
PHYSICAL REVIEW E VOLUME 52, NUMBER 4 OCTOBER 1995

Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain
and the Kardar-Parisi-Zhang-type growth model
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A perturbative method is developed to calculate the Gnite size corrections of the low-lying energies
of the asymmetric XXZ Hamiltonian near the stochastic line. The crossover from isotropic to
anisotropic, Kardar-Parisi-Zhang (KPZ) scaling of the mass gaps is determined in terms of universal
crossover scaling functions. At the stochastic line, the asymmetric XXZ Hamiltonian describes the
time evolution of the single-step or body-centered solid-on-solid growth model in one dimension.
The mass gaps of the growth model are found as a function of the growth rate and the substrate
slope. Higher-order corrections to the growth model mass gaps are also calculated to obtain the Grst
terms of the KPZ to Edwards-Wilkinson crossover scaling function in the large argument expansion
in the zero slope sector.
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Understanding and classifying dynamic scalings of self-
afBne growing surfaces has been an area of much interest
[1]. One of the universality classes that attracted much
attention is that of Kardar-Parisi-Zhang (KPZ) [2]. The
KPZ equation is a nonlinear stochastic equation of mo-
tion for the height of growing surfaces whose local growth
velocity depends nonlinearly on the local slope, and is
equivalent to the noisy Burgers equation. When the non-
linear term is absent, the equation reduces to the diffu-
sion equation termed as the Edwards-Wilkinson (EW)
type. There are a number of microscopic lattice models
that are believed to be described by the KPZ equation
in continuum limit, e.g. , the Eden model, the ballistic
deposition model, and the restricted solid-on-solid model
[1]. However, identification of their universality class has
been largely based on qualitative arguments and numer-
ical evidences. An exception is the single-step, or the
body-centered solid-on-solid model introduced by Plis-
chke et al. [3] in one-space one-time dimension to which
this work is addressed. In this model, the height of each
site must differ by +1 &om its two neighbors and obey
the following dynamic growth rule: Select one of the sites
at random; if it is a local valley, i.e. , if.both of its neigh-
boring sites are higher, its height is increased by two
with the deposition probability pp, if it is a local hill, its
height is decreased by two with the evaporation prob-
ability p; otherwise, the height does not change. Due
to the solid-on-solid condition, height configurations of
this model have a natural representation in terms of the

step variable {cr,') (o,' = +1). If one interprets the sites
with o,. = 1 as those occupied by a lattice gas parti-
cle, the model is that of a driven diffusive lattice gas [4].
The time evolution of the probability distribution for the
state of the model is generated by the L = 1 line, or
the stochastic line, of the following asymmetric XXZ
Hamiltonian [5,6]:

1+8
2

where N is the number of sites, cr,+. are the spin 1/2
raising and lowering operators, 0.~+&

——0.&, and 8 =
(pq —p, )/(pq+ p, ) is the growth rate. m = P,. icr,'/N.
is the mean slope of the substrate, which is conserved in
this model.

The Hamiltonian with 4 as a parameter has other
physical applications as well. For example, it describes
end points of facet ridges in equilibrium crystal shapes
and persistent current transitions in mesoscopic metallic
rings [6—8]. The Hamiltonian is an anisotropic limit of
the transfer matrix of the general asymmetric six-vertex
model. When 8 = 1, the latter becomes the five-vertex
model, which describes, among others, an interacting do-
main wall system [9].

When L ( 1, the Hamiltonian is critical and pos-
sesses the conformal invariance [10]. Thus, the mass
gaps, which are the differences of low-lying energy eigen-
values from the ground state energy, scale as 1/N, the
proportionality constant being the conformal dimension
multiplied by a nonuniversal anisotropy factor. At the
stochastic line, the ground state of the Hamiltonian be-
comes trivial with zero energy in each sector, a subspace
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of 'R with fixed value of m. The mass gaps in this case
are expected to scale as 1/Ns~2, since the dynamic crit-
ical exponent z of the KPZ universality class are known
to be 3/2 in one dimension [11]. That this is indeed so
has been demonstrated by Gwa and Spohn [5,12] Rom
an analysis of the Bethe ansatz equation for the special
case of s = 1 and m = 0. Also, recently Neergaard and
den Nijs [6] analyzed numerically obtained mass gaps to
investigate the crossover behaviors &om the KPZ line
0 & 8 & 1 to the 8 = 0 EW point where the mass
gaps scale as 1/N . The bulk properties of the asym-
metric six-vertex model at and near 4 = 1 are studied
by Bukman and Shore [13,7] in connection with its ap-
plication to the equilibrium crystal shape. Correlations
in the asymmetric XXZ chain with refiecting boundary
conditions, which has finite energy gaps in the bulk, is
studied by Sandow and Schiitz [14), and by Henkel and
Schiitz [15] in the context of a driven diffusive lattice gas
system. Also, the continuum limit of Eq. (1) at b, = 1 is
derived by Fogedby et aL [16] &om which the dispersion
relation u oc k / is obtained for 8 & 0 in the quasiclas-
sical limit. However, it is of interest to extend our exact
knowledge of this model, which can play a central role in
the nonequilibrium growth problems.

In this work, we analyze the finite size corrections of
the energy ZN(A, s, m) of Eq. (1) for low-lying levels
using the Bethe ansatz equation and develop a system-
atic expansion of E~ in powers of 1/N ~2 for general s
and m and for small 1 —L. This method enables one
to obtain general expressions for mass gaps associated
with various energy levels generalizing the work of Gwa
and Spohn considerably. In the next section, we review
the Bethe ansatz equation and put it in the form suit-
able for analysis for small 1 —L. In Sec. III, finite sums
are expressed as an infinite series in 1/Ni~ assuming
certain analyticity property of the phase function intro-
duced in Sec. II. The sum formula derived in Sec. III is
then used in Sec. IV to determine the phase function self-
consistently and to express the energy of Eq. (1) in the
form of a perturbation series in 1/Ni~2. In the next sec-
tion, we solve explicitly the general expressions of Sec. IV
to obtain leading-order behaviors of E~. To the leading
order, mass gaps are then obtained in terms of univer-
sal scaling functions, which describe the crossover &om
the isotropic (4 ( 1, z=l) to anisotropic (A=1, z=3/2)
scaling behaviors. The scaling variable is found to be
s i(1 —m2)i~2(l —4)Ns~2 up to an arbitrary numeri-
cal factor. In particular, the real part of the mass gaps
are proportional to s(1 —m2) i~2N s~z multiplied by the
universal scaling function. Higher-order terms are also
determined to O(1/N ) in the m, = 0 sector at 4 = 1.
The latter series determines the 6rst three terms of the
KPZ to EW crossover scaling function for large argument
where the scaling variable is 8N / . We then conclude
with summary and discussion in Sec. VI.

II. BETHE ANSATZ EQUATION

q—:Q/N = (1 —m)/2.

The energy of Eq. (1) in the sector Q is given by

(2)

Q 1+8E~=) 4 — z.
2 2

j=l

1 —a

)
where the complex fugacities (z~) satisfy the Bethe
ansatz equation,

1v
( 1)Q—1

Q 1+ e ~z, z~ —24e ~z;
"-- 1+e +z;z —2&e 2 z.
2=1 2 3

(4)

The notation z used in this section and Appendix A refers
to the fugacity and should not be confused with the dy-
namic exponent. Different solutions of Eq. (4) give the
energy of different eigenstates. Here, we have used the
standard six-vertex model notations of [17] for H and b,
which are related to a and b, of Eqs. (1) and (3) by

b, = A/ cosh(2H), (5)

s = tanh(2H).

Since Eq. (1) with s ( 0 is related to that with a & 0 by
the simple particle-hole symmetry, we only consider the
region 0 & 8 & 1. We are interested in the region near
4 = 1 and parametrize 4 by

4 = coshv (6)

(v ) 0). The fugacity variable z is transformed to a more
convenient variable x de6ned through

1 —x
z = exp(2H —v)

1 —0!x

where

n = exp( —2v).

We note here that the five-vertex limit is achieved by
letting v and H approach infinity (n -+ 0), keeping 2H —v
fixed.

Using these notations, Eqs. (3) and (4) then take the
simpler forms

niently seen &om the fact that it is an anisotropic j.imit
of the transfer matrix of the general asymmetric six-
vertex model. This we show in Appendix A for self-
containedness. Since Eq. (1) conserves m, we can con-
sider each sector of Axed number of down steps sepa-
rately. We use the notation Q to denote the number of
down steps (down arrows in the language of the six vertex
model) and let

The asymmetric XXZ Hainiltonian Eq. (1) is diag-
onalized by the Bethe ansatz. This is most conve-

Qslnh p 0!XgN- +
cosh2H . 1 —x 1 —o;x-j—1 3 2

(g)
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and

2H' —
~ ( 1)Q—i

1 —nx, )
X ' —0!X2

x —0!xj=1
(10)

iZ~(x) = (2H —v) + ln
z& (1 —nz)

respectively. Next we introduce, following de Vega and
Woynarovitch [18], the function of complex variable

In the thermodynamic limit N —+ oo, the roots xj for the
ground state and its neighboring states form a continuous
contour in the complex-x plane. It is the inverse image
Z (P) of the segment of the real axis —vrq & P & mq
of the complex P plane. Here Z~ denotes the inverse
function of Ziv. R (z)/2m is then the density of roots
along the contour. In particular when A = 1, the contour
turns out to be a closed contour starting &om e 'q/(1 —q)
and ending at

x, —= e 'q/(1 —q)

and its derivative

R~(z) = izZ~(z) (12)

enclosing the origin clockwise, as P varies from —m. q to
vrq [13,19]. In other words, we have

Z (x, ) = mq and Z (x,e ') = —mq.

The explicit form of Z for L = 1 is

Z~(x) is called the phase function in this work and plays
a central role below. It depends on (z~), H, v, and q.
Equation (10) then can be written as

iZ (x) = ln + ln[q~(l —q) ~]. (2o)

2~
ZN (z~) = I, , — (13)

Q

P = —~ lnz.2
j=l

Q—) I, . (14)

where I~ are half integers (integers) for Q even (odd).
The set (I~) specifies a particular energy level and is
related to the momentum of the state by

This is obtained by integrating the result for R (x) of
[13], which is R (x) = —q —x/(1 —x) in our notation,
and by fixing the integration constant using Eq. (11).
The branch cut for the log function is along the negative
real axis. An actual form of the contour is shown in Fig.
1 for the case of q = 1/2. It is to be noted here that it
has a cusp at x = x, due to the fact that Z' (zo) = 0.
Therefore, if one performs a power series expansion of Eq.
(20) at x, , the first-order term vanishes and the result
becomes

Q+1
2

for j = 1, . . . , Q,

while low-lying excited levels are obtained by choosing
sets of (Iz) differing &om that of the ground state in a
few places near the end. For example, at L = 1, the first
excited state is associated with the set

It is well established that the ground state is obtained if
(I~) is chosen as

Z (x) = kvrq —i (x —z, ) + O((x —x, ) ),
. (1 —q)' o 2 0 3

2g

(2i)

where the + (—) sign is for x below (above) the branch
cut. Accordingly, Z (P) has the square-root type sin-
gularity at P = +vrq and takes the form

+1
+g for j = 1, . . . , Q —1,

Q+1
Q 2

)

and has momentum P = 2vr/¹ the first excited state in
the P = 0 subspace is associated with the set

D.2

Q+1
2

Q+1
2

Q+1
Q

for j=2, . . . , Q —1,

FIG. 1. Locus of x = Z (P) for nq & P & nq in the-
coinplex x plane for the case of q = 1/2.
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2gZ (~q —() = x, —i ~i(+ 0(()

near the upper end of P and

(22)
produce the 1/N ~ scaling correctly, the efFect of the
square-root singularity discussed above should be taken
into account. Thus, we first assume that Z~(z) has a
vanishing derivative at a certain value of x and define x
by the relation

Z (—mq+ () = x + i Q—i(+ 0(() (23)
2g Ziv(x, ) = 0. (27)

near the lower end of P. We shall see later that this
square-root singularity is the origin of the singularity of
&ee energy as a function of 4 [13]and the unusual 1/N ~

scaling of the mass gaps [5].

III. SUMMATION FORMULA

For large N, x is expected to be close to x but may pick
up an imaginary part in which case we let the branch cut
of log function pass through x . Next we assume that
Z~(x) is analytic at x, . This assumption is based on the
observation that B~(x) = —q —x/(1 —x) exactly in the
five-vertex limit and that expansion of Eq. (11) in the
power series of o, does not introduce extra singularities.
Also, define b~ by the relation

In this section we assume that the phase function
Z~(z) is known and derive a general expression of finite
sums in terms of its expansion coeFicients at a critical
point x . The problem at hand is then to evaluate sums
of the form [see Eqs. (9) and (11)]

Q

S[f] = ).f(*,)
j=1

Q
= ) f(Z~ [

—mq+ —(j —2)]) + (other terms),

Z~(x, ) = vrq —ib+ and Ziv(z, e ') = —zq —ib

(28)

OO 4

Zw'(7rq —() = x, + ) a (—iV'b+ + i$)
m=1

(29)

Coinparing Eq. (28) with Eq. (19), we also expect b~
to be small for small 1 —4 and large N. The presence
of such terms is crucial in the expansion method we are
describing below and has been anticipated &om the solu-
tions of the five-vertex model by a difFerent method [21].

Definitions of x and b~ together with the assumption
of analyticity of Z~(x) at x, then allow us to put Z~ in
the form

for the upper end and
(24)

where "other terms" above denotes the terms that differ
&om that of the ground state; for example, for the first
excited state characterized by Eq. (16),

Z '(—vrq+() = x. + ) a (i/b —i()
nL=1

for the lower end of the sums in Eq. (24). Equations (29)
and (30) imply that Z~(x) has the expansion

(other terms) = f Z~ vrq+-
i

(25)

i Zpg (x) = +7rqi + b~ + —(x —x,)
1 2

G1

2G2 3(z —z )a4
1

while more terms are added and subtracted for other lev-
els. In the following, we assume S[f] is for the first ex-
cited state for the sake of notational simplicity and com-
ment on other levels when appropriate.

To evaluate the finite sum in Eq. (24), we use the sum
formula employed by Gwa and Spohn [5,20]:

Q 1) ~(j) = ~«) «+ -[~(~)+~(1)]
2 1 1 - P(q, t) —P(1, t) „,

e —1
(26)

where E(s, t) = [E(s+ it) —E(s —it)]/2i. The finite size
corrections of the sum are determined Rom properties
of the summand near the end points of the sum. To

x„b~, and a are to be determined self-consistently.
They are, in general, complex but are defined in such
a way that their leading term in the following pertur-
bation expansion is real. Before proceeding further, we
argue a posteriori that b+ ——b . The following steps
of the derivation of Z~(x) show that it is of the form
iqlnx + (parts analytic at x, ) regardless of b+ ——b or
not. Then Z~(x, ) —Z~(x, e2 ') = 2vrq implying b+ ——b

from Eq. (28). Hence, we put

(32)

&om now on.
Then, the summand of Eq. (24) near the upper and

lower ends can be written in the form
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f(Zp '(~~ —()) = f(*.) + ) &-[f] (—&V'~+ &&)

m=1

(33)

Y'(y)

f(ZN'( ~~+—(!))= f(*.e' ')+ ).&-[f) ('v'~ —'&)
m=1

(—iQy+ i+ &) —(—igy+i —t)+- dt
Z e ' —1

(4O)

respectively. In the above, the coefficient A [f] is given
by

is the contribution Rom Eq. (26) and the last two terms
in Eq. (39) come from the two terms of Eq. (25). Useful
properties of Y and Y are discussed in Appendix B. In
terms of Y' 's thus defined, Eq. (24) then can be written
in the form of a series

(35)

where 6 ), (1 ( k ( m) is related to a through the
relation

() a =) ti (36)

and fi") denotes the kth derivative of f(x). When Eq.
(26) is applied to Eq. (24), the first term on the right
hand side of Eq. (26) contributes

mq —m/N

f(Z)v'(&)) d&
—m q+~/N

f(x)R~(x) —+ -(f(*.) —f(x" "))y
27ri x 2

+ ) &-[f] Y-(y) s

~[f) =—

(41)
m=1

where e is our perturbation expansion variable

(42)

IV. GENERAL FORM OF ZN AND E~

and R~ is given by Eq. (12). The second term in Eq.
(4].) gives a contribution cry for f(x) = lnx but is zero
for f analytic at x, .

N f (x)Ziv (x) dx

f+
—mq+x/N

f(Z~'(&)) d&

&(~~'(&)) ~4), (»)

where $ denotes the integral along the closed contour in
x plane in the counterclockwise sense. Using Eqs. (33)
and (34) for the correction terms in Eq. (37) and the rest
of the terms in Eq. (26), one can easily see that the mth-
order terms in the series of Eqs. (33) and (34) contribute
to order N ~ in S[f], provided the variable

The sum formula Eq. (41) is derived pretending that
Ziv(x) is known. One then applies Eq. (41) to Eq. (11),
which is the defining equation of ZN to determine it self-
consistently. Here, f = fz where

1 —nx'/x
fz(x') = lnx' —ln

1 —nx/x' (43)

fx')"
fz(x ) = lnx'+ ) n ), xy

(44)

This then leads to an integral equation for Riv(x), which
is solved by Fourier method. To handle the contour in-
tegrations, we represent fz as a Laurent series

(38)

is fixed to a finite value. To collect the O(% ) ) contri-
butions, we are thus led to de6ne a set of scaling functions
Y (y) as follows:

This is justified since 0 & o; ( 1 and integrations can be
made keeping Ix'/xl = 1. Using Eqs. (41) and (44) in
Eq. (11) then gives us

1 dK'
iZiv(x) = —qlnx+ G(x) — . fz(x') Riv(x')

27ri x'

Y (y) = Y (y) + (—i' —i) —( iQy+i), (39)—
where where

(45)
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G(x) = (2H —v) + ln + b

. (—].)"(n + ].) (n + 2) . . (n + k —1) („(
t' x l

m, k I!xk Ex ) (46)

Here and below P stands for the sum over all integers
n. Let us denote the Fourier mode of G(x) by G

(47)

Taking the derivative of both sides of Eq. (45) with re-
spect to x, one then obtains the integral equation for
R~(x):

for q ( 1/2. However, final results can be extended to
the region q & 1/2. Z~ in the five-vertex limit (n m 0,
2H v= —ln 6—) difFers &om that of the general six-vertex
case only by the last double sum of Eq. (52), which is
O(ss).

To determine 8 (i.e. , y), x„and a 's, we use their
defining equations in Eq. (52). Equation (28) then gives

R~(z) = —q + ) nG„z"—
oo m k

2H —v = —) ) b, r, „Y (y)s +'.
m=1 k=1 C

(54a)

where

(z')"
f~(x') = —) ~'"~

I

—
I

~

&z)

(48)

(49)

Next, comparing iZ~ (x,) derived from Eq. (52) with the
coeKcient of (x —x,)" of Eq. (31), we obtain an infinite
hierarchy of equations:

oo m

+ —).).b-,~g~(x-)Y-(y)s +'
m=1 k=1

The solution of Eq. (48) is

R~(x) = —q+ ) " x".
n+0

Putting this back into Eq. (45), one obtains

(50)

a x]. c

(54b)

, + —).).b-;g"(x-)Y-(y)s "
m=1 k=3.

(54c)
x Q'

i Z~ (x) = 7rqi —q ln —+ Go + ) (x" —x,").
xc - 1 —o.i"i

n+0

Inserting explicit forms of G, we then finally obtain

—12a2 —2q 2

a4i x, (1 —x,)

+- ) .).b-,»~"(x-)&-(y)s +'
m=1 k=3.

(54d)

iZ~(x) = vrqi + (2H —v) + b ——) ) b
( ])k

m=1k=1 C

m+2 x 1 —x
x Y (y) s —qln —+ ln

x 1 —x

etc. A merit of Eq. (54) is that it can be used to deter-
mine y, x„and the a 's ord.er by order in e.

Having determined, although formally, Z~(x), we next
apply Eq. (41) to Eq. (9) using f = f~ where

oo m

+- ).).b, I, (gr (*) —gi(*.))
m=1 k=1

xY (y)s +' (52)

f~ = —) (1 —n")x"
n=1

(55)

If Riv(x) is of the form of Eq. (50), then a simple appli-
cation of the residue theorem gives

with

( ] )(k—1)
gi, (x) = „)(n+ 1)(n+ 2) . . (n+ A, —1)

n+0

x
1 —ol I (x, )

(53)

The series in Eq. (53) is convergent for n ( )z/z, ( ( 1/a.
In deriving Eq. (52), we assume ~z~ ( 1, which is valid

1 8x
f~(x) Riv(x) —= )

n=1
(56)

no=1 ie=1

This simple result is due to the particular form of fa
Combining this with the explicit form of f& (x,), we
find
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It is convenient to eliminate the 6rst term in the double
series of Eq. (57) using Eq. (54a) to make the series start
with the O(s ) term. Thus, we write Eiv as

sinh v +CEy = '
(2H —v)1q+Tjv), (qya)

where

(1 —q) (1—~l
27' ( s

To the leading order in c, y is related to t by

(61)

which can be used to determiiie y as a function of (1—A).
This suggests that the appropriate scaling variable is

with

oo m

T~ = ) ) Ci, [x,]b i, Y (y)s
m=2 A;=2

[ ]
(xc 1) I(xc

k(1 —x )~+ix"-'

(58b)

(58c)

t = Yi(y).

Similarly, Eq. (58a) becomes

Eiv = —q(1 —q)(1 —b,)N+ s((1 —2q) Yz s
+-'.V'2q(1 —q) Ys(y) s'+ O(~')).

(62)

Equation (58) together with (54) is the central result of
this work. For energy levels other than the Erst excited
one, one needs to replace Y (y)'s in Eqs. (58) and (54)
by appropriate ones; e.g. , by Y (y) for the ground state
energy. Y 's for the energy level of Eq. (17) will be dis-
cussed at the end of the next section and in Appendix
B.

V. LEADING-ORDER BEHAVIORS OF THE
MASS GAPS

We now find perturbative solutions to Eq. (54) and
discuss their consequences. To the zeroth order in e, x
and a take the values x and a, respectively, where
xo is given by Eq. (18) and a 's are obtained by solving
Eqs. (54c), (54d), etc. , with s = 0 or, more conveniently,
by inverting the Taylor expansion of Z (x) around xo,
Eq. (21). The first few a 's are

E~ —E~ ——s (1 —2q) 2' /N
2 3/t'2

+ —(Ya(y) —Y~ (y'))sy 2q(1 —q) (—)
+O(1/N'), (64)

where y is the solution of Eq. (62), y' is the solution of
t = Yio(y'), and Yzo ——0 is used. We remark that Ys(y)—
Ys (y') is a function of t only with no other parameters.
Thus, we de6ne a universal scaling function as

which gives E~ as a function of 4, 8 = tanh 2H, and q to
leading orders. Here Y2 ——2i is related to the momentum
of the level by Eq. (B7) and y is a function of the scaling
variable t through Eq. (62).

The mass gap is the di8'erence of E~ &om the ground
state energy E~. Since the level dependences of EN en-
ter only through definitions of Y (y), E~~ is obtained by
replacing Y by Y in Eqs. (63) and (62). Thus, we have

p 2Q

(1 —q)"
2(1+ q)
3(1 —q)' '

p pl+ lip+ g

18q(1 —q)

p
a2 =— (59)

2 1 —2g 41 —L=- Yi(y) ~ +
q(1 —q) 3q(1 —q)

2

+ Y.(y)" +O(")l,q1 —q 18q1 —q

(60)

Inspection of Eqs. (54c), (54d), etc. , shows that a
ao + O(ss). Furthermore, the O(s' ) term of Eq. (54b)
is proportional to gi(x, ), which can be shown to be
identically zero &om its definition, Eq. (53). Thus, we
have x, = x, + O(s4). Therefore, using x, = xo and
a = ao in Eq. (54a) and (57), we get the correct ex-
pressions to O(e ) and O(ss), respectively. Also, since
2H —v = O(s ), and A = 1 —s(2H —v) + O((2H —v) )
&om Eq. (5), we can put 2H —v = (1 —4)/s correct to
order e . Taking these considerations into account and
using Eq. (36), Eq. (54a) then becomes

~(t) =, "'( .( ) —:('))s z 0

( (t)) — ( ('))) (65)

to put Eq. (64) in the form

Eiv —E~ ——2vri sm/N

+sgl —m X(t)/N + O(1/N ), (66)

where we recall &om Eq. (2) that m = 1 —2q. X(t)
is the universal scaling function describing the crossover
&om the KPZ 1/Ns~ scaling to the isotropic 1/N scaling
as will be shown shortly. It is universal in the sense
that the real part of the mass gap, scaled by the factor
si/1 —mz/Ns~z depends on s, m, 1 —b„, and N only
through the combination given by Eq. (61) as N ~ oo.
X(t) is shown in Fig. 2 for 0 & t & 4. It is not defined for
t & 0. Higher-order terms in Eq. (66) give the correction
to scaling.

For the single-step model we have 4 = 1, which im-
plies t = 0. In this case, E~ is exactly 0 since 'R

generates a stochastic process. This is reBected in Eq.
(65) by the fact that when t -+ 0+, y' -+ —oo
Ys (y') -+ 0 as discussed in Appendix B. Thus, we

have W(0) = ~2m's)'zYs(yo)/3, where yo is the solution
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F(t)

10-

»m E~/N = —-(1 —m')(1 —&) ——
I

—
IN-+oo 20 i2)

x s-'~'(1 —m')'~'(1 —S)'~'
x(1+ O((1 —a)'~') ). (70)

4'

FIG. 2. The scaling function X(t) of the first excited energy
level.
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I

+ —
I

—
I

+O(t-') (67b)
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From Eq. (67), we have

3t '"
(68)

as t -+ oo. The first terms in Eq. (67) contribute to the
O(N) bulk term in Eq. (63), while the second terms give
the O(1/N) correction terms. Using Eqs. (68), (61), and
(2) in Eq. (66), we then have

of Yi (yo) = 0. Numerically, W(0) = 6.509 18933794. . . .
This is exactly the amplitude of the mass gap obtained
by Gwa and Spohn [5] for s = 1 and m = 0. The dy-
namic exponent z is then 3/2 for any s and m. Further
implications of Eq. (66) are discussed in the next section.

When 1 —L is finite and positive, t ~ oo for large ¹

In this case, the model is in the critical phase described
by conformal Geld theory with central charge c = 1 and
hence is expected to possess mass gaps, which scale as
1/N [22]. To check this, we use the large y behaviors
of 'Y (y) and Y (y') discussed in Appendix B to obtain
Ys(y) and Ys (y') as a function of t. The result is

The O((1—A) ~ ) corrections in Eqs. (69) and (70) come
from higher-order terms of e' not shown in Eq. (63). We
note here that both the mass gap scaling and the ground
state energy singularity in 1 —4 are determined by the
ss N ' term of Eq. (63). The t ~ behavior of Ys (y')
and Ys(y) in Eq. (67) is necessary to produce O(N) terms
when combined with the e factor. Therefore, the ground
state energy singularity exponent 5/3 is related to the
dynamic exponent by 1 + 1/z as noted in [7] for the six-
vertex model. We also note that these fractional pow-
ers result &om the fact that e N / which in turn
originates &om the square-root singularity of Z (P) at
P = +mq as mentioned in Sec. II.

To the order discussed so far, the growth rate (s) de-
pendence of the mass gap is rather trivial. Recently,
Neergaard and den Nijs [6] have studied the mass gaps
in the q = 1/2 (i.e. , m = 0) sector numerically to discuss
the crossover &om the KPZ 1/N ~~ scaling to the EW
1/Nz scaling as s ~ 0 for A = 1. To obtain nontrivial s
dependence, we need to include higher-order corrections
in Eq. (58). As discussed above, x, and a difFer &om
their zeroth-order value by O(s4) and O(ss), respectively.
We use these zeroth-order values in the double sums of
Eq. (54). This produces errors of O(sr) in Eq. (54b) and
O(ss) in Eq. (54c), (54d), etc. We then solve for x, and
a perturbatively &om the approxixnated Eq. (54) to ob-
tain x correct to O(ss) and a to O(ss). Using those
values in Eq. (58b) would give the correct result to O(sr).
However, there occurs an extra simplification for q = 1/2.
The first term of Eq. (58b) is proportional to Cz[x,]ai,
which becomes simply 1 —2q at the zeroth order. Thus,
the knowledge of ai to O(ss) is sufficient to determine it
to O(ss), resulting in T~ correct to O(s ). Symbolic ma-
nipulation softwares are used for the algebra. The result
for T~ at q = 1/2 is

8
Tw = Ys(y)s — Y5(y)s'+ —pz(cr)

3 10 7r

x[Yi(y)Ys(y) —Y~]s + Yq(y)s
84 2

+-(-:[p (~) + 8p. (~)]Y.(y)'

—16P4(n)Yz Y4(y))s + O(s ),

where Pi, (n) (k even) are functions of v defined by

E~ —E~ —— smi + —s (1 —m ) (1 —Q)Q 277, 7f 2 2
— '/'

N 18

x (1+O((1 —&)' ')) + O(1/N') (69)

. n'~&"&
p. ( ) =):, (72)

Also, using Eqs. (67), (61), and (2) in Eq. (63), we have
the bulk energy

[see Eq. (8)] and y is to be determined. &om Eq. (54a).
When L = 1, the equation for y to the necessary order
for q = 1/2 becomes



3520 DOOCHUL KIN 52

0 = Yi(y) + —Ys(y)s + Ys(y)s ~O(s ).

The solution of Eq. (73) can be obtained in the form

y = yp + yis + y2e' . . . Using it in Eq. (71) and using
the relation E~ ——sT~ for 4 = 1, we then Gnally obtain

Erv/s = 5 8 2 6
5(yo) ——&2( ) 210 7r

5 7~2 Ys(yp)'

+—(—".Y.(y.)' —16Y2Y4(yp) )&4(n)s'+ O(s').

(74)

3
Ys (yp) s

In deriving Eq. (74), we have used Eq. (Bl) repeatedly.
That O(s2) and O(s4) terms are missing is a simplifying
feature of the q = 1/2 sector. This is valid for A = 1
only and PA, 's are now functions of s since

n = exp( —4H) = 1 —s
(75)

when 4 = 1. Thus, the mass gap for 4 = 1 and q = 1/2
is of the form

s Ag A2 Bp

+sP4(n) + O(N 1 ), (76)

where A~ arid B~ are constants, which are found numer-
ically, except Bp Ap i.s nothing but X(0) introduced
above. Numerical values of the coefBcients are as follows:

Ap ——6.509 18933?94. . . , Ax ——10.860 713261 1

A2 ———10.3825789166. . . )

Bp = 32K Bj = —2407.625 907 82. . .

Pp(n) -+ 2k!((k+ 1)(l —n)
k!2 "((k+ 1)s

This expression for energy is in complete agreement with
existing numerical values of E~ obtained &om diagonal-
ization of Eq. (1) for small N's (N ( 18) in [6]. For
example, Ai/(Aper) is estimated in [6] be to 0.531+0.002
while it is 0.531106443911.. . in our result. Moreover,
the numerical sequence of (ENN ~ /s —Ap —Ai/N)N
for N=6, 8, . . ., 18, obtained using the s = 1 data of [6]
together with the exact values of Ap and Aq given above
extrapolates to around —10.35 —10.40 consistent with
the exact value of A2. A similar procedure using the
s = 0.999 data could produce Bp but with less precision
[231.

It is of interest to consider the KPZ to EW crossover
scaling function near s = 0. When s —+ 0, it can be
shown that Pi, defined in Eq. (72) and (75) behaves as

where ( is the Riemann zeta function. One notes from
this that P2(n)/N and P4(n)/N in Eq. (76) are both
O(1/N ~ ) provided s~N is kept constant as s m 0.
Therefore, the natural crossover scaling variable is u =
s~N and the mass gap takes the scaliiig form

E~ = g(sV N)/N

as s -+ 0 with s~1V fixed. Equation (76) then gives the
first three terms of the large argument expansion of the
crossover scaling function g(u) as

g(u) = Ap[u~ + ' + (79)

where Bp ((3)B——p/2 and Bi ——3((5)Bi/2 . At the EW
point (s = 0), it is known that E~ = 27r2/N exactly [6]
and hence we have g(0) = 2vr2. The scaling form Eq. (78)
has been anticipated in [6]. However, the actual form of
g proposed in [6] is of the form 27r gl + u2/vr2 = 2n. ]u]+
z /~u~ + . , which we find is valid only approximately.

So far, only the 6rst excited state characterized by the
set Eq. (16) is discussed. However, the above results are
readily applied to other energy levels provided the scaling
functions Y (y) are substituted by appropriate ones. For
example, to consider the momentum 0 level mentioned in
Eq. (17), the Y need to be changed to

Y-(y) ~ Y'(y)+ ( 'V'y -') —+ ('v'y+')
—(—'V'y+ ) —('V'y —') (8o)

Ap = 16.017626 904 6. . . , Ay = 44.051 297 1116. . .
A2 ———7.254 517508 2. . . ,

Bp = 0, By = 12 315.089 8394. . .

In [6], Ap/m ~ for this level is estimated to be
2.87+0.01, which is consistent with our exact value
2.876 559 51907. . . . However, their conjectured exact
value 2.8633717. . . is off by 0.5'. Note that the non-
trivial s dependence appears only at O(1/N4). Other
higher levels can be treated similarly.

VI. SUMMARY AND DISCUSSION

In this work, we have developed a perturbative scheme
that allows one to calculate the Gnite size corrections of
the low-lying energies of the asymmetric XXZ Hamilto-
nian Eq. (1) near the stochastic line and obtained their
leading-order behaviors for arbitrary s and arbitrary m, .
Formally, the eiiergy is given by Eq. (58) together with
Eq. (54), which determines perturbatively y, x„and a 's

entering Eq. (58). We remind the reader that q is triv-

where YP (y) are still given by Eq. (40) and the remaining
four terms come from two excitations and two holes in
Eq. (17). Here, Y2 ——0 from Eq. (B7). For p = 1/2, only
the numerical values of the Y (yp) in Eq. (74) change.
See Appendix 8 for the value of yp. The coeKcients of
Eq. (76) are then found to be
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ially related to the substrate slope by Eq. (2) and other
notations in Eq. (58) are defined in Sec. III.

The mass gap of the 6rst excited level is found to take
the scaling form given by Eq. (66) where the scaling vari-
able t is given by Eq. (61) and the universal scaling func-
tion W(t) is defined in Eq. (65) and shown in Fig. 2. X(t)
behaves as ti~s for t ~ oo and W(0)=const. The result
can also be applied to other levels. Thus, if we use su-
perscript X to distinguish various low-lying energy levels,
we then have the scaling form for the mass gap as

time, which scales as ¹ with z = 3/2. This confirms
that the dynamic exponent z is 3/2. It also confirms the
universality with respect to the growth rate (0 ( s ( 1)
and the substrate slope (—1 & m ( 1). This is an assur-
ing feature for the KPZ class growth models in view of
the fact that, in the asymmetric exclusion process with
reHecting boundary condition, the mass gaps remain 6-
nite even in the bulk limit [14]. The discrete Fourier
transform of Eq. (83) gives the structure factor of finite
size system in the scaling form

Eiv —E~ ——ismPg + sgl —m2%t(t)N ~ + O(N ), S(k, r) = e '"' S(sgl —m lrlk ~, kN) (84)

(81)

G(r, r) = (Olooe ~ ~ o.„l0) —m, (82)

where l0) is the ground state in sector m, r stands for
time, and G should not be confused with the notation
used in Sec. IV. Our result then implies that the corre-
lation function takes the form, after taking the spectral
decomposition and using Eq. (81),

G(" r) = ) (Olool&)(tloolO) exp( —i'(r + smr)

—s Ql —m'Pg (0) lr l/Ns~z) (83)

as r ~ oo, N ~ oo with 7/N~fixed. Here, t'he

sum is over excited levels whose mass gap scales as
1/Ns~, lt') stands for excited state, and the relation
cr„' = exp( —i'Pr)oo exp(i'Pr), 'P being the momentum op-
erator whose eigenvalue is Pg, has been used. Therefore,
decay of the correlation is governed by a characteristic

with Pg=(2+/N) xinteger the momentum of the level E,

Xt the level dependent scaling function. Xt(t) is also
defined by Eq. (65) but with appropriate Y 's, e.g. , Eq.
(80) for the lowest excited level with Pt = 0. This is the
6rst main result of this paper.

When 4 + 1, t + oo as N —+ oo and the mass gaps
scale with 1/N as shown in Eq. (69) for the first excited
level. In this case, the continuum theory of Eq. (1) is
described by the central charge c = 1 conformal field the-
ory. The first excited level characterized by Eq. (16) is
the first descendant of the identity operator in the sense
of conformal 6eld theory. Thus, the mass gap is expected
to behave as 2'(/N, ( being the complex anisotropy fac-
tor, which is proportional to the modular ratio of the
torus on which corresponding field theory is defined [24].
Equation (69} then determines g for b, close to 1, with
the imaginary part accounting for the deformation of the
square lattice to a parallelogram. The ground state en-

ergy itself shows a singularity of the type (1 —b, )i+i~'
with z = 3/2. The crossover &om the conformally in-

variant region 4 ( 1 to the KPZ line is described by the
scaling functions Wt (t) as functions of the scaling variable
t.

For the single-step growth model, t = 0, E~ ——0 and
Xg(t) becomes a universal constant Xt(0). A quantity
of interest here is the stationary slope-slope correlation
function given by [5]

E~ ——gt (sN ) /N (85)

for m = 0 where the KPZ to EW crossover scaling func-
tion gt(u) behaves as u for u + oo and gg(0)=const.
The perturbative expansion scheme of this work allows
one to obtain the expansion of the scaling function gg(u)

for small A: as expected &om other theoretical grounds
[5]. The phase factor e '"' in Eq. (84) is due to the
imaginary term of the mass gaps and is related to the
steady state current as discussed in [15] and [5]. The
presence of such a phase factor is also consistent with the
invariance of the KPZ equation under the Galilean trans-
formation, which tilts the substrate by an infinitesimal m
and changes the spatial coordinate by r + r smr [2,25—].
Thus, the modulating factor in Eq. (83) disappears along
the ray r+ smw = 0 in space time and the imaginary part
of Eq. (81) ofFsets this shift in space coordinate.

Henkel and Schiitz [15] showed that the mass gaps of
Eq. (1) scale as 1/N for q O(1/N), i.e. , for a finite
number of down steps instead of the 6nite density of down
steps. It is consistent with Eq. (81) due to the factor

gl —m2 = /4q(l —q). Higher-order terms in Eq. (81)
also contribute to O(1/N2) when q O(1/N). Even if
the 1/N2 scaling for q O(l/N) is the same as that for
the s = 0 EW point, their physical origins are diferent.
The latter comes &om the fact that correlation functions
such as Eq. (82) satisfy the discrete difFusion equation
exactly for all m while the former originates &om the
nonrelativistic &ee fermion dispersion relation near the
band edge [3,5,6]. When A ( 1, the limits q —+ 0, 1 are
where the Pokrovsky-Talapov (PT) type commensurate-
incommensurate transitions occur in the context of the
domain wall picture as discussed in detail in [9] for the
case of s = 1. The 1/N2 scaling of the mass gap near

q = 0 is a signature of the PT transition in this case.
The second main result of this paper addresses the

KPZ to EW crossover scaling function. The mass gaps
Eq. (81) depend linearly with the growth rate s to the
leading orders whereas, when s + 0 along the stochastic
line, they are expected to crossover Rom the KPZ scaling
to the EW scaling. Such nontrivial s dependence comes
kom higher-order terms in the perturbation series. Thus,
we have pushed the perturbative calculation to O(l/N4)
for m = 0 [see Eqs. (74) and (76)]. From the result,
the KPZ to EW crossover scaling variable is found to be
u = s~N = sN2 ' and the mass gaps are shown to take
the scaling form
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in powers of 1/u. Our O(1/N4) result determines the
Grst three terms in this expansion. The result is shown
in Eq. (79) for the first excited level. For other levels,
only the numerical values of the coeKcients in the se-
ries change. Derivation of the exact form of gr(u) is an
open problem. Also, to what extent the results of this
work remain valid in other KPZ class models as universal
features is an interesting open question.
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APPENDIX A: RELATION TO ASYMMETRIC
SIX VERTEX MODEL

In Appendix A, we brieHy review, for the sake of
self-containment, relevant results of the asymmetric six-
vertex model and derive the asymmetric XXZ Hamil-
tonian as an anisotropic limit of it. Let mi, i=1,
6, denote the six Boltzmann weights of the six-vertex
model in the standard labeling [17,26] . We denote by 7
the row-to-row transfer matrix of the general six-vertex
model on N x N square lattice under periodic boundary
conditions. The number of down arrows, Q, in each row
is conserved and there are four independent parameters
parametrizing w, 's. The eigenvalue A of 7 in the sector
of Q down arrows is given by

s = tanh(2H) = 'Ml tU3 —F2 tU4

tUlQ)3 + t02tU4
(A5)

for later uses. Note that z~ in Eq. (Al) is the inverse
of that defined in [17] and that rn = 1 —2Q/N = 1—
2q of this work corresponds to y in standard six-vertex
notation. Eigenvectors of 7 depend only on H and A
and hence 7 form a two-parameter family of commuting
matrices; i.e., 7 's with difFerent values of w, 's commute
with each other as long as they have the same values
of H and L. This is a direct consequence of the fact
that the Yang-Baxter equation has a solution under the
condition of constant E and H [26]. When w, 's assume
the limiting values ml ——m& ——m5 ——m6 ——1 and m3
w40 = 0, 7 becomes the shift operator. We call this the
anisotropic limit. Suppose mi are parametrized by u and
v in addition to H and L in such a way that the limit
u = v = 0 corresponds to the anisotropic limit. An
example of such parametrization for 4 & 1 is

wi ——exp(v) sinh(u+ v)/ sinh(v),

w2 ——exp( —v) sinh(u+ v)/sinh(v),
w3 ——exp(2H —v) sinh(u) / sinh(v),
w4 = exp( —2H + v) sinh(u)/ sinh(v),

m5 ——m6 ——1,

cjln7

with 6 = cosh(v), but the actual form of parametrization
is not important here.

The quantum chain Hamiltonians coinmuting with 7
are obtained by taking derivatives of —ln7 with respect
to u or v at u = v = 0. A straightforward calculation
yields [26]

Q
tU5Q)6Z&

W3 +
tUl —t04Z&

Q
wswsw2-

wi —w4zJ ) (A1)

1H = —ln(wiw3/w2w4)
4

is the horizontal Geld and

The sets of fugacities (z~) are given by the Bethe ansatz
equation Eq. (4) where in the present case,

—m4O. , Cr,+.+l —u)l N — —m~ (A6)

E' =—

for the sector Q, where o, are the Pauli spin operators
and m,' stands for the derivative of mi with respect to u
at u = v = 0. Corresponding eigenvalue E' of 'R' is, &om
Eq. (Al),

QJltUg + tU3t04 —tU5tU6

2(wiw2w3w4)'~
(A3)

tUltU2 + tU3tU4 —t05'W6

cosll(2H) wiw3 + w2w4
(A4)

is the standard interaction parameter. It is also conve-
nient to deGne

i=1
wi (N —Q) —w2Q—. (A7)

For 'R' to commute with 7, the derivatives should be
taken with H and L Gxed. This introduces two con-
straints:

and wi + w2 —ws —ws = A(w3 + w4), (A8a)
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tos = exp(4H)tU4. (Agb)

Using Eq. (A8) in Eq. (A6) and neglecting the con-
stant terms, one then easily sees that 'R' becomes the
asymmetric AA Z Hamiltonian Eq. (1) up to a normal-
ization factor (ros + tu4). Therefore, the energy of Eq.
(1) is obtained from Eqs. (A7) and (A8) up to the same
normalization factor and the constants, which is exactly
Eq. (3).

(B4)

where

(B5)

p( ) ) (
)I/2m(m —2) . . (m —2k+ 2)

Y y = —1
2~ @!k) 2,even

—J I(—-)'
ik+1 ) y

APPENDIX B:PROPERTIES OF YM

In Appendix B, we discuss some properties of Y (y)
and Y (y) defined in Eqs. (40) and (39), respectively.
Here, Y refers to the scaling function associated with
the ground state, while Y refers to that with the first
excited level.

The most useful property is the relation m(m —2)
Y (r) + 2( y) t 1 + . . .j (B6)

To calculate the integral JA, above, we apply the sum
formula Eq. (26) to the trivial sum g. o(j —1/2)" and
find that Ji, = k/(k+ 1) for k even. Thus, all coefBcients
of the series Eq. (B4) are identically zero. This suggests
that Y has an essential singularity at y = —oo and
approaches to zero exponentially as y ~ —oo. For Y (y),
we have

Y'(y) = —
2

Y--2(y) (B1)

which also holds for other Y 's associated with other
levels including Y

First we consider the case of m odd. Y and Y are
real for real y. As y ~ oo, their asymptotic forms are

Yo ~ ( I)(~—i)/2 (~+2)/2
i

+ +( 2 m

(m+ 2 12y2

(B2)

and

rY ~ ( I)(m —i)/2 (m+2)/2
~

i, m+ 2

11m
)[

(B3)

respectively. To see how Y (y) behaves as y ~ —oo, we
expand Eq. (40) as a series in —1/y paying attention to
the branch cut of the square root. After a little algebra,
we obtain

as y -+ —oo. Numerically, we find that Y& and —Y3 both
are positive monotonic increasing function while Yi(y) is
a monotonic increasing real function passing through 0 at
yo ——1.119066880828.. . . Due to the relation Eq. (Bl),
yo is the position of the maximum of Ys(y).

For m even, one can show that Y = 0 for all m using
the value of the integral JA, while Y is a polynomial in
y of order (m —2)/2. Specifically, Y2 ——2i, Y4 ———4iy,
Ys ——i(6y2 —2), etc. , and Y im( —y)( )/ for y
large.

For other energy levels than the first excited state we
are considering here, the last terms of Eq. (39) are difFer-
ent. Thus, the numerical value of yo where Yq vanishes
is different Rom level to level. For example, Yj defined
in Eq. (80) has a zero at yo

——1.658739 19064. . . . How-
ever, one can show in general that Y2 is related to the
total momentum P of Eq. (14) by

(B7)
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