 0, A& ~ = 0, and A~ & & 0, respectively.

Local stretching rates

We notice that the local positive Lyapunov expo-
nents are quantities that are constant on half trajecto-
ries 4 X. with t E [0, +oo) or (—oo, 0] in the sense that
&a(x) = Aq(4'X) for s E R, which follows Rom the co-

defines at each phase-space point X the quantity we call
the local Chspersion rate. This quantity plays a central
role in the following considerations. Let us note that
some of the local stretching factors may be locally neg-
ative, although the corresponding local Lyapunov expo-
nent is positive so that the sum should extend over all
the positive local Lyapunov exponents. We mention that
such a local dispersion rate can also be defined for Hamil-
tonian systems in terms of the curvature of a wave &ont
expanding in position space, a curvature that satisfies
a Ricatti-type equation as recently explained by Vattay
[26]. Furthermore, we have the approximate relation
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Qo; (T, X) = AI, (T, X) C. The large-deviation formalism

T
= exp ) y~ (O'X) dh

~, )o
as T M 00. (33)

which will be used below.

B. Symplectic dynamics, the pairing rule of the
Lyapunov exponents, and hyperbolicity

Since Hamiltonian systems are symplectic, the funda-
mental matrix M(t, Xo) obeys the relation

M Z. M=X,
with the symplectic form Z given by

(34)

It is worth noting that to determine the Lyapunov expo-
nents for nonperiodic points Xo, one should, in general,
determine the Lyapunov exponents from the eigenval-
ues of the symmetric, positive definite form M (t, Xo) .
M (t, Xo), but for a point X on a periodic orbit, one
may determine the Lyapunov exponents by computing
the eigenvalues of M (T, X) directly.

A dynamical system is said to be hyperbolic if all the
periodic orbits are unstable of saddle type with non-
vanishing I yapunov exponents (except for the zero ex-
ponents associated with the direction of Bow as well as
with any known globally conserved quantities). (We do
not include in the definition of hyperbolicity the condi-
tion that the stable and unstable directions vary contin-
uously with the phase-space point. This condition does
not hold for dispersing billiards. ) We shall say that the
system is nonhyperbolic if there is a set of periodic orbits
for which all the Lyapunov exponents are zero. We will
consider systems of both hyperbolic and nonhyperbolic
types, although there are only a few general statements
that can be made about nonhyperbolic systems.

As a result of this relation, if a. is an eigenvalue of M - M

then so is o . Accordingly, to each stable direction,
there corresponds an unstable direction and vice versa.
Their Lyapunov exponents are, respectively, —A; and
+A, . This pairing rule also implies that the sum of all
the Lyapunov exponents must be zero for conservative
Hamiltonian systems and that phase-space volumes are
preserved by the dynamics.

In the case that the Hamiltonian system has periodic
orbits, the linear stability of these orbits can be charac-
terized by the eigenvalues A, of the fundamental matrix
M (T), where T is the period of the orbit. Indeed, the A;
are related to the preceding eigenvalues by cr; = ~A; ~, so
that

A; = —in[A;/.
1
T

The central quantity of interest in the large-deviation,
or thermodynamic, formalism is an invariant probability
measure on the set of phase-space trajectories. Here we
outline the construction of the probability measure and
define a fundamental quantity, the topological pressure.
It will be important to keep in mind both the methods
and results of equilibrium statistical mechanics of classi-
cal systems since this subject motivates a large part of the
discussion to follow, as first demonstrated by Sinai, Ru-
elle, and Bowen [10—13]. In this context, the thermody-
namic formalism is considered in time instead of space in
contrast to equilibrium statistical mechanics. The topo-
logical pressure plays a role in dynamical systems theory
very similar to that of the free energy for statistical me-
chanical systems. In addition it also is essential for es-
tablishing an important connection between the invariant
probability measure on trajectories and the microcanon-
ical measure on the constant energy surface. This con-
nection lies at the heart of the large-deviation formalism,
which, following the methods and ideas of Sinai, Ruelle,
and Bowen, we hope to make clear below.

Separated 8ubset8 and topological entropy

We begin by considering the neighborhood of a point
Xo and suppose that some of the Lyapunov exponents
A, (Xo) are positive. Then a typical neighborhood of
this point of radius e, say, will in the course of time be
exponentially stretched in some directions and exponen-
tially squeezed in others, while the phase-space measure
of this small region remains constant in time. We will
want to examine a very small subregion of this neigh-
borhood such that all trajectories starting &om points
in the small subregion will remain within a distance e
of the trajectory from Xo at any time over a time inter-
val ( T, +T) Sinc—e traj.ectories separate exponentially
rapidly from each other, the size of this subregion must
be exponentially small, with dimension of order

+T
sexp — gq(O X.o)dt

—T
(36)

pl (Xg, X2) = max C 'Xq —O'X2
—T(c(+T (37)

If it were to happen that pT (Xq, X2) ( s, then the tra-
jectories of two phase-space points starting at Xi and

where yi is the maximum of the local stretching rates
(30).

We make this argument more precise and generalize
it somewhat as follows. We use the notion of (s, T)
separated subsets of Bowen [11] and Walters [29]. The
use of separated sets allows us to construct a very general
procedure for analyzing the chaotic properties of both
"closed" and "open" hyperbolic systems. Consider a time
T and define a new distance between two points Xq and
X2, pT(X&, X2) on the constant energy surface by
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X2 would remain within a distance of e over the time
interval —T & t & +T.

We suppose that there exists an invariant set 'R of
interest in the constant energy surface, i.e., a set such
that

h...(C) = x[0] .

Let us now consider another observable B of the dy-
namical system. The average of this observable is defined
by

C'('R) = 'R . (38)

Consider now a time interval ( T, +—T) and a subset of
the invariant set 8 c R composed of points that are
separated by a p~ distance larger than e'. That is, we
construct a set of points 8 = (Yr, . . . , Ys) of the invari-
ant set 'R such that p~(Y, , Y~) ) s for i, j = 1, . . . , S.
If the invariant set is compact, i.e. , bounded, then one
can always And a subset 8 with a Rnite number of points.
This set is called a (s, T) separa-ted subset of the invariant
set.

Since (s, T)-separated subsets exist with a finite num-
ber of points, there exists at least one set Sz (s) with the
maximum number of points, say, sz (s, 'R) points. Since
the trajectories separate exponentially with T we expect
that s~ (s) will increase exponentially with T also be-
cause the points may become separated by smaller and
smaller distances according to Eq. (36). This rate of
growth of s2 (s) is characterized by the topological en
tropy de6ned as

1
hq» (4) = lim lim sup ln s~ (s) .

e—+0
(39)

Topological pmssum
and the dynamical invariant naeasums

The idea of the thermodynamic formalism is to intro-
duce a functional of physical observables that is the gen-
erating functional of the average and of the multitime
correlation functions of the given observable A(X). The
functional is called the Ruelle topological pressure and is
defined as

1
'P[A] = lim lim sup ln Zz (A, s) (40)

with the partition functional

+r
Z~(A, s) = sup& ) exp

~ A(4 Y)dt, (41)
Yq8

where 8 is a (s, T)-separated subset of the invariant set
The topological pressure has remarkable properties.

In particular, it is a convex functional of the observable,
i.e., P[vA+(1 v)B] ) v'P(A)+(—1 v)'P(B) for 0 ( v—( 1
and any two observables A and B.

When the observable is everywhere vanishing A = 0,
the topological pressure reduces to the topological en-
tropy because

d
p~(B) = 'P—[A+ vB]

dp V=O
(43)

Introducing the definition of the pressure, we get that
p~(B) = f B(X)p~(dX) with the measure

p~(dX) = lim limsupsup& )e—+0 T—+oo YqS
1 +T

x 8(X —O'Y)dt dX,2T -T

Zz (A, s)

(44)

which is referred to as a dynamical measure. %'e ob-
serve that each trajectory of the (s, T)-separated subset
is weighted by a Boltzmann-type probability given by

7rg(Y, T, s) =

( +r
exp A(4 Y')dt

( —v

Zz (A, s)
(45)

where J & A(4 X)dt plays the role of PE A—ccord. -

ingly, such measures have been called Gibbs canonical
measures. Here the role of the energy is played by
the average of the observable A over the time interval
( T, +T). W—e emphasize that the Gibbs measure Eq.
(44) is determined by a time interval ( T, +T) rat—her
than by a number of particles, interaction range, etc. , as
in equilibrium statistical mechanics. In the limit T m oo
the probability measures Eq. (44) tend to measures that
are invariant under time evolution, known as "equilib-
rium states" as proved by Bowen and Ruelle for axiom-A
hyperbolic systems [12]. In this limit a connection can
be established between the measures Eq. (44) and the
invariant probability measure on the invariant set, a con-
nection that will be important for us subsequently.

In this formalism, correlation functions between two
observables Bi and B2 can be obtained as second deriva-
tives

02
P(A+ vr Br + v2B2)

BPy l9V2 V1 ——V2 —0

+ao-
p~(B1B2 0 4' ) —pz(Br) pz(B2) dt (46)

in a straightforward notation, provided the various lim-
its exist. Moreover, the Kolmogorov-Sinai entropy per
unit time of the dynamical system with respect to the
invariant measure p~ is defined by [27,30]

so that

sz (s) = Hz (A = 0, s) 1 )
hKs(px) = lim lim sup

~

—
~

sup~ ) ~~(Y, T, s)e-+0 ~~~ ( 2T ) Yg8
x ln 7r~ (Y,T, s) . (4
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We can now combine Eqs. (43) and (47) with B = A to
obtain the fundamental identity of importance to us

P([l, , P,) „

I Ks (p~) = —u~(&) + &[&] (48) h
top

8. Pressure functions
based on the Iyayunoe exponents

0
1 2

By varying the observable A, we can obtain many in-
variant measures and it is not yet clear which among
these many possible measures is the one appropriate to
a speci6c numerical simulation of the dynamical system
starting &om a given statistical ensemble. The answer
to this question will be delayed until Secs. IID and IIE
where the question is answered for "closed" and "open"
hyperbolic systems. Nevertheless, one thing that is com-
mon to the "closed" and "open" cases is the special role
played by the sum over the local stretching rates multi-
plied by a parameter —P in order to emphasize the formal
analogy with the Gibbs states

&(X) = —Pu(x) = —P ) y, (X)
A;&0

in terms of the local dispersion rate (32). This observable
measures the dispersion of trajectories emanating &om
points in this region over a time interval ( T, +T). T—he
larger the dynamical instability on the trajectory, the
smaller the probability to visit the neighborhood of this
trajectory. This reasoning is at the basis of the choice
(49). In this case, the pressure functional becomes the
pressure function

FIG. 2. Schematic behavior of the multivariate pressure
function P(Pq, P2) for a three-degree-of-freedom system.

x(x) = —) p, &,(x)
Ai&0

(54)

depending on the L = N f —1 parameters P
(Pq, . . . , PL, ). The average Lyapunov exponents are now
given by

worth noting, however, that the thermodynamic formal-
ism does make possible deep connections between the
calculation of thermodynamic functions and dynamical
properties, a subject that is discussed at some length
elsewhere [10—13,31—33].

The individual average Lyapunov exponents can be
obtained by de6ning a multivariate pressure function
P(Pq, . . . , Pl, ) from the observable

P(P) = & P). x'(X)- (50) BP(P)
(~ )

which de6nes an invariant probability measure pp de-
pending on the parameter P. The sum of averaged
stretching rates is then given by

dP(P) (

When all the parameters are equal P = Pq
PL„ the pressure function (50) is recovered: P(P)
P(P, . . . , P) (see Fig. 2).

Entropy function and Legendre transform

~~(~') = ~~(&') (52)

Using the time invariance of the dynamical measure pp
applied to Eq. (31), we obtain that the averages of the
local stretching rates are identical to the averages of the
corresponding local positive Lyapunov exponent

It is convenient to introduce also an entropy func-
tion by considering the number of points of the (s, T)
separated subset such that the time average of their as-
sociated local stretching rates, calculated over a time in-
terval ( T, +T), take valu—es in the interval (io;, p; + dp;)
according to

Therefore, the fundamental identity (48) becomes here

hKs (I ~) = p I ~ ~ ) .&' + P(p) = p ~~(~) + P(p) .
(i,)o

+T
JV(Y c 8: y;(O'Y)df s (y, , (p, + dy;),2T -T

We notice that the parameter P has nothing directly to do
with the inverse of a thermodynamic temperature. It is

i=1, . . . , I = pT, S,~ exp 2TS ~ d y 56
J

[where A is the number of points of the (e', T)-separated
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subset that satisfy the imposed condition] in the limit
where s ~ 0 and T ~ oo, where p(T, S,~) is a slowly
varying function of the time T. The entropy function
S(~) is known to be a concave function [6,34,35].

The entropy function is related to the pressure function
P(P) by a Legendre transform. Indeed, the sum over
all the points of the (s, T)-separated subset 8 can be
replaced by an integral over ~

P(P) = lim ln d p p(T, S, rp)T~oo
x exp[2TS(~)] exp( —2T~ P) .

since (62)

vp = pp(&)

which justifies the name. Here also, we can define a uni-
variate entropy function S((p) = S(y, . . . , p), which is
related to the univariate pressure function by a Legendre
transform. We need a proper interpretation of the dif-
ferent terms appearing in the fundamental identity (53),
especially of the pressure P (P), and we need to fix the
value of the parameter P.

In the limit T + oo, the integral can be evaluated by the
steepest-descent method, which selects the maximum y»
of the function in the argument of the exponential as the
solution of

t9S

|9(p (vp) = p. (58)

Therefore, the pressure function is given by

P(P) = S(V p) —
V p P . (59)

S(&) =P(P )+v P with
t9P

+ = —~p(p, ) .

(60)

In particular, the topological entropy is given by

h, p(4) = P(0) = S(V o)

with

c)P(0)
V'o = or =0

and the KS entropy by

hKs(pp) = S(V p)

Reciprocally, once the pressure function is known, the
entropy function is obtained as

D. "Closed" hyperbolic systems

1. The micr+canonical measure as a
Sinai-Buelle-Boeen dynamical measure

We consider a conservative and ergodic system with a
compact phase space formed by a constant energy sur-
face. Moreover, we assume that the property of hyperbol-
icity holds so that we have a "closed" hyperbolic system.
The appropriate invariant measure on this surface is, of
course, the microcanonical measure p,~ (dX) given by

do. (X)
]gr dII] ' (63)

where do (X) is a surface area element about the point X
and H is the Hamiltonian of the system. The gradient
is a 2N f-dimensional gradient evaluated on the surface
H = E. Our purpose is to identify the microcanonical
measure with one of the dynamical measures introduced
in Sec. IIB. With this purpose, we consider one of the
small regions surrounding a point Y' in a finite (s, T)
separated subset 8 and the probability of this region can
be computed using Eq. (63) once the region is identi-
fied. In Sec. IIB we considered that this same region is
a domain on the constant energy surface in which the
trajectories of all points will remain separated by a dis-
tance less than e' over a time interval ( T, +T), which—is
known as a ball Bz (Y, s). The microcanonical probabil-
ity of such a ball can be estimated using the results of
Sec. IIA as

p,,q BY(Ye) = p, (X c ,Al: ]~f4'X —C'Y~f~f & e, Vt c [ T,+T])—
p~q X6: M t, Y . X —Y &E, VCP —T, +T

ppq XE: Pz && Y ll& && Y X Y & E'
&

Vt 6 T& +T

1 1

(+z, ~)), Jo;(+T,Y)
( z, ~).)i Qcr;( ,Y)—

( +~- exp — ) y;(O'Y)dt-~ ~,)o )
+T

exp — u(C' Y)dt

x„(Y,T, z) . (64)
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In the first line, the definition (37) of the distance has
been used. We supposed that e is small enough and we
used Eq. (25) to get the second line. The third line results
from the spectral decomposition (26). The fourth line is
based on the fact that the quadratic form defines a small
ellipsoid with axes determined by the quantities o;(t, Y').
Half of these quantities increase exponentially for t ) 0
and the other half increase exponentially for t ( 0, while
the vectors u;(t, Y') are slowly varying functions of time.
The fifth line is a consequence of the relation (27) of
the eigenvalues o;(t, Y') to the local stretching rates and
of the pairing rule that, to every stretching rate, there
corresponds a contracting rate with the same absolute
value by time reversibility. Finally, the last two lines
result from the definition (49) of the observable u(X)
and of the probability (45).

To get this last result, we used the fact that the normal-
ization factor Zz (u, s) is a slowly varying (subexponen-
tial) function of time in the case of "closed" hyperbolic
systems. Indeed, the sum of all the probabilities (64)
is approximately constant. On the other hand, all the
equalities in Eq. (64) hold up to factors that are slowly
varying with time. According to the fifth line, the sum
of the exponential factors involving the local stretching
rates is slowly varying. With the last line, this implies
that the dynamical partition function Zz (u, s') is also
slowly varying with time. Therefore, all of the exponen-
tial dependence should be completely taken into account
by the dispersion factor given on the right-hand side of
Eq. (64). This observation suggests that the xnember of
the family of measures Eq. (44) based on the observable
A = —u, which corresponds to the value P = 1, is the
natural invariant measure corresponding to the micro-
canonical measure

Peq = PP=1 ~ (65)

P(1) = 0 (66)

for "closed" systems. Inserting this result in the funda-
mental identity Eq. (53) with P = 1, we recover Pesin's
identity [5,36]

This result is general and extends to "open" hyperbolic
systems.

We now develop some consequences of this identi6ca-
tion. Since the system is "closed" and the equilibrium
measure of the constant energy surface is 6nite, both the
microcanonical and the dynamic measures must be nor-
malizable to unity, say. Since we have already concluded
that the normalization factor Zz (u, s) does not depend
on time in an exponential way [as it would if particles
were escaping at an exponential rate &om an "open"
system (see Sec. IIE)], but increases in a subexponen-
tial way with T when P = 1, it follows that the pressure
at this value of P must be zero

invariant measure that is the microcanonical measure is
absolutely continuous with respect to the Lebesgue mea-
sure along the unstable manifolds. When this property
holds, which is a corollary of the Pesin identity, the dy-
namical measure is referred to as a Sinai-Ruelle-Bowen
(SRB) measure [5,33].

2. The pressur'e function for "closed" systems

Another remarkable and useful id.entity for the pres-
sure P(P) can be obtained in an alternative way as an
average over the microcanonical measure (63) according
to

1
P(P) = lim sup ln p,,~(dX)T~~ 2T

+T
x exp (1 —P) ) y;(O X)dt

A;&O

(68)

1
lim lixn sup ln sup& ) p,,~[8z (Y, e)]2T Y68

+T
x exp (1 —P) u(C'Y)dt . (69)

—T

Now, according to Eq. (64), the probabilities of
the small balls are exponentially decreasing like

exp —[I & u(@rY)dt], which introduce an extra inverse
power of the dispersing factor and explains the power
(1 —P) in Eq. (68). Finally, we obtain the definition of
the pressure, namely,

1
P(P) = lixn lixnsup ln sup&

em0 T~~ 2T
+T

x ) exp —P
YqS

u(C'Y)dt (70)

We note that for the purpose of numerical calculations,
we can substitute the stretching factors (r, (t, X) for the
exponentials of the integrated local stretching factors and
use

The original de6nition of the pressure can be recovered
as follows. Considering an (s, T)-separated subset 8 of
the phase space M, the integral can be discretized into
a suxn over the points (Y) of 8 replacing the volume
elements dX by small balls 8z (Y', s'). This sum would
be equal to the integral after the appropriate limits are
taken. Therefore, the right-hand side of Eq. (68) is given
by

hKs(~. Q) = ).~.Q(~') (67) P(P) = )im —)n J p q(dX) Qo' (T, X)
o';)1

so that the KS entropy of the invariant natural measure
is the sum of the positive Lyapunov exponents averaged
over the same measure. We remark that the dynamical

(71)

instead of Eq. (68). Here there is no factor 2 in the
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FIG. 3. Schematic behavior of the pres-
sure function in the cases of (a) a "closed"
hyperbolic system, (b) an "open" hyperbolic
system, (c) a "closed" nonhyperbolic system,
and (d) an "open" nonhyperbolic system.
denotes the escape rate, p,~ is the efFective
escape rate, u is the sum of the mean positive
Lyapunov exponents, hKs is the KS entropy
per unit time, and ht p the topological en-
tropy per unit time.

3. Generating functions of transport coefficients

In paper I we showed that each transport or rate coef-
ficient a is associated with a difFusive-type motion for a
corresponding Helfand moment G~ . Within the large-
deviation formalism, it is possible to characterize in detail
the random time evolution of these Helfand moments by
introducing the generating function

q(e, P) = lim lepp(exp e (GeT —G &) ) .

(72)

In particular, if there is no drift of the moment, i.e., if
B„Q

Q

——0, the transport coefficient with respect to
the SRB measure pp is given by

1 c)2Q

2 c)lc m=Q
(73)

The standard transport coefII.cient is given by the value at
P = 1 at which we recover the microcanonical measure.

denominator because the stretching factors correspond to
the time interval (0, +T) rather than ( T, +T) —as before.

Equation (68) or (71) provides a convenient way to
compute the pressure function as a phase-space average
of an expression involving the local stretching factors. A
typical pressure function is illustrated in Fig. 3(a) for a
"closed" hyperbolic system. Note that it is a convex,
monotonic function of P and vanishes at P = 1. This
is not true of "open" systems. The KS entropy is ob-
tained by finding the slope of the pressure at P = 1 and
carrying out the linear extrapolation illustrated in Fig.
3(a). Finally, we note that the value of P(P) at P = 0
is the topological pressure ht ~(4) of the dynamical sys-
tem, as can be seen from Eqs. (39) and (61). The fact
that hKs & ht ~ puts a bound on the slope of P(P) at

= l.

The higher derivatives give the higher-order transport
coefficients such as the Burnett coefficients [37].

We can also define a large-deviation function according
to

= p(T, S, g, P) exp 2TH(ri, P) dry (74)

in the limit T -+ oo. In Eq. (74), p is a slowly varying
function and the Helfand moment is calculated for the
trajectory Y' of an (e, T)-separated subset of the phase
space M The lar. ge-deviation function H(rl, p) can be
considered as a generalization to dynamical systems the-
ory of the Onsager-Machlup action function as discussed
in Ref. [38]. The function H is related to the generating
function by a Legendre transform according to

Q(~, p) = H(rl, p) + i~ g
BH c)Q

for r = —,g= . (75)
Bg Be

These considerations are particularly useful in the study
of anomalous transport [39].

E. "Open" hyperbolic systems

Escape time fanction-s and the repeller

The main focus of our analysis in paper I was on the
chaotic behavior of "open" systems, i.e., systems with
trajectories that escape &om a bounded region of phase
space in a finite amount of time. The behavior of such
systems can be easily visualized by considering an escape-
time function as shown in Fig. 4 for a simple model of
a logistic map with escape &om the interval 0 & x & 1.
The connection between transport coeKcients and dy-
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This set contains all of the members of the statistical
ensemble that are still inside the domain 8 at the time
T) 1.e. )

T(+) (T) C '(8). (79)
p(C(T

In the long time limit, this set contains the trapped tra-
jectories of the &actal repeller 'RB and their stable man-
ifolds, restricted to the domain 8:

X

FIG. 4. Typical behavior of the escape-time function versus
the initial condition xo for the one-dimensional logistic map
x„+l ——ld, x (1 —x ) with p = 4.01.

namical quantities is based on the escape-rate formula
Eq. (3) and here we describe the derivation as a special
case of the fundamental identity Eq. (48).

An "open" system is defined by a trajectory dynamics
taking place in a phase-space region 8, with a boundary
08. We consider initial conditions Xp, within 8, and
define an escape time T&+ (Xp) as the first time when
the trajectory crosses the boundary

O'Xp g 8 for 0 & t & TB (X.()), (76)

lim T~+ (T) = Cl[W, ('Rti)]
™8, (so)

4 '(8) .
—T(1&0

ln analogy with Eq. (80), we have that

(s1)

where Cl[ ] denotes the closure of the set. As a conse-

quence, the set T&+ (T) undergoes a f'ragmentation into
smaller and smaller sets as time increases to end up as
the fractal set (80). In a similar way, we can define a set
of initial conditions such that the time reversed motion
has a negative escape time that satisfies ~TB (Xp)[ ) T,

1 (To) = [Xo C 8: ~To (Xo)() T, To & 0)

@T(+)(x, ) X lim T~ (T) = Cl[W„(Rti)] 8 . (82)

and
e '"( )+'X, ga8, 8

Y'o+ (T) = (Xo c 8: T & To (Xo)) . (78)

for arbitrarily small b & 0. Since we are considering
time-reversible Hamiltonian systems, we may also define
a "negative" escape time for an initial condition Xp g 8
in a way analogous to that in Eq. (76) by

4'(Xp) e 8 for T~ l(Xp) & t & 0, (77)

@~e ~~')(Xp) e 88,
and

e ' '( )+'(X.) ga8, 8
for arbitrarily small b ( 0. The escape time is a highly
singular function of the initial conditions if there exist
periodic and nonperiodic trajectories that are forever
trapped inside the domain 8 such that 4 Xp E 8 for
—oo ( t ( oo. Since most of the trajectories are expected
to escape &om 8 for hyperbolic systems, this trapped set
of trajectories forms a set of zero Lebesgue measure. This
set, called the repeller, may contain a subset of chaotic
trajectories in which case the repeller is a &actal set.
Because of hyperbolicity, the points on the trapped tra-
jectories must have stable and unstable manifolds. All of
the initial conditions in 8 belonging to the stable man-
ifolds of the trapped orbits remain in 8 for all positive
times. For these initial conditions the escape time is in-
finite. However, these initial points form a set of zero
Lebesgue measure so that the escape-time function takes
finite values for almost all of the points in 8 (see Fig. 4).

We now consider the set of initial conditions for which
the escape time is larger than a predetermined time T &
0,

The intersection of the two sets

Tis(T) = T~ (T) n T~+ (T) =
—T(C(+T

4 -'(8) (s3)

Np

oo(dX) = lim ) h (X. —Xi'i) dX .
j=1

(85)

contains all of the members of the statistical ensemble
that are inside the region 8 over the time interval —T &
t & +T. The repeller is defined as the set of points Tg (T)
as T M oo

lim Tis(T) = Cl['Rg] ~Q8 (84)

It is instructive to consider this construction for simple
systems such as a two-dimensional Smale horseshoe map
of the unit square as discussed in [28,40,41]. One sees

that for this map the sets T& (T) and T& (T) are thin
strips parallel to the stable and unstable directions, re-
spectively, each becoming the product of a Cantor set
with a one-dimensional interval as T ~ oo. The repeller
is the intersection of these two sets and is a Cantor set
that can be coded as a bi-infinite sequence of zeros and
ones. The dynamics on the repeller is then isomorphic to
the left Bernoulli shift on these bi-infinite sequences.

2. The nonequilibt ium invariant measum
of the Tepeller

We now define the invariant probability measure of the
repeller. We first consider a probability xneasure vp(dX)
on the region 8 corresponding to a particular statistical
ensemble of Np initial conditions at phase-space points
(XUl) where these points are distributed uniformly in
8 with respect to the microcanonical ensemble, say. This
measure vp is taken to be of the form
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Of these No initial points, the number NT still con-
tained in 8 over the time interval (0, +T) decays accord-
ing to

with

p, .(d) = f d(X) p, .(dX), (91)

lim = vp[T&+ (T)] = imp(dX). (86)
No-+oo NP ~&+~ (T)

We note that the limit No —+ oo is essential to de6ne a
smooth function of time T since NT typically shows large
statistical Buctuations when NT & 10 and drops to zero
after a 6nite time. Similar expressions hold for the time
intervals ( T, O)—and ( T, +—T).

Assuming that almost all the trajectories escape, i.e.,

that limy~ idp[TIi+ (T)) = 0, the decay curve Eq. (86)
may be exponential or slower than exponential in gen-
eral systems. However, in hyperbolic systems (where all
orbits are of saddle type) the decay is exponential. Thus
we can de6ne an escape rate according to

p= —lim
TABOO

—hm
T~OO

—11m
T~OO

2T
ln imp T~~+ (T) n T~~ (T)

—ln vp Ts (T)(+)
T
—ln vp Ts (T)

(88)

(89)

All these definitions are equivalent because of time
reversibility. For noninvertible systems such as one-
dimensional maps, only Eq. (88) applies.

In the long time limit, the trajectories remaining in the
domain 8 are distributed according to a probability mea-
sure that is invariant for the dynamics on the repeller. In
order to construct such an invariant probability measure
on the repeller, we use ideas familiar &om ergodic theory.
In the usual arguments of ergodic theory one considers
the time average of some dynamical quantity for a system
whose phase-space point is con6ned to a constant energy
surface.

If the system is ergodic, then the long time average
of any dynamical quantity is equal to its ensemble av-
erage taken with respect to the microcanonical measure.
Consider now a system whose phase-space trajectory is
con6ned to the repeller. If the trajectories on the re-
peller are ergodic with respect to a natural measure on
the repeller, then the long time average of any dynamical
quantity on the repeller should be equal to the ensemble
average of this quantity with respect to the natural mea-
sure. To construct the natural nonequilibrium measure
on the repeller, then, we begin with the definition of the
time average of some observable A(X) on the repeller as

1
p„,(dX) = iim f vo(dZ) I~ i@i(Z)T—+oo 7/0 Tg T

+T
x b(X —Ci'Z)dt . (92)2T -T

Here IT(X) is the characteristic function of the set T in
phase space, i.e. , IT (X) = 1 if X C T and 0 otherwise. In
this way, we have defined a normalized probability mea-
sure on the repeller p„,. This is the desired invariant
measure with the &actal repeller as its support. We also
note that the subscript "ne" of p„, refers to the nonequi-
librium character of the natural invariant measure. This
measure is the natural generalization of the microcanoni-
cal canonical ensemble measure to "open" systems where
the dynamics takes place on the &actal repeller 'Rg. Us-
ing this measure, we can consider the long time limit and
define the average of an observable according to Eq. (91).
This procedure amounts to performing the statistics on
the set of NT initial conditions that are still in the do-
main 8 at time T. As T ~ oo these trajectories approach
more and more closely to the trajectories on the repeller.
As a consequence, p„, is an invariant probability measure
on the repeller. We will return to this invariant measure
presently.

3. Connection with the dynamical invariant measum
and the pressure function

Now we wish to construct a dynamical measure on the
repeller similar to that used for "closed" systems in Sec.
IID. This will enable us to continue the development
of the previous sections so as to apply the fundamental
identity Eq. (48) to "open" systems. The thermodynamic
formalism suggests the consideration of the family of dy-
namical invariant measures defined in analogy to Eq. (44)

pp(dX) = lim limsupsup&

exp —P u(e'Y)dt ~

&T(» e)

1 +T
x b(X —O'Y)dt dX

2T -T

1 T1 +T
p„ (A) = lim lim )T~ooNz-+~ NT . 2Tj=1

~(e'XU1) dt

(90)

with the dynamical partition function

+T
ZT(P, e) = sup~ ) exp —P u(O'Y)dt

Yq8 —T
(94)

In Eq. (90), the sum extends over the NT phase-space
points whose trajectories remain in region 8 over the
time interval —T ( t ( +T. The time average can be
rewritten in terms of the initial measure as

in terms of the dispersion rate u = g& p y;. We em-
phasize that the local stretching rates as well as the local
I.yapunov exponents are well defined for the trajectories
of any subset 8 of the repeller Rp since those trajectories
remain in the compact domain 8 forever. A disadvan-
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p„,(dX) = lim limsupsup&
T'-+~

„)- o[8T(Y ) & ~~(T)]
vp[T~(T)]

1 +T
x 8(X —O'Y)dt .

2T -T (95)

It is clear that this measure is normalized. Since the
points Y' belongs to a (s, T)-separated subset of the re-
peller X.g, they belong to the repeller itself. If the points
Y are not close to the boundary 08 and if r is small
enough, the balls 8T(Y', s) are contained inside Tg(T)
so that

vp[8~(Y, s) n T~(T)] vp[8T(Y, s)]

exp
+T

u(4'Y) dt
T

(96)

where considerations similar to the ones of Eq. (64) have
been here applied to vp. As a consequence, Eq. (95)
becomes

tage of this de6nition is that the repeller 'Rg needs to
be known since a subset 8 of it is considered. Physically
and numerically, the repeller of systems of scattering type
appears out of the dynamics after a very long time, as
described above. The previously defined invariant mea-
sure avoids this a priom knowledge of the repeller since
the invariant measure (92) is automatically constructed
by the time evolution.

We new show that both measures are equivalent for
"open" hyperbolic systems when P = 1. We do this
by using the neighborhoods of the points of a (s, T)
separated subset 8 of the repeller 'Rg. Note that we
take the time T to be the same in both sets so that we
can closely approximate the repeller by means of the sep-
arated subsets as we take the limit T —+ oo. In this
situation, we can transform the expression (92) into

vp[Tg(T)] sups ) vp[87'(Y c) fl Tg(T)]
Y68

+~
sup& ) exp — u(4 Y)dt

Y&8
= ZT (1,s) exp 2TP(1) . (98)

Comparing this result with the definition Eq. (87) of the
escape rate p shows that the normalization factor decays
exponentially like ZT (1,s) exp( —2Tp) and, moreover,
that the pressure function P(P) has, for an "open" sys-
tem of hyperbolic type, the value

P(1) = —q. (gg)

Moreover, we can now define the important quantities of
the thermodynamic formalism of Sec. IIA and the fun-
damental identity (53) follows once again. We can now
identify all of the quantities appearing in this equation
at P = 1. For this case we find

p = ).p..(A;) —hKs(u .) .
A;&0

(100)

) p„.(A;) =-
A, &0

dP(P)
dP p=i

(101)

Equation (100) is the escape-rate formula for an "open"
system, giving the relation between the escape rate p
and the sum of the positive Lyapunov exponents and
Kolmogorov-Sinai entropy for trajectories on the &actal
repeller kg, using the natural measure pi ——p„,. We
remark that we used the notations A;('Rg) = p„,(A, ) =
p~(A;) and hKs(Ks) = hKs(p„. ) = hKs(pi) in Eq. (2).
This result generalizes Pesin's formula to "open" hyper-
bolic systems. Indeed, when the system is "closed" the
escape rate vanishes p = 0 and Pesin's formula is recov-
ered as well as Eq. (66). Here the average of the sum
of positive Lyapunov exponents over the nonequilibrium
invariant measure can be calculated as before as a deriva-
tive of the pressure function

p„,(dX) = lim limsupsup&r—+~
f +T'

exp u(4'Y)dt
~

ZT (l, s)
+T

x b(X —O'Y)dt = pg(dX) .
2T -T

(97)

Accordingly, we recover the dynamical invariant mea-
sure corresponding to the value P = 1 as in the case
of "closed" hyperbolic systems [see Eq. (65)].

We note that the normalization factor is required here
for the following reason. In order to estimate the normal-
ization factor, we decompose the set TI9(T) into small
balls 8z (Y, e') centered on the points Y of an (s, T)
separated ubset 8 as

We remark that the nonequilibrium invariant measure is
not absolutely continuous with respect to the Lebesgue
measure along the unstable manifolds but singular with
a fractal for support. In this way, the nonequilibrium
invariant measure difFers &om the equilibrium one.

We now describe a practical way to calculate the pres-
sure function in "open" systems. As we have seen, the
pressure function requires the knowledge of the local Lya-
punov exponents. In practice, we only know the stretch-
ing factors cr;(T, X~ l) of the trajectories of the initial
ensemble (85). In analogy with Eq. (71), we propose
here

P(p) = hm —ln g~;(T, X) vp(dX)
T~oo T ~(+&(~)

(102)

This definition is equivalent to the previous one for the
following reasons. By time reversibility, we can convert
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the average over the forward set T& (T) into an aver-(+)

age over the set Tg(T) by considering the time interval

( T—, +T) rather than (0, +T). Using an (c,T)-separated
subset 8 to discretize the integral, the right-hand mem-
ber of (102) becomes

1
lim limsup lnsup& ) vo[8g(Y, z) A Tis(T)]2T Y68

+T
x exp(l —P) u(4'Y)dt, (103)

—T

where we used the estimation (33). According to Eq.
(96), we recover the original definition of the pressure

1
P(P) = limlimsup in' (P, e),2T (104)

with the partition function (94).

F. Nonhyperbolic systems

Ji

(a)
I

(b) :

FIG. 5. Examples of marginally unstable periodic orbits
with zero Lyapunov exponents in the cases of (a) the stadium
billiard, (b) the Sinai billiard, (c) the hard-sphere gas with
periodic boundary conditions, and (d) the hard-sphere gas in
a rectangular box.

In many cases the system possesses periodic orbits with
vanishing but nontrivial Lyapunov exponents. This is the
case, in particular, for the stadium billiard, the Sinai bil-
liard, and the hard-sphere gas with periodic boundary
conditions or placed in a rectangular box. The periodic
orbits that we have in mind are those special orbits where
the particles move without collision or bounce between
parallel walls, for example, as illustrated in Fig. 5. These
special orbits form sets of zero Lebesgue measure so that
they do not prevent the system from being ergodic, or a
K flow, or from having positive average Lyapunov expo-
nents. However, all the Lyapunov exponents of these spe-
cial periodic orbits vanish because perturbed trajectories
may separate from the periodic orbit in an algebraic way:
!!4' (Xpo+8X) —@ (Xpo)!! t. As a consequence, if
the system is "open" and the domain 8 contains such a
marginally unstable periodic orbit, the decay in Eq. (86)
is nonexponential as

(105)

where 1Vf is the total number of degrees of freedom of the
system and the escape rate vanishes [18,42,43]. (We note
that this algebraic decay results from purely geometric
eKects, such as those that appear when particles travel
down long corridors without hitting anything, and thus
has no direct connection to the longtime tails that appear
in the time correlation function expressions for transport
coefficients [44,45].)

The large-deviation formalism is very useful in this
context because the pressure function is still nontrivial
in this case. If the Lyapunov exponents vanish in some
regions of phase space, some of the dispersion rates u(Y')
may be vanishing for a few values of Y' in the (s, T)
separated subsets. For large and positive values of P, the
partition function (94) is dominated by the few terms
with u(Y) = 0 because all the other terms are exponen-
tially vanishing in the limit T + oo. As a result, the
pressure function is equal to zero for large values of P.
On the other hand, for negative values of P, the terms
with nonvanishing dispersion rates u(Y) dominate the
sum in the partition function so that the pressure is then
positive and nontrivial. There exists a critical, lowest
value of P above which the pressure vanishes

(~) = 0 for p, ( p. (106)

Schematic pressure functions are depicted in Figs. 3(c)
and 3(d) for nonhyperbolic "closed" and "open" systems,
respectively. For "closed" systems, we observe that the
pressure is zero above P = 1 which is in agreement with
the vanishing of the escape rate due to Eq. (105), so
that the critical value is P, = 1. Moreover, the sum of
positive Lyapunov exponents must be defined as the left-
hand side derivative of the pressure at P = 1 in the case
of a "closed." system.

The discontinuity in the shape of the pressure func-
tion is evidence of a phenomenon of dynamical phase
transitions, so called in analogy with statistical mechan-
ics [7,31—33]. We have the following interpretation. The
system is described by the continuous family of invariant
measures pp. The parameter P acts like a filtering param-
eter. When P ) P„ the measure is concentrated on the
regular trajectories that have vanishing Lyapunov expo-
nents. For these measures, we can talk about an ordered
or regular phase since the corresponding invariant states
are ordered. On the other hand, when P ( P, the mea-
sure pp gives dominant probability weights to the non-
periodic trajectories that are uncountable. In this case,
we can speak of a chaotic. or a disordered phase. Tuning
the parameter P therefore reveals the chaotic features of
the dynamics. This is currently done when we refer to
the topological pressure per unit time, i.e. , P(P = 0), as
an indicator of chaos.

However, if the pressure function is analytic away from
critical points, it has the further advantage that it can
be extrapolated from below criticality up to the value
at P = 1 so as to define a supercritical measure, for in-
stance, in the case of "open" nonhyperbolic systems. In
this way, it is possible to define an e8'ective escape rate
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p,g as well as an efI'ective value for the sum of positive
Lyapunov exponents at P = 1. The effective rate can
be evidenced in numerical simulations from the transient
behavior of the decay function Eq. (86). In many nonhy-
perbolic systems with a large number of degrees of &ee-
dom, the power law decay Eq. (105) may remain a very
small efFect that is visible only after extremely long times
because marginally unstable periodic orbits are very rare
and the decay could appear exponential within statistical
errors. In nonhyperbolic systems, although we may know
&om theoretical arguments that the escape rate defined
by Eq. (87) actually vanishes, the concept of an effective
escape rate is useful to characterize in a rigorous way a
numerically observed exponential decay.

III. HARD-SPHERE GAS

In this section we will outline the methods that must
be used to apply the considerations of Sec. II to a gas of
hard spheres. The treatment of the hard-sphere gas as a
dynamical system requires a different analysis than that
given in Sec. II for smooth dynamical systems or in Sec.
IV for stochastic dynamical systems. Sinai et aL [15,16]
have developed an elegant description of billiard systems
in order to analyze their ergodic properties. Here we will
use the methods of Sinai et al. in order accomplish two
goals: (i) to present the Sinai xnethod in a somewhat
elementary way in order to acquaint a more physically
oriented audience with these techniques, which we believe
are very useful for the description of the dynamics of
hard-sphere systems, and (ii) to show how the sum of the
positive Lyapunov exponents can be expressed in terms of
the average value of the trace of a certain matrix, called
the second fundamental operator or curvature matrix.
With this result one can begin to apply the escape-rate
method to hard-sphere systems.

In this section we will discuss the theory of billiard
systems from the point of view of geometrical optics by
studying ray trajectories and perturbations thereof. Var-
ious notions of elementary differential geometry will be
important here and the reader is advised to consult [46]
for an introduction to this subject. We also mention a re-
cent and extensive review of billiard systems by Tabach-
nikov [47].

respectively, where r; and v; are the position and velocity
of particle i. The Hamiltonian for the system is

N

II =) -mv2 . (109)

The hard-sphere condition requires that

forint j (110)

|9~0
n(q) =

defines the linear subspace 9 tangent to the collision hy-
persurface at q.

Figure 6 schematically depicts the geometry of an elas-
tic collision. If u( ) is the velocity before the collision,
the velocity after the collision is such that the compo-
nent in the plane 9 tangent to the hypersurface at q
remains unchanged while the normal component changes
sign, i.e.,

u+ = u —2(n. u ))n, (112)

which is the rule of elastic collisions (and the basic equa-

g (-) g (+)

and that the particles undergo instantaneous collisions
when ~r; —r~~ = d. Since energy is conserved in elastic
collisions, the magnitude of the velocity u remains un-
changed in a collision. We can then rescale the velocity
to a unit value u = 1. Then up to a rescaling factor, the
dynamics is the same on every energy shell II = E.

The positions at which the particles collide ~r; —r~
~

= d
defines a hypersurface BQ in the N f-dimensional space
that is the border of the billiard Q. We denote by n(q) a
unit vector that is perpendicular to the hypersurface BQ
at the point of impact q and is directed inside the billiard
Q. If cr(q) = 0 is the equation of the hypersurface BQ,
the normal vector

A. De6nition of the billiard

(107)

ll = (Vil V21VSl .
& VN) (108)

The hard-sphere gas can be thought of as a general-
ized billiard in a configuration space of dimension N f,
where N is the number of hard spheres, each of mass m
and diameter d, and f is the spatial dimension of each
"sphere, " i.e., f = 2 for disks, f = 3 for spheres, etc. The
positions and velocities of all of the spheres are given by
the N f-dimensional vectors q and u

FIG. 6. Geometry of an elastic collision. n is the vector
normal to the hypersurface of the billiard, u~+ are, respec-
tively, the velocities before and after the collision, 9 is the
tangent subspace, 9 + are the subspaces perpendicular to
the ingoing and outgoing velocities, bq + are the infinitesimal
perturbations in position before and after collision, and bq is
the infinitesimal perturbation of the impact point q. The cur-
vature of the collision hypersurface is not represented because
the hypersurface curvature plays a role only in the infinites-
imal perturbations in velocities bu +, which are straightfor-
wardly derived from the collision rule (112) by analysis, as
done in Eqs. (134)—(136). This analytical derivation does not
particularly require a geometrical visualization.



52 CHAOTIC SCATTERING THEORY, THERMODYNAMIC. . . 3541

tion of geometrical optics).
For the following discussion we also need to de6ne the

linear subspaces 9(+) that are perpendicular to the ve-
locities u(+). Following Sinai, we introduce the following
transformations.

(a) The projection of 9(+l onto 9~ l, parallel to n,

U: e(+) ~ e(-)

is given by

K 9-+8 (118)

hq . bn=hq . K hq.

which is symmetric. If the operator is non-negative
K & 0, the collisions are defocusing or neutral and may
lead to a dynamical instability. In the case that K & 0 the
collisions are focusing or neutral, but, as illustrated by
Bunimovich s stadium billiard, the collisions do not nec-
essarily lead to a dynamically stable situation. In order
to see the meaning of the sign of the second fundamental
form consider the inner product

U=1 —2nn

U=U =U =1 —2nn (114)

with determinant det U = —l.
(b) The projection of 8( l onto 9 parallel to u~

v e(

is given by the matrix

which takes a vector in the hyperplane 8(+) and projects
it onto the plane 8( ) such that the difference between
the two vectors is parallel to n and that the components
of the two vectors in the directions perpendicular to n
are equal. Here the superscript T denotes a transposed
vector, or operator, and 1 is a unit operator. The trans-
formation U is an invertible, orthogonal transformation
given by an orthogonal matrix in the N f-dimensional
configuration space

For surfaces that are defocusing, this inner product satis-
6es bq+ - bn &0) while for focusing surfaces bq+ - bn & 0,
as may be immediately checked by considering a sphere
in three dimensions and constructing this inner product
for both outward (bq+ 6n ) 0) and inward (hq+. bn ( 0)
normal vectors. In the case of outward normal vectors,

1
K = —1g,

where d is the radius of the sphere, 1~ ——eye& + eye&+
is the unit operator in the tangent plane to the sphere
at point q, and eg and ey are mutually orthogonal unit
vectors in this tangent plane.

C. Example

%e now construct the various geometric quantities that
describe a collision between particles 1 and 2. The hy-
persurface of collision is locally de6ned by

u(-) n~V=1-
u( )-n

(c) The projection of 9 onto 9( l, parallel to n,

v: e ~ e(

(115)

(116)

r2 I' = (~i —») ' + (yi —y2)
' + (~i —~2)

(120)
A parametric representation of this hypersurface is given
in terms of center of mass and relative coordinates by

is given by the transpose of the matrix V, Eq. (115). q =
l

Ri2 + —ei2, Ri2 ——ei2, rs, i'4, . . . , r~ l, (121)

B. The second fundamental form

The convexity of the hypersurface 0 (q) = 0 determines
the defocusing character of the collisions. The convexity
is characterized by an operator known as the second fun-
damental form (the first fundamental form determines
the Riemannian distance between two nearby points on
the surface) and gives the variation of the normal vector
with respect to amariation of a point on the hypersurface.
That is, we define the second fundamental form K(q) by

1
n = (ei2, —ei2, 0, . . . , 0).

2
(122)

After applying the collision rule Eq. (112) we find the
usual result

where Ri2 ——(ri+r2)/2 is the location of the center of
mass of the two spheres 1 and 2 at the instant of the
collision and e12 is the unit vector in the direction of
the line joining their centers at the time of the collision.
The unit vector that is normal to the hypersurface at the
position Eq. (121) is given by

n(q+bq) —n(q) = K(q) bq, (117)

where both q and q+bq belong to the hypersurface. Con-
sequently, the variation bq is perpendicular to the normal
n Bq =0. Similarly, n2 = 1 implies that n bn = 0. As a
result, the second fundamental form maps vectors bq in
the tangent plane onto vectors bn in the tangent plane

(+) (-) . (-) (-)
12 ' %1 —V'2 612 )

(+) (-) (—) (—)v2 = v'2 + [ei2 (vi —V2 )]ei2
(+) = (-)

V'3 = V'3

(+) (-)
N N

(123)
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which conserves the total energy and momentum.
The defocusing character of hard-sphere collisions is

shown by considering the second fundamental form. The
variation in position on the hypersurface is achieved by
making a change in the unit vector A&2 and in r3, . . . , rN.
Thus bq is given by

E. Free flight

q(t)= u(0) t+ q(0), (129)

During a &ee Bight the velocity vector is constant, al-
though the position changes according to

bq =
~

-«i2, —-«i2, »s, . . . , »xv
~2 2

' )
and bn is

(124) where [q(0), u(0)] are the position and velocity after the
previous collision. As a direct consequence, before the
next collision

1
(bex2, —bex2, &). . . , &) .

2
(125)

( bq~(t) 'l & bq~(0) + t bu~(0) )
( bu (t) ) ( bui(0) (130)

From these two results it follows immediately that the
second fundamental form is given as

K = (1,1, 0, 0, . . . , 0) .
d

(126)

Clearly the collision between the two spheres is defocus-
ing as expected. However, defocusing only occurs in two
directions while the other directions are neutral so that
such billiards are referred to as semidispersing billiards
[15]. One can think of the 1Vf-dimensional configuration
space for hard spheres as being bounded by hypercylin-
ders with both defocusing and neutral directions much
like ordinary three-dimensional cylinders.

D. Linear stability

To develop a method to compute dynamical quantities
for a hard-sphere gas we need to consider infinitesimal
perturbations of some reference trajectory. The pertur-
bations are best represented in a local &arne of coordi-
nates with one axis parallel to the velocity u

bq = bq~~e~~ + bqzxe Li + bq L2e L2 + ~ '

+~QJ N f—1&3 N f—1 (127)

where ell ——u with u u =l. An equation similar to Eq.
(127) obtains for the infinitesimal variation in velocity
with respect to the reference trajectory. We remark that
the condition u2 = 1 implies that the velocity perturba-
tion is necessarily perpendicular to u: u bu = 0. There-
ore we have ~ll ——0. Similarly we can set bqll

otherwise the perturbation can be assigned to another
position along the trajectory. Consequently, the infinites-
imal perturbation belongs to a linear space of dimension
2(N f —1).

Our purpose is to obtain the time evolution of the in-
finitesimal perturbation over a time interval T that will
define the monodroxny xnatrix M(T)

where t is the time of flight between two consecutive colli-
sions, which is also equal to the distance between impact
points since the velocity u is normalized to unity. The
monodromy matrix for a &ee Bight is therefore

/1 t1&
Mfree xxight =

I 0 ) (131)

F. Collision

b'q = V bq~~ (132)

The perturbed trajectory after the collision is issued &om
the point q+bq with a velocity u&+&+bu~+& given by the
collision rule Eq. (112). The intersection of this tra-
jectory with the tangent space 9 defines the perturba-
tion in position bq& of the outgoing trajectory. There-
fore the outgoing perturbation is given by the projection
of the perturbation Eq. (132) of the impact point from
the tangent subspace 9 onto the subspace 8(+) paral-
lel to the outgoing velocity u(+). In Fig. 6 we observe
that the composition of the two successive projections
9( ) -+ 8 m 9(+) is the projection &om 9( ) onto 9(+)
parallel to the normal vector n, w'hich is the inverse U

of the isometry Eqg. (113) and (114),

If the collision illustrated in Fig. 6 is perturbed, the
position and velocity just before the collision are dis-

placed by (bq&, bu& l), which both belong to the sub-

space 9( ) perpendicular to the incident velocity u(
As a consequence, the collision of the perturbed trajec-
tory does not occur at the collision point q of the ref-
erence trajectory but at the nearby point q+bq on the
hypersurface. We note that the perturbation bq of the
impact point belongs to the tangent subspace 9 and is
determined from the perturbed position bg& by the pro-
jection &om 9( ) onto 9 parallel to the incident velocity
u~ ~, that is, by Eq. (115)

M(T) ("q (')'/
( bug(T) ) ( bug(0) )

(128) bq~ = U bq~(+) -1. (-) (133)

The time evolution is composed of collisions and &ee
flights between the collisions. We shall first determine
the monodromy matrix for a &ee flight and then the ma-
trix for a collision.

At the perturbed impact point, the normal vector is no
longer identical to n but is perturbed as determined by
the second fundamental form Eq. (118). Accordingly, the
velocity perturbation after the collision can be obtained
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in a straightforward way by differentiating the collision
rule Eq. (112)

—2(n. u( ))K. bq —2(u K bq)n, (134)

where bq is the perturbation of the impact point Eq.
(132). Defining the angle P by

cos P = n . u(+) = —0 u(

and using Eqs. (114) and (132), we find that Eq. (134)
becomes

bu~+) ——U bu~ +(2 cos P) V . K . V bq~

(136)

According to Eqs. (133) and (136), the monodromy ma-
trix of a collision is

0 l
r

u-'colhsxon —
I( (2 y) U

—i VT

f U-i 1
0 U )i ~i (2cosg)V K V

0)
1)I ~

(137)

G. Expanding and contracting horospheres

bup ———bqp ——B„.bqp.
dt

(138)

The local Lyapunov exponents are determined by the
rate of dispersion of trajectories in the vicinity of the ref-
erence trajectory. The dispersion is given by the "horo-
sphere, " which is a local sphere tangent to a &ont of
trajectories accompanying the reference trajectory and
issued &om a common initial position in the past. The
&ont is expanding so that we talk about the expand-
ing horosphere, which is nothing but the local unstable
manifold. For the case of one particle moving in a fixed.
array of scatterers this expanding horosphere is easy to
describe and has been discussed in detail in Refs. [15,18].

The expanding &ont has a local curvature that is char-
acterized by the second fundamental operator B„de6ned
by (the analog of the operator 8„ for continuous-time
Hamiltonian systems has been defined in Ref. [26])

FIG. 7. Expanding and contracting horospheres of a bil-
liard. These horospheres are geometrical representations
of the local unstable and stable manifolds W~ '~(X) and
W, ~(X) at the phase-space point X = (q, u). (a) Back-
ward trajectory determining the expanding horosphere. (b)
Forward trajectory determining the contracting horosphere.

horosphere immediately before the nth collision, i.e., at
the end of the preceding &ee Bight between the colli-
sions n and n —1. On the other hand, B„(n) denotes(+)

the fundamental operator immediately after the nth col-
lision. B„(t) denotes the fundamental operator during a
&ee Bight.

%'e assume that the second fundamental operator of
the expanding horosphere is fixed at some collision in
the remote past and look for the operator at the initial
condition. The operator is successively modi6ed by the
&ee Bights and collisions according to the monodromy
matrices Eqs. (131) and (137). The second fundamental
operator B'„ is related to the one before the monodromy
matrix M by

/

=M
/ f, (140)

4 bu~ i E 8'„'bq~ ) &
B„.b'q

which is solved by eliminating bq~ and bq& between both
lines.

Applying this equation to the monodromy matrix Eq.
(131) for a free fiight, we find

Accordingly, the unstable subspace has the parametric
representation

- —1
B„(n+1) = v„+i „1+8„+ (n) (free fiight).

(141)

qbuz p q B„bq~ ~
(139)

For a collision, we have from Eq. (137)

in the tangent space. A similar representation holds for
the stable subspace.

Let us consider a trajectory &om an initial condition
X = (q, u). Figure 7 depicts the backward and forward
portions of the trajectory. Collisions occur at the impact
points n and times t with n 6 Z. We denote by 7 +~ „
the time between the collisions n and n+1. Furthermore,
B„(n) denotes the second fundamental operator of the(—)

8(+)(n) = U„(2cos P )V„K V„+8( &(n) . U

(collision). (142)

Combining Eqs. (141) and (142) for successive backward
collisions, we obtain Sinai s matrix continued-&action ex-
pression for 8„(t)
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B (4) =

1+U„. (2cosg )V ~ K ~ V +
—1 T 111+U 1

~ (2cospn 1)V 1 ~ Kn 1 Vn 1 +
&n —1,n —21+ '

U

U

(143)

with7. =t —t fort +1&t&t . BecauseK &Oand
cos P ) 0, the matrix B„(t) & 0 so that the expanding
character is maintained during the whole time evolution
in the case of a hard-sphere gas. Let us emphasize that
the operator (143) is defined locally for each initial condi-
tion X and can be obtained by integrating backward the
trajectory 4 X for —oo & t & 0 to determine the suc-
cessive past collisions and the corresponding quantities
appearing in Eq. (143).

To see the connection between the second fundamental
operator and the Lyapunov exponents of the hard-sphere
gas we proceed as follows. We use the fact that between
collisions the quantity bq~ develops as

bqi(t ) = bql (t —i+~, —i)
= bqi(t —i)+~, —lbuJ (t —i)

1+~„„ iB~+l(n —1) . bq~(t„ i), (144)

where the quantities are the values immediately after the
collisions, as given by Eq. (142). After a sequence of n
collisions, bq~(t) is given by

bqg(t„) = 1+~„„ iB„+ (n —1)

x 1+7.„ i „2B„+(n —2)

x 1+, B~+l(0)] . bq (0), (145)

with to —— 0. If there is an exponential separation
of trajectories we would expect that for long times
[)bqz(T)() = (exp AT)))bq(0)[(. The exponential growth
factors A would satisfy the relation

) A; = lim —lndet 1+w, iB„+ (n —1) .
T~oo T

Ai&p

x 1+wioB~+l(0)
n —1

lim —) lndet 1+~,+i;B„+ (i)T~ cK) i=p

(146)

7i+1,i
lirn —)T~oo T pi=p

dv tr(~1+ B~+l(i)]

(147)

Now by using Eq. (141) in the form

B„(t„+w) = B~+l(n) 1 + wB~+l(n)

we readily find that
T) A; = lim — dt trS (t) .

T~cx)
Ai&0

(148)

In the event that the system is "closed" and ergodic, then

I

the time average in Eq. (148) can be replaced by an en-
semble average with respect to the equilibrium invariant
measure of the system, so that in this case

) A; = p.,(trB„)
Ai&0

(149)

for almost all trajectories. For "open" systems, a similar
result obtains, but the appropriate nonequilibrium mea-
sure must be used in computing the average of the trace
of the second fundamental operator. We can therefore
identify the local dispersion rate for billiards as

u(X) = ) y, (X) = tr B„(X) .
Ai&0

(150)

For hard spheres the form Eq. (150) plays the role of
Eq. (32) for systems with smooth potentials. With re-
spect to smooth Hamiltonian systems, a simplification
for billiard systems comes &om the fact that the local
Lyapunov exponents are given directly in terms of quan-
tities that can be constructed from successive collisions.
It is possible that numerical calculations of the sum of
positive Lyapunov exponents for billiard systems could
be calculated efficiently and quickly using Eq. (146) or
(148). It is worth noting that the individual Lyapunov
exponents may also be calculated by using the second
fundamental operator (143).

For the special case of a billiard system consisting of
one moving particle in a regular triangular array of fixed
hard disk scatterers, the triangular Lorentz gas, one can
evaluate the continued &action Eq. (143) in terms of
scalar quantities, and the positive Lyapunov exponent
has been determined numerically for both "open" and
"closed" systeins by Gaspard and Baras [17,18]. For
"open" systems, the positive Lyapunov exponent de-
scribes the expanding manifold for the trajectories on
the fractal repeller. In the case of random Lorentz gases,
where a particle moves in a fixed but random array of
hard-disk or hard-sphere scatterers, van Beijeren and co-
workers [19,48] have determined the sum of the positive
Lyapunov exponents for both "closed" and "open" sys-
tems in the case that the density of scatterers is low.

As a consequence of the considerations presented here
we see that even for billiard systems it is possible to define
the sum of the positive Lyapunov exponents in terms of
the average value of the trace of the second fundamental
operator. For "closed" systems, this quantity determines
the Kolmogorov-Sinai entropy of the billiard, by Pesin s
theorem. For "open" systems, this quantity provides the
sum of the positive Lyapunov exponents for trajectories
on the repeller, which is an essential ingredient needed
for the escape-rate formalism for "open" systems.
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H. Marginally unstable periodic orbits IV. LATTICE-GAS AUTOMATA

A. Lattice-gas automata as Markov chains

As we remarked in Sec. IIF and illustrated in Fig. 5,
the hard-sphere gas with periodic boundary conditions
or in a rectangular box presents special periodic orbits
for which the particles do not undergo collisions. As a
result, the second fundamental operator Eq. (143) is of
f'ree-Right type Eq. (141), which decays to zero as t ~ as
t ~ oo because K = 0 for the particular case of collisions
on Bat walls. Therefore, all of the Lyapunov exponents
of those special orbits vanish and the system is nonhy-
perbolic. These special periodic orbits form continuous
families of dimension N f —1. We discussed in Sec. IIF
how the large-deviation formalism can be applied to such
systems.

Since the transport coeKcients are bulk properties ob-
tained after a thermodynamic limit, the theory of paper
I is also valid for a system that is modified at its bound-
aries. Using the independence of the transport coefB-
cients of surface effects, we can consider a hard-sphere
gas in a box with convex walls as in Fig. 8. Figure 8(a)
shows walls given by portions of spheres with a radius
of the order of the box size. In this case, the convexity
is global and mild but enough to turn the system into a
hyperbolic system. Indeed, the families of special orbits
have now disappeared and all of the periodic orbits are
now unstable.

Another possibility is shown in Fig. 8(b), where the
walls are composed of many portions of small spheres
modeling the atoms of the walls. Here also the continu-
ous families of special periodic orbits have disappeared.
There may still remain rare periodic orbits where the
particles have no mutual collisions, but these periodic
orbits are now unstable since the walls are defocusing.
Therefore, the system here is also hyperbolic and the
escape-rate formula Eq. (100) strictly applies.

Lattice-gas automata are probabilistic Markov chains
over system states de6ned by the set of discrete states
taken by individual particles. The single-particle state
for particle i, (; takes one among m integers that de-
termine its position and velocity. The collection of all
the single-particle states ((q (2) (3) ~ ) $~) = u defines a
state of the whole system. As a consequence, the total
number of possible system states is m~ [49]. This set
of possible system states plays the role of an alphabet
A = (1,2, 3, . . . , m~) of a symbolic dynamics M = ZA
in which the trajectories of the system correspond to bi-
infinite sequences of states

CaP = ' ' ' (d 2M y(dohPyCa12 (151)

The successive symbols uI, give the state of the system
at successive times tI, ——kit. The set of all bi-in6nite
sequences de6nes the phase space of the lattice-gas au-
tomaton. This so-defined phase space is a continuum, as
it should be. For example, a simple automaton with an
alphabet of two symbols 0 and 1 and a set of trajectories
consisting of all bi-in6nite sequences of these two sym-
bols can be mapped onto a unit square, as done in the
baker's transformation. We remark that a symbolic dy-
namics establishes a one-to-one correspondence between
the system trajectories and the bi-in6nite sequences.

Gaspard and Wang have shown elsewhere [50] that an
area-preserving map can be constructed that is isomor-
phic to the Markov chain. In this way we can establish a
connection between some properties of the Markov chain
and those of a deterministic dynamical system. How-
ever, the dimensionality is lost in this connection. As
a consequence, geometric properties of dimension that
are typical of differentiable dynamical systems cannot be
recovered. Nevertheless, we are here interested in. the
quantities appearing in the escape-rate formalism. In
particular, a formula such as Eq. (2) contains only the
sum of positive Lyapunov exponents, a global quantity
that does not require the knowledge of individual Lya-
punov exponents. Therefore the escape-rate formalism
can be extended to lattice-gas automata.

The lattice-gas automaton is fully characterized by the
matrix P of the Markov chain on the system states. The
elements P ~ of the matrix P give the probabilities of
transition between two successive states u and u'. Since
probability is conserved and the Markov chain admits an
invariant vector (p ) we know that

I

I

I

L.

FIG. 8. Hard-sphere gas in a box with convex, defocusing
walls: Each wall is composed (a) of a portion of a single large
sphere and (b) of the portions of many spheres modeling the
atoms of the wall.

.S & =I& (152)

pA(~0~1 ~n 1) = pruo P~—o~x P~~~& P~~

(153)

with P p = 1. We may assume that the Markov chain
is ergodic so that the invariant vector is unique. The
invariant probability measure is then de6ned as
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B. Escape-rate formalism of Markov chains ) II.. =1, 7T~ IT~~& —'7t ~1 )

~&B

(157)

Although the dynamics takes place within the full set
of states A, there may exist a subset of states 8 C A that
are visited in a transient way. This might happen, for
instance, if we impose a nonequilibrium constraint on the
system, such as requiring that a Helfand moment lie in an
interval Eq. (1). If the initial state belongs to this subset,
the state will escape 6.om this subset after a finite time
for almost all of the trajectories Eq. (151). Nevertheless,
there exist trajectories Eq. (151) that remain forever on
this subset 8. These trapped trajectories are exceptional
in the sense that their measure Eq. (153) is vanishing and
consequently they form a repeller X.B ——ZB. The first
time at which a given trajectory escapes from the subset
8 defines a problem of first passage. The dynamics of
the full system with respect to the repeller is similar to a
scattering process where the trajectory visits for a while
a vicinity of the repeller. In this image where a trajectory
is going in and out of the subset 8, the repeller may be
considered as a predefined nonequilibrium Quctuation, as
discussed elsewhere [51,52].

Since the dynamics is transient on the repeller there
exists an escape rate p. We can calculate this escape rate
by constructing the Markov subchain between states of
the subset 8. The values of the transition probabilities
are given by a submatrix that is contained in the matrix
P of the full Markov chain Eq. (152). This submatrix Q
is composed of the elements of P between the states of
the subset 8

Ai8 8
aye &

(154)

II = exp(p)Q

which is now stochastic since

~co'Ucu

(~l ~)
' (156)

where the asterisk denotes other submatrices.
Because it is obtained by truncating the full matrix P,

the submatrix Q is not a stochastic matrix obeying Eq.
(152). In particular, the leading eigenvalue of Q is no
longer 1 but is smaller than 1. Actually the eigenvalues
of the submatrix Q give the decay rates out of the subset
8 so that the leading eigenvalue gives the escape rate p
according to

Ql~) = exp( —~) l~) (~IQ = exp( —~)(~l (»5)
which define the leading right and left eigenvectors of Q.
The escape rate here is in units of the time steps Lt of the
automaton. If Q is a non-negative, irreducible, aperiodic
matrix, then according to the Perron-Frobenius theorem
all of the other eigenvalues are smaller in absolute value
than the largest eigenvalue exp( —p).

Using the right and left eigenvectors we can construct
the Markov subchain of the repeller dynamics in terms
of the matrix and its associated invariant vector

C. Lattice-gas automata
as chaotic dynamical systems

We now have the necessary elements to proceed with a
derivation of the escape-rate formula. The escape rate p
was already defined in terms of the leading eigenvalue of
the submatrix Q. On the other hand, the KS entropy of
the dynamics on the repeller is defined as the KS entropy
per time step At of the Markov chain Eqs. (157) and
(158),

hKs(ps) = — ) 7r II lnII
m, (u'&B

(159)

We need to find the quantity that plays the role of the
sum of the positive Lyapunov exponents Pz &o A;. It is
not obvious at first sight how to do this. The solution
can be found by mapping a Markov chain onto a deter-
ministic map [50,53] and then computing the sum of the
positive Lyapunov exponents for the deterministic map.
One finds in this way that the inverses of the probabili-
ties Q for the separate steps of the Markov chain play
the role of the stretching factors by which trajectories
separate in the map or by which the probability is dis-
persed in the Markov chain. The inverse of the dispersion
factor for the trajectories visiting successively the states

z is therefore given by

exp —U(~p(ui. (u„ i) = Q, ,Q, , q „,
(160)

The role of the sum of the Lyapunov exponents is then
played by the average quantity

1
pg(u) = lim—

A ~OO
Ps(~o ~~—i)

~o'"~n —1 CB

x ln exp U(wp tu i), (161)

with the definition Eq. (160). Equations (160) and (161)
define for lattice-gas automata the analog of the disper-
sion rates given by Eq. (32) for systems with smooth
potentials and by Eq. (150) for hard spheres.

Using the factorization property of the dispersion fac-
tors Eq. (160) and the Markov property of the measure
Eqs. (157) and (158), we obtain

This stochastic matrix defines an invariant measure on
the repeller, which is given by

ps(~o~i . . ~~-i) = ~~.II~.~, II~,~. . II~. ,~. »
(158)

where uk g 8. This new invariant measure pB gives non-
vanishing probabilities only for trajectories staying on
the repeller.
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1
»(u) = ) vr II ln (162)

which is positive since the matrix elements are smaller
than one, Q ( 1. The dispersion rate u has the same
units Lt as the escape rate p and the KS entropy Eq.
(159). The isomorphism between the Markov chain and a
deterministic, area-preserving map has been discussed in
detail for the multibaker transformation and for Lorentz
lattice gases [52,53]. This isomorphism shows that the
sum of the positive Lyapunov exponents for the deter-
ministic systems is identical to»(u) given above, h...(8) = P(O). (168)

and (159),respectively. This is accomplished by using the
spectral decomposition of the matrix Q, in terms of its
eigenvalues and eigenvectors. If this matrix is irreducible
and aperiodic, the dominant behavior of Q for large n
is determined by the largest eigenvalue and the associ-
ated left and right eigenvectors. The correspondence of
the two kinds of expressions for the dynamical quantities
then follows immediately.

Moreover, the analog of the topological entropy per
time step Lt is given by

A;&0

both calculated on the repeller Eg. This last property
guarantees that the averaged quantity u is the unique
analog of the sum of the positive mean Lyapunov expo-
nents for lattice-gas automata.

Replacing the definitions Eq. (156) of the matrix II
and of the invariant vector m in the expression Eq. (159)
for the KS entropy, we obtain the identity

The topological entropy is the largest eigenvalue of the
topological transition matrix associated with the Markov
subchain II, i.e. , the matrix with elements 0 or 1 de-
pending upon whether 11 I is zero or positive. If the
subchain matrix Q is a strictly positive Mii x Mii matrix
with Mg & m, then the topological entropy is equal to
h~~p(8) = lnM~ ( N inm.

V. RELATIONSHIPS TO OTHER THEORIES
AND APPROACHES

V = us(u) —hKs() s), (164)

which is the escape-rate formula (100) for lattice-gas au-
tomata. This formula gives the escape rate from the re-
peller Zg as the difference between an average dispersion
rate playing the role of the sum of the positive Lyapunov
exponents and the KS entropy.

Similarly, we have the analog of the Pesin theorem.
When we relax the constraint on the subset of allowed
states, then A = 8, the repeller becomes the full phase
space, and Q = P. As a consequence, the escape rate
vanishes and

V~(u) = hKs(p~). (165)

We can also define the dynamical pressure function of
Sec. II for lattice-gas automata according to

Recently, there has been substantial progress in un-
derstanding the relationship and connections between a
number of approaches for describing transport processes
in classical systems on the basis of dynamical systems
theory. In this section we briefly describe this progress
and indicate some directions for further work.

A. Spectral theory of the Perron-Frobenius operator

In classical statistical mechanics, the time evolution of
the probability density p is described by the Liouville
equation

(169)

P(P) = lim —ln
1

(166)

where L = (H, j is the Poisson bracket with the Hamil-
tonian. The solution of Eq. (169) is formally given by
pq ——exp(Lt) pQ. Alternatively, the time evolution on an
energy shell M is described by the Perron-Frobenius op-
erator

This pressure function has all of the properties described
in Sec. II, which relate it to the preceding quantities such
as the escape rate, the dispersion rate u, and the KS
entropy (170)

po(X) = po(4 X) = f d(X —4 Y)po(Y)dY

—:(P'pQ)(x) .

p = —P(1),
dP

P=l
dP

hKs(») = P(1)—
dp p

(167)

It is a straightforward calculation to show that the quan-
tities p, » (u), and hKs (» ) derived &om the pressure
function are identical to those given by Eqs. (155), (162),

This operator has a kernel that is a Schwartz distribu-
tion rather than a function, indicative, of course, of the
unique time development of a given phase point Y. This
is to be contrasted with the type of kernels appearing
in the expressions for the time development of probabil-
ity densities that characterize stochastic processes, such
as in solutions to the Fokker-Planck equation, which in-
volve a standard Green's function. Resolving this dif-
ference, that is, showing how deterministic systems can
show stochasticlike behavior, is at the heart of the ma-
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jor difKicult problems of nonequilibrium statistical me-
chanics. Recently, some of these difBculties seem to
have been overcome with the development of a spectral
theory of Perron-Frobenius operators for hyperbolic sys-
tems, in particular, by Pollicott and Ruelle [54]. These
authors have shown that the Perron-Frobenius operator
admits resonances corresponding to exponentially decay-
ing eigenstates

&'I&-) = ""' I&-) for t &0. (171)

The eigenstates (IP„)) are distributions without any cor-
responding density, which explains the failure of previous
attempts to de6ne decaying eigenmodes in terms of den-
sity functions. The resonances characterize the forward
semigroup so that Res & 0. By time reversibility, an-
tiresonances are associated with each one of them, which
characterize the backward semigroup. The forward time
evolution of an observable A can be decomposed as

(&I&'I«) = ).(&I&-)e'"'(4-Ipo) +." (172)

(P pe)(X) = / e* ' ( ) b(X —C Y) pe(Y) dY

(173)

where the ellipsis denotes other terms due to a possible
Jordan block structure [55—57). The eigenstates (l(t)„))
and their adjoint ((P„l) are distributions that are defined
on sufBciently smooth observables A and initial densities
po.

For "closed" systems that are ergodic and mixing, the
leading resonance is vanishing 80 ——0 and it corresponds
to the unique microcanonical invariant measure so that
(Algp) = p,,q(A) and (Pplpo) = )(x,~(pp). The higher
resonances give the relaxation rates toward equilibrium
in the forward semigroup.

For scattering systems that are decaying, the leading
resonance gives the escape rate so ———p [58,57]. The cor-
responding eigenstate lgo) is concentrated on the unsta-
ble manifolds of the repeller Cl[W„('R)], while its adjoint

(Pol is concentrated on the stable manifolds Cl[W, (R)],
and they are called conditionally invariant measures [14].
Such a state corresponds to the construction of the &ac-
tal by the process Eq. (80) and the definition of the es-
cape rate by Eq. (88). By time reversibility, the values
of the escape rate obtained in both theories are identical
according to Eqs. (87)—(89).

In the context of transport phenomena, one considers
a spatially extended system, which often can be suit-
ably described by imposing appropriate periodic bound-
ary conditions [57,59]. The dynamics over the full phase
space can then be reduced to the dynamics inside a ba-
sic cell of the system by spatial Fourier transforms that
introduce the wave number k. The density can be de-
composed into components pg of wave number k that
are quasiperiodic in space according to Bloch s theo-
rem. These components evolve in time under the Perron-
Frobenius operator, which now depends on the wave
number k [60],

where a(X) is a function from the phase space to the pe-
riodic f-dixnensional physical space, which describes the
jumps of the trajectories at the periodic boundaries. This
Perron-Frobenius operator also admits Pollicott-Ruelle
resonances and corresponding eigenstates

&x', 1&x-) = e' '"'1&x-) for t&0 (174)

depending on k. In the case of difFusion, the leading
resonance so(k) gives the dispersion relation so(k)

Dk—2 + O(k4) [57,60]. This result shows the connection
with the chaotic scattering approach, where the leading
Pollicott-Ruelle resonance or escape rate ls 80

D(x/—I) + O(I ), so that we can identify the wave
number of the corresponding hydrodynamical mode as
k = (~/L, ) + O(L-') [2].

For the multibaker model, the connection between the
Pollicott-Ruelle resonances of the spatially extended and
scattering systems has been described in detail in Ref.
[52] and the spectral decomposition Eq. (174) has been
explicitly constructed in Ref. [57]. Tasaki and Gaspard
[61] have further shown that a nonequilibrium steady
state corresponding to a constant concentration gradient
is obtained in the zero-wave-number lixnit as (9x, lgx, o) „
of the leading eigenstate of Eq. (174). Accordingly, such
nonequilibrium steady states are also given by distribu-
tions. Moreover, Tasaki and Gaspard have proved for the
multibaker model that the nonequilibrium steady states
are described by singular measures having for support the
full phase space and, nevertheless, exhibiting self-similar
properties. A remarkable fact is that these self-similar
properties have their origin in the &actal properties of
the repeller and, in particular, of the escape-time func-
tions of Eqs. (76) and (77), as shown by taking the large-
system limit (8 ~ M) in order to connect the scattering
configuration to the spatially extended con6guration.

B. Periockic-orbit theory

(175)

By using periodic-orbit theory [60,62,63], one can ob-
tain in hyperbolic systems the characteristic equation for
the resonances of the Perron-Frobenius operator in terms
of the periodic orbits that thus appear to be directly re-
lated to the kinetics of the system. The periodic-orbit
theory is based on the trace of the Perron-Frobenius op-
erator, which is given by

I
det(l —M")

I

where the Grst sum extends over the prime periodic orbits
(p) and the second sum over their repetitions. Tz is the
prime period of p, Mz is the linearized Poincare mapping
in a surface of section transverse to the periodic orbit,
and az is a spatial vector representing the distance trav-
eled in the full phase space when the orbit closes on itself
in the reduced phase space. The Laplace transform of
this trace can be expressed as

e "tr P„'dt = —1nZ(s) (176)

in terms of a Selberg-Smale zeta function defined by a
product over the prime periodic orbits
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(m1+1)"~ {ml.+1)

&(s) =
~ 5 4 h

P m1 "ml. —O

1—exp(ik a„—sT„)

~

A(i)
~

A(i) m;
p p

i=i

(177)

Here the quantities Ap' are the expanding eigenvalues of the matrix Mp and L is the total number of expanding
directions. The zeros of the Selberg-Smale zeta function are the Pollicott-Ruelle resonances &[s„(k)]= 0. Zeros aie
obtained after transforming the infinite product into a series by cycle expansion In this way a formula has been
obt»ned [60] that expresses the difFusion coefficient in terms of the Lyapunov exponents of each periodic orbit, their
periods, and the vectors a„

) ) (—1)"(a„,+ . +a„)'/~A„, . A„~
I n=O P1 "P„
4 oo

) . ). (—1)"(T~.+" +~n. )IIA~. . "A~.
l

~=OP1" Pn

(178)

for a two-degree-of-&eedom system for which there is a
single unstable direction (L = 1).

The periodic-orbit method has been applied not only to
the study of diffusion in the Lorentz gas [60] and in other
models [64], but also to the calculation of the Pollicott-
Ruelle resonances of the three-disk scatterers [58] as well
as of scattering and spatially extended configurations
of the multibaker [52]. The method is particularly in-
teresting to obtain resonances beyond the escape rate,
which are difBcult to obtain by direct simulation meth-
ods. However, the method is very demanding because a
large number of periodic orbits may be required, as in
the case of the Lorentz gas.

We conclude that there exist direct connections be-
tween the theory described in the present paper and the
periodic-orbit theory of the Perron-Frobenius operator.
In both theories, the very same escape rate can be ob-
tained as well as the other characteristic quantities of
chaos such as the Lyapunov exponents and the partial
HausdorfF dimension, as described elsewhere [17,18].

Recently Morriss, Rondoni, and Cohen have applied
periodic-orbit theory to obtain the equilibrium pressure
exerted by moving particles on the scatterers in a peri-
odic, triangular Lorentz gas [65]. By carrying out com-
puter simulations these authors were able to show that
within the numerical errors, the equilibrium-ensemble
measures are equivalent to dynamical measures based
upon the stretching factors A~'~ whose logarithms are
the positive Lyapunov exponents for the corresponding
periodic orbit. This result provides further support of
the ideas of Sinai, Ruelle, and Bowen on the dynamical
foundations of the equilibrium measures.

C. Thermostatted-system approach

In this approach, the system is subjected to some ex-
ternal field such as an electric field and to a special ther-
mostatting force, which maintains a constant kinetic en-
ergy [66—71]. These systems are deterministic and the

dynamics is given by a set of ordinary difFerential equa-
tions X = F(X), which is time-reversal symmetric under
0: (q, p, t) + (q, —p, t) Ho—wev. er, contrary to Hamil-
tonian systems where phase-space volumes are preserved
divF = 0, the dynamics of thermostatted systems do not
preserve phase-space volume but

divF&0 for

divF)0

so that the phase space is composed of two parts M =
M+ U M, which are mapped onto each other by time
reversal HM+ ——M . The divergence of the vector field
appears to be directly related to the transport proper-
ties by the way the thermostatting force is constructed.
Moreover, because of the assumed coupling to a thermo-
stat, an entropy production is defined in this approach.

As a consequence of Eq. (179), the phase space con-
tains an attractor A+ which may coincide with the full
phase space W. Under certain conditions, the attrac-
tor A+ may be a chaotic and fractal attractor to which
the thermodynamic formalism described here is of appli-
cation as shown by Chernov et aL [70]. These authors
show, among other things, that the attractor is the sup-
port of a Sinai-Bowen-Ruelle invariant measure p~ for
which the Pesin formula holds and the escape rate van-
ishes p = 0.

Recently, Gallavotti and Cohen [72] have described in
some detail the construction of the SRB measures for the
attractor, using methods based on Markov partitions. In
this approach, they were able to show that the SRB mea-
sures can be used to provide the theoretical foundations
for and to quantitatively describe the numerically ob-
served Buctuations of the thermostatted-system entropy
production in a shearing Huid far from equilibrium. Here
too one has a clear example of the utility of constructing
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dynamical measures to describe nonequilibrium phenom-
ena.

For thermostatted systems, the transport coeKcients
are related to the sum of all the Lyapunov exponents

P,. A;, which is negative on the attractor A+ because of
Eq. (179), in contrast to our escape-rate forinula Eq. (2)
in which the transport coefBcient is related to the dif-
ference between the sum of positive Lyapunov exponents
and the KS entropy for trajectories on the repeller. Nev-
ertheless, there appear to be important structural simi-
larities between the two expressions for transport coefB-
cients, which have been commented upon in the litera-
ture [73,74] since the two kinds of expressions are given
by the products of dynamical quantities with the squares
of appropriate external parameters: the bound on the
Helfand moment in the escape-rate formula and the in-
verse of the external field strength in the thermostat for-
malism. In both approaches, the hydrodynamical scale is
related to the kinetic and chaotic time scale by a mech-
anism of dimensional loss in phase space. However, the
mechanism of dimensional loss turns out to be different.
In the chaotic-scattering approach, the dimensional loss
is due to the finiteness of the scatterer and to the es-
cape resulting from the nonequilibrium boundary con-
dition. On the other hand, the non-volume-preserving
thermostatting force is at the origin of dimensional loss in
the thermostatted-system approach. We might mention
here also that a somewhat different approach to dimen-
sional reduction in systems with shearing flows has been
developed by Chernov and I ebowitz [75] based upon the
construction of special boundary conditions that main-
tain the shearing flow. The connections between all of
these methods still remain to be established.

In Sec. IV we have seen that &actal dimensions can
also be defined for probabilistic systems. Similarly, the
concept of KS entropy has been generalized into a con-
cept of s entropy to characterize stochastic processes [50].
This observation shows that the concepts of &actal and
of chaos are not restricted to deterministic systems. Ac-
cordingly, we can imagine that it may be possible to char-
acterize a mechanism of dimensional loss even in stochas-
tic systems that describe systems coupled to thermal
baths and in which the bath degrees of &eedom are taken
into account by fluctuating forces along with dissipative
forces as in Langevin processes. In this larger perspec-
tive, we think that connections may exist between the
descriptions of the transport and dynamical properties of
therrnostatted systems and those with stochastic bound-
ary conditions, with the chaotic-scattering approach de-
scribed in this paper.

Very recently, Tel and co-workers have studied an area-
preserving map with a built-in flow modeling the pres-
ence of an electric field [76]. In scattering configura-
tions, the dimensional loss is due to two different con-
tributions: one coming &om the escape of particles at
both ends of the chain and another &om the built-in flow
that is a contribution similar to the one studied in the
thermostatted-system approach. In this way, phenomena
described in the escape-rate and thermostatted-system
approaches appear to be complementary. On the one

hand, thermostatted systems may also be considered in
scattering configurations and, on the other hand, suf-
ficiently weak electric fields may be introduced in the
systems of chaotic scattering.

VI. CONCI USION

In this paper we have reviewed the derivation of the
escape-rate formula for a variety of systems of interest for
studies of transport processes in fluids. The derivation is
based on the local stretching rates that we introduced in
Eq. (30) for smooth hyperbolic systems. Beside smooth
hyperbolic systems, we have also considered the billiard
systems and the cellular-automata lattice gases. The re-
lation between the escape-rate formalism and transport
coefBcients was discussed in I and a number of examples
of the use of this formalism have appeared in the liter-
ature recently [17—20,52]. It is of course essential to ex-
plore a number of specific cases in order to develop some
intuition about the properties of the &actal repellers that
control the escape rate and to study cases where trans-
port is anomalous in some way in order to determine the
limitations of this approach.

There are other approaches to expressing transport co-
eKcients in terms of the dynamical properties of the sys-
tem under consideration. Such approaches have involved
cycle expansions of dynamical zeta functions or other
properties of the zeta functions, the efFects of Gauss-
ian thermostats on the Lyapunov exponents of the sys-
tem, as well as studies of the nature of the hydrody-
namic modes that describe transport in the system. The
connections between these various methods are only par-
tially understood today. Clarifying these connections as
well as establishing connections with more traditional ap-
proaches to transport theory based upon kinetic equa-
tions or Green-Kubo formulas remains a &uitful area for
further study.

For a deeper understanding of the escape-rate formal-
ism, it is essential to find methods of determining the
KS entropy for trajectories on the repeller in a way that
does not rely on the escape-rate formula. For certain
uniformly hyperbolic systems, this can be accomplished
by taking advantage of the equality of the KS and topo-
logical entropies since the topological entropy can be de-
termined in terms of the eigenvalues of the topological
transition matrix [52,77]. However, to have more general
methods, we will need to develop a deeper understanding
of the dynamics on the &actal repeller with a possible
development of a theory of Markov partitions for such
trajectories. Another promising approach is based on
the "Maryland" algorithm [78]. Here, for two-degree-of-
&eedom systems, one calculates the HausdorfF codimen-
sion of the repeller by studying the intervals of continu-
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ity of the escape-time function such as that illustrated
in Fig. 4. One can then show that the Hausdorff codi-
mension is related to the KS entropy in the large-system
limit. This method has been applied to the determina-
tion of the diffusion coefBcient for the Lorentz gas on a
triangular lattice [17,18]. However, the generalization of
such considerations to higher-dimensional &actals is still
in its infancy [79,80].

Finally, we mention again that the Sinai method for
determining the dynamical properties of billiard systems
can be used as the basis of a more rigorous kinetic theory
of gases, based not on the assumption of molecular chaos
but rather on the dynamical chaos of billiard systems. In
this direction, Bunimovich and Spohn have been able to
provide a rigorous proof of the existence and positivity for
the shear and bulk viscosities of a periodic billiard Quid
with two hard disks per unit cell [81]. Moreover, Simanyi
and Szasz [82] have shown that it may indeed be possible
to complete Sinai's arguments for a rigorous proof of the
ergodic behavior for a system of hard spheres.
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