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Unified inversion technique for fermion and boson integral equations
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A unified inversion technique for solving the fermion and boson integral equations is proposed.
The method attributes the inversion of a convolution integral equation to that of a Toeplitz matrix.
It may represent a general approach for treating a convolution integral equation.
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The inverse problems for boson and fermion systems
have for a long period been of importance and attracted
much research interest. However, there existed few ex-
act analytical expressions for these problems before. It
was not until recently that Chen put forward two in-
dependent methods and gave a very concise analytical
solution for each problem [1—6]. One of Chen's meth-
ods applies the well-known Mobius inversion transform
in arithmetic number theory [1,2], the other is related to
a new expression for the Dirac b function [5—7]. In this
paper, we propose an inversion method, that is able to
reproduce the results of Chen's two unrelated methods.
The united method, which we name the matrix inversion
method, can be regarded as a universal trick for solving
the convolution integral equations that &equently appear
in physics and technology. As a further example, we dis-
cuss its application to a singular integral equation, the
Abel equation, which has been extensively investigated
in mathematics and mechanics [8].

method not only reveals little but fails in some cases,
because it is diFicult to perform the Fourier transform
for some functions. This is the reason that motivates us
to develop a difFerent method. Our starting point is to
expand Q(y) into a Taylor series around x so as to rewrite
Eq. (1) as

(2)

where
+OO

t"I (t)dt.
Ao gp

By derivation with respect to x, step by step, we have

P( )(x) = ) A Q("+ )(x)
n=o

I. MATRIX INVERSION METHOD

Many problems in physical and technological sciences
are found to be related to such a convolution integral
equation as P(k) ( ) ) A q(n+k) (

n=p

As usual, Eq. (1) can in principle be inverted by using
the deconvolution method. However, the deconvolution

The above equations can be written into a matrix for-
mula

P(k) (&)
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(4)
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The inversion of Eq. (4) straightforwardly reads

( q(p)(z)
~q(i) (z)

q(k) ( Bp P(k) (z)

(Bp Bi B2 ' ' Bk '' ) (P (z)
0 Bp Bi . Bk i . P( )(z)

(5)

The matrix B is the inverse of A: B=A . Both A and
B are the so-called Toeplitz matrices. Then Q(x) can be
expressed as

II. DERIVATION OF CHEN'S FORMULA
FOR FERMION INTEGRAL EQUATION

Q(z) = ) B„P(")(z),
n=p

(6)

The so-called fermion integral equations refer to those
whose kernels look like or can be converted to a Fermi
distribution function,

where the coeKcient B can be determined by a discrete
convolution relation

) AkB„k = b„p,
k=o

(7)

where b p is the Kronecker delta. Thus we have shown
the basic idea of the matrix inversion method. The
method establishes a relation between two function
spaces, one spanned by the derivatives (P( )(z), n
0, 1, 2, . . .) and the other by (q( )(x), n = 0, 1, 2, . . .j.
The relation is expressed as a Toeplitz matrix. The in-
version of the integral equation is then attributed to the
inversion of the Toeplitz matrix. This leads to a dis-
crete convolution equation (7) from which the inversion
coefBcients can be determined. In general, the approach
will be applicable under the condition that the integral of
Eq. (3) exist for any n. Evidently, the requirement of this
condition upon the kernel function is limq~~ 4(t) = 0,
with a convergent speed no slower than an exponential
function.

From Eq. (7) we introduce a useful equality between
the characteristic functions of the two progressions (A„)
and (B„),

P(z) = Q(y) d'g.1+ exp(y —x)

P"(*) = q(y)dy.
[1 + exp(y —x)]2

(io)

According to the matrix inversion method, Eq. (10) can
be written as

P(')(x) = ) A„q'"'(x).
n=o

The solution of Eq. (11) is namely

Chen et al. have indicated that a few problems such
as the inversion of the relaxation-time distribution &om
the dielectric function spectra and the inverse isotherm
problems for the adsorption energy distribution can be
ascribed to a fermion integral equation [6]. The first-
order derivative with respect to x of the left-hand side
and the right-hand side of' Eq. (9) is

) A„z" =1
n=o

) B„z"
n=p

(8)
q(*) =) B.p' '(*)

n=O
(12)

This equality can be used to determine the inversion co-
eKcients B„.

Let us see how to use Eq. (8) to find B„.First it can be
shown that

+ (t)"'
A z dt = dt(1+")' ~ (1+t)'n=o n=p

r(1 —z)I'(1+ z) zr(1 —z)I'(z) 7rz

r(2)
=

r(2)

n=O

sin vrz
Bnzn =

7rz
(14)

where B(x) is the B function and I'(x) the I' function.
According to Eq. (8) we have

Therefore the inversion coeKcients B are

0 , n=2m+1,
(—1) m2 /(2m+ I)!, n = 2m. (15)

From Eqs. (12) and (15), the inversion formula for the
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fermion system can be seen [6]:

2n+1 g2n+1
Q(z) = —).(—1)"(2„~1),~ 2.+&P *

n=0

= —sin
l

iver
l P(x)

7c ( Bzj
1

[P(x + i7r) —P(z —iver)].
2i7r

(i6)

A„= — dt.
1 + t" exp(e' + At)

n! [exp(e') —1]2 (20)

). „+ e 'exp[e'+ At]A„z dt
[exp(e~) —1]2

The remaining question is how to decide the inversion
coefBcients H . Similar to the treatment in the above
section, we have

The method for deriving the above formula in Ref. [6]
stands for an idea of representing the Dirac b function
by a kernel with a special operator. Hence it is related
to the inverse problem of the Green function method for
the differential equation [7].

oo ettz+A —1 oo e—ttz+A —1
dt = dt

0 Ie' —1]' o [1 —e ']'
OO

tA+ —1 —ntdt
n=O

III. DERIVATION OF THE CHEN-MOBIUS
FORMULA FOR THE BOSON

INTEGRAL EQUATION

The boson integral equations stand for a sort of inte-
gral equation representing some physics of boson systems,
such as phonons, photons, spin waves, and so on. Traced
to Chen's pioneering work, the inversion problems of the
boson system have involved a variety of problems, such as
the analysis of the dust temperature distributions in star-
forming condensations [9], the determination of the tem-
perature distribution of the material shells of distorted
black holes from their Hawking signals [10], the inverse
blackbody radiation problem [11,12], and so on. A simple
well-known problem is the inversion of the phonon den-
sity of states &om experimental specific heat as a func-
tion of temperature, which was solved by Chen with the
Mobius inversion transform [1]

= I'(A + z)g(A + z —1), (21)

@(p/n) = e "'~"g(t)dt,
0

(22)

can be converted into Eq. (1), with P (x)
@(e /n)e ", Q (y) = @(e")e! "l", and 4 (u)
e "exp(—e"/n). Then

) B'(n)z- = [
"+ r(A+z)]-'

n=0

and

where g(z) is the Riemann g function. In order to derive
the Chen-Mobius formula [Eq. (15) in Ref. [1]],let us first
show what the inverse Laplace operator will be within
the &amework of our theory. A Laplace transform, such
as

02 OO ~/g—C„(M/k) = ~2g (~)d~,
0

(i7)
OO m

Q(z) = ) x" B (n) l

x—
l

[x "@(1/nz)] (24)
dz)

where k is the Boltzmann constant, 6 is the Planck
constant, r is the number of atoms in a unit cell, and
8 = kT/h Now let us s.ee how to solve Eq. (17) with
the use of the present method. We rewrite Eq. (17) by
letting e" = u, e = 0,

c.(n */k) =
~k [exp(e& —

) —1]'

(is)

In order to get a suitable kernel, we rewrite Eq. (18) as

1—.~ -"l*C„(~*/k)
rk

or

OO T1L

VP(z/n) = n ) z" B (n) l
z—

l
[z "@(I/z)], (25)«*)

where B (n) is the inversion coefficient for the inverse
Laplace transform. Note that we have used d /dx
(e d/de ) . According to Chen's definition, the inverse
Laplace operator L„~ inverts the u space to u/n space
(u = 1/0 is the coldness): Q(z/n) = L ~@(1/z). There-
fore, Eq. (25) is just the expansion of I ~ into the com-
bination of the operator xd/dx. Now we have

1
I'(A+ z)((A+ z —1)

+~ xp( y —x eA(y —m) '-"'"g( ")dy (»)
[exp(e~ ) —1]

By this means we reach a convolution-type equation,
with P(x) = (1/rk) e!2 "l*C„(he*/k) and Q(*)
e!s "l g(e ). The parameter A ) 3 is introduced to guar-
antee the existence of the integral, i.e.,

1=):"(")"r(A+
)n=1

= ) ) p(n)nB (n)z
m=0 n=1
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B = ) p(n)nB (n),
n=1

(26)

where p(n) is the arithmetical Mobius function.
For Eq. (26) we have used the relation 1/g(s)

i p(n)n '. Our method gives the inversion result
as or

+ e"[1 —8(t)]
(1 —e') ~

t -'(1 —t)
—

dt
G

= B(z, 1 —a),

1 ~, ( dl™
x g(x) = —) x B

~

x
rk q dx)

According to Eq. (26), it becomes

~2C](*~"Ek
(27)

). „ I'(z+ 1 —a)
I'(z) I (1 —~)

The inverse solution is

(32)

OO OO m

x g(x) = —) p, (n)n ) x" 'B (n)
~

x-
rk -; q dxy

(hx)
x x "xC„[—

["qk) (28)

g((u) = ) p, (n)L„' —C„
i

1 1 ( h

=1
(29)

Noting Eq. (25), one can see that Eq. (28) is just the
general Chen-Mobius formula

d"
e +( )=).B d „[e G(e )]. (33)

CI'(1)
E(x) C ) B cr x

77,=O

C= —sin 7to. x (34)

The solution will be especially easy when G(s) is a poly-
nomial. Let us consider the simplest case, G(s) = C;
then the result will be

IV. DISCUSSION AND CONCLUSIONS

In the foregoing text, we have demonstrated our
method and its applications for solving two important
integral equations in statistical physics. It is shown that
the fermion and boson integral equations can be treated
within an identical framework. Of more importance, the
unified method represents a general and powerful ap-
proach to more than the enumerated examples. First of
all, the method provides a possible numerical treatment
for convolution-type integral equations (this possibility
will be discussed in another paper). Second, when it is
used to seek an analytical solution, one can avoid. the
analytical extension of the equation to the whole com-
plex plane, which is perhaps inevitable in other methods
[6,13]. Fiiially, it can be used to solve other kinds of in-
tegral equations. For example, it may be worthwhile to
discuss the application to the well-studied Abel integral
equation,

1+ (dx/dz)2
dz.

2g(h —z)
(35)

In this case, n = 1/2 and F (z) = [1 + (dx/dz) ]
According to Eq. (34), we have

(dxl ' 2g&'1+
(dz) vr2z

This is exactly the cycloid equation.

(36)
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(3O)
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