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Bifurcations and pattern formation in a two-dimensional Navier-Stokes fluid
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We report on bifurcation studies for the incompressible Navier-Stokes equations in two space
dimensions with periodic boundary conditions and an external forcing of the Kolmogorov type.
Fourier representations of velocity and pressure have been used to approximate the original partial
differential equations by a finite-dimensional system of ordinary differential equations, which then
has been studied by means of bifurcation-analysis techniques. A special route into chaos observed
for increasing Reynolds number or strength of the imposed forcing is described. It includes several
steady states, traveling waves, modulated traveling waves, periodic and torus solutions, as well as
a period-doubling cascade for a torus solution. Lyapunov exponents and Kaplan-Yorke dimensions
have been calculated to characterize the chaotic branch. While studying the dynamics of the system
in Fourier space, we also have transformed solutions to real space and examined the relation between
the different bifurcations in Fourier space and topological changes of the streamline portrait. In
particular, the time-dependent solutions, such as, e.g. , traveling waves, torus, and chaotic solutions,
have been characterized by the associated Huid-particle motion (Lagrangian dynamics).

PACS number(s): 05.45.+b, 47.20.Ky, 47.27.Cn, 47.54.+r

I. INTRODUCTION

One of the better studied two-dimensional viscous
Bows is the so-called Kolmogorov Bow, where the veloc-
ity is everywhere parallel or antiparallel to a given di-
rection, perpendicular to which it varies sinusoidally. If
driven hard enough, of course, this Qow becomes unstable
[1]. (For a recent reconsideration of the stability prob-
lem see Ref. [2], where also experimental aspects of the
Kolmogorov flow are discussed. ) For still harder driving
finally a chaotic state is reached, which has been studied
by means of numerical simulations [3,4].

Systematic investigations of the qualitative behavior
of solutions to truncations (in Fourier space) of the two-
dimensional (2D) incompressible Navier-Stokes equations
(NSE) with an external forcing of the Kolmogorov type
are due to Franceschini and his co-workers [5—8] and Lee
[9]. These authors studied in detail the rather complex
bifurcation sequence leading &om laminar, steady states
to chaotic solutions. We have continued the studies of
Franceschini and co-workers, and Lee and could find some
new aspects (part of them described in a companion pa-
per [10]) concerning both the bifurcation sequence and
the physical character of some of the attractors. The aim
of this paper is to present the complete bifurcation se-
quence leading to chaos and to characterize the difI'erent
solution branches by the associated streamline portraits
and Quid-particle motions.

II. BASIC EQUATIONS, TRUNCATION,
AND FORCING

We start &om the equations for an incompressible fluid
with constant material properties,

0%7 2
p + (e. W)e = —V'p+ pvV' e+ f,Bt

V'. e =0, (2)

where v and p denote Quid velocity and thermal pres-
sure, p and v mass density and kinematic viscosity, and
f an external body force. Transforming to nondimen-
sional quantities according to

m ~ a/L (position vector), t -+ t/(L2/v),
e m e/(v/L), p m p/(pv /L ), f m f/(pv /L ),

Eq. (1) becomes

0%7 2

Ot
+(e.V)e= —Vp+V' oq f

The nondimensional velocity (a typical value of it) corre-
sponds to the conventional Reynolds number Re provided
a characteristic external length scale (e.g. , the scale over
which f varies) has been chosen for I. If the nondi-
mensional external length scale is l g 1, then Re= lV,
with V denoting a typical value of the nondimensional
velocity. Re will increase with increasing strength of the
forcing. Let E denote a typical value of

~
f ~. For weak

forcing, when spatial scales much smaller than the exter-
nal one are not yet excited and energy is dissipated on
the scale on which it is injected, V/l E and Re l E.
For strong forcing, on the other hand, when Quid par-
ticles are accelerated practically undamped, so that the
forcing term in Eq. (4) is approximately balanced by the
inertial term, one expects Re l ~ I' ~ to be a better
estimate.
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ed a=O, fd a=O.
T2

Let v i„ps, and fi, denote the Fourier coe
dffo b k

ressi i ity condition, Eq. (2), takes the

vt, . k = 0 (6)
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kgO,vy —vyeg &
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2 e g,

——eI

The last condition in E . '8'q. ~ j ensures that

(9)
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). i hiis representation for v
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It represents a shear Bow with streamlines parallel to the
vector e~4 ~~, which is perpendicular to the wave lattice
vector k = (4, 1) of the forced mode. The direction of
the Bow changes across the straightlines

It is evident that the solution given by Eq. (13) retains
the translational symmetry in the direction of e~4 ~~. This
simplest steady state loses its stability in a symmetry-
breaking bifurcation where two real eigenvalues of the Ja-
cobian matrix become zero. The new stable steady states
(branch Steady-2), in which more than one but not yet
all modes are excited, are no longer symmetric and one
eigenvalue of the Jacobian matrix is permanently equal
to zero along the solution branch. In a further pitchfork
bifurcation, the remaining modes become different &om
zero (branch Steady-3).

In the following, we shall characterize the different
steady-state branches by their associated streamline por-
traits. The streamlines of the first steady state, where
only the forced mode is excited, are straightlines and
the direction of the velocity changes across the neutral
lines given by Eq. (14). In Fig. 1, streamlines are drawn
for a forcing slightly above the first bifurcation value.
Thick lines correspond to zero lines of the velocity stream
function. Compared with the first steady-state branch,
these lines have been deformed due to the generation of
eight vortices. Solid and dashed lines refer to stream-
lines in regions with clockwise and counterclockwise ro-
tating vortices, respectively. This topological structure
of the streamline portrait exists only over a relatively
small interval of the bifurcation parameter and is then
transformed into the more stable configuration shown in
Fig. 2. This is generated in a process where the zero lines
of the velocity stream function are reconnected such as
to delimit two horizontal layers with oppositely rotating
vortices. It seems remarkable that both streamline struc-
tures belong to the same steady-state branch (Steady-2).
Although in Fourier space no bifurcation is observed, the
streamline topology in real space changes qualitatively.

The velocity field corresponding to the third steady-
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FIG. 3. Streamlines for f = 170 (branch Steady-3).

e(m, t) = ) Ageg exp[ik. (et+ m)], Ag C lR, (15)
k&Z
is+0

state branch (Steady-3) is presented in Fig. 3. The num-
ber of vortices remains the same, but new closed stream-
lines have been formed that encircle two and four vor-
tices, respectively.

The third steady-state branch ends up in a special
bifurcation where a second eigenvalue in addition to
that already vanishing along the whole branch becomes
zero. This bifurcation leads to a time-dependent solu-
tion where the projection of the modes onto the planes
spanned bg their respective real and imaginary parts de-
scribes circles (with the exception of the forced mode and
the modes with wave vectors parallel to that of the forced
mode; these modes are still time independent). This
solution may be interpreted as a traveling wave (TW),
for which the whole velocity field drifts with a constant
speed in the direction of the translational invariance of
the equations. For a TW, the (total) velocity field can
be expressed as
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FIG. 2. Streamlines for f = 55 (branch Steady-2).
FIG. 4. Projection of the trajectoy for f = 222.5 (MTW)

onto the real and imaginary parts of the k = (2, —2) mode.
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where c represents the velocity of the TW. The stream-
line structure for the TW at one instant of time is similar
to that of the third steady-state branch (cf. Fig. 3), but
it is moving constantly parallel to the vector e~4 q~. The
TW solution loses its stability in a bifurcation, which can
be explained as a Hopf bifurcation in the co-moving co-
ordinate frame. All the Ag's in Eq. (15) become periodic
with the same frequency and the resulting solution can be
interpreted as a modulated traveling wave (MTW). The
forced mode v~4 ~~

——A~4 q~ is no longer constant, but
periodic. For any mode not aligned with e~4 q~ the pro-
jection onto the plane spanned by the real and imaginary
parts appears as quasiperiodic with two &equencies, as
seen in Fig. 4. The lower &equency corresponds to the
circle motion already present for the TW (w = A, . c),
while the higher one is related to the modulation (the
oscillation of the Ai, 's).

Special properties of the TW and MTW will also be
discussed in Sec. IV in the context of the Lagrangian
description of the Quid. -particle motion.
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FIG. 6. Projection of trajectory onto the real and imag-
inary parts of the forced mode k = (4, 1) after the fourth
period. doubling (f = 341.75).

IV. A SPECIAL ROUTE INTO CHAOS

In the following we shall describe the rest of the bifur-
cation sequence, which Bnally leads to chaos.

The MTW exists only for a relatively small interval
of the bifurcation parameter and bifurcates to a normal
torus solution (Torus-1). In contrast to the MTW, for
the new torus branch the forced mode is no longer pe-
riodic but quasiperiodic as the other Inodes. A phase
locking at f = 232.25 produces a purely periodic solu-
tion (Period-1). But this could only be traced up to a
value of f = 273, where it becomes unstable and trajec-
tories are attracted by another, coexisting branch. We
have seen the coexisting branch first for f = 267.75 as
a second periodic solution. The two periodic solutions
look very similar and we suppose a connection of both
branches over turning points with an unstable solution
in between.

At f = 270, the second periodic orbit in turn bifurcates

to a torus solution (Torus-2), for which a phase locking
at f = 282.5 again leads to a purely periodic solution.
At f = 292.5 a second frequency (in addition to that
of the phase locking) appears, leading to a new torus
branch (Torus-3). This torus solution is degenerate in
that, similar to the MTW discussed in Sec. III, the forced
mode remains strictly periodic with just one kequency,
all other modes being quasiperiodic with two &equencies.
We were unable, however, to interpret this solution as
an MTW. In Fig. 5 the projection of the torus onto the
forced mode is shown. Such a degeneracy may result from
a Hopf bifurcation in an invariant subspace without an
efFect on the forced mode.

Subsequently we have found a period-doubling cascade
for this torus solution, namely, doublings of the period
shown by the forced mode. We could resolve the dou-
blings up to the fourth one; the corresponding trajectory
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FIG. 5. Projection of the torus Torus-3 onto the real and
imaginary parts of the forced mode k = (4, 1) for f = 325.

FIG. 7. Trajectory of an injected test particle for (a) TW
(f = 207.5), (b) MTW (f = 222.5), (c) Torus-1 (f = 230),
(d) Period 1(f = 271.25), (-e) Torus-3 (f = 300), (f) Chaos

(f = 350).
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projected onto the forced mode is drawn in Fig. 6.
Although we were unable to prove it exactly, we sup-

pose that the period-doubling cascade is an infinite one
leading to chaos. The occurrence of chaos has been veri-
fied by calculating the Lyapunov exponents (see Sec. V).

For investigating the Quid motion for the time-
dependent solutions, a Lagrangian description was nec-
essary, since the streamlines alone give only minor infor-
mation. If one makes snapshots of the streamlines at dif-
ferent time points, no qualitative changes of the velocity
Geld can be recognized. Even for time-dependent solu-
tions &om different branches, the streamline structure is
nearly the same, qualitatively similar to the velocity 6eld
of the third steady state (cf. Fig. 3). We have traced a
test particle injected into the Quid by solving its equation
of motion,
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FIG. 8. The Lyapunov exponents larger than zero versus f

where e(x, t) is the corresponding solution of the NSE.
The periodic boundary conditions for the velocity field
have been used to extend the phase space for the Quid
particles from our square region into the whole plane R .

In Fig. 7, test particle trajectories are shown for several
of the time-dependent solutions. For- the TW, described
in Sec. III, the trajectory results &om a superposition of
the particle motion along a streamline with the uniform
drift [with constant speed c, cf. Eq. (15)] of this stream-
line. In Fig. 7(a), the particle has been located on a
closed streamline and consequently the trajectory looks
like a cylindrical surface. For the MTW, a second &e-
quency appears and compared to the TW the trajectory
is subject to additional small oscillations [Fig. 7(b)].

After the generation of the torus branch Torus-1, the
motion has changed completely [cf. Fig. 7(c)]. For a long
time the Quid particle is trapped in a ringlike, well sep-
arated region, but may suddenly cross the boundary to
a neighboring vortex region. In steady states, the basins
of different vortices are completely separated by hete-
roclinic lines connecting hyperbolic 6xed points. For
time-dependent velocity 6elds, on the other hand, if the
motion of Quid particles is studied by means of strobo-
scopic maps of marked particles (called Poincare maps),
the stable and unstable manifolds of fixed points of these
maps may intersect. The penetration of Quid particles
through that kind of boundary layers is well described in
the theory of mixing [12] and may already occur for two-
dimensional time-periodic fiows [13]. Figure 7(d) gives
an example for the motion of a Quid particle in a time-
periodic How belonging to the Period. -1 branch. The tra-
jectory looks similar to those shown in Fig. 7(c), but the
hopping rate is increased. For the Torus-3 branch [see
Fig. 7(e)], on the other hand, the trajectory is trapped
in a bounded region of phase spase. Finally in Fig. 7(f),
a trajectory for the chaotic branch is drawn, where again
xIllxlng occurs.

We also have carried out numerical simulations in
which two blobs were injected into the chaotic Quid. The
blobs are stretched and folded, but the mixing process
depends strongly on the initial locations of the blobs.
In some cases the blobs remain separated, especially if

V. LYAPUNOV EXPONENTS
AND KAPLAN- YORKE DIMENSIONS

FOR THE CHAOTIC REGIME

For the chaotic branch we have calculated Lyapunov
exponents and Kaplan-Yorke dimensions. By using an
algorithm of Shimada and Nagashima [14], the largest
Lyapunov exponents have been calculated within the in-
terval 325 ( f & 425, with a stepsize of Af = 2.5. In
Fig. 8 only those larger than zero are shown (three in
the interval considered). It should be mentioned that for
all values of the bifurcation parameter, two of the Lya-
punov exponents are equal to zero. One of them belongs

0 e s ~

0
300 320 340 360

f
380 400 420

FIG. 9. The Kaplan-Yorke dimension as a function of f.

one of them is attracted by one of the smaller eddies
surrounding the elliptical zero-velocity points. In other
cases a complete mixing was observed. But also in these
cases the mixing process needs some time, probably be-
cause the velocity 6eld varies on a time scale much larger
than that of the Quid-particles motion. A more detailed
investigation of this phenomenon is under way.
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(17)

then

2

DKY = J' — )
&+

(18)

For the Torus-3 branch, including the interval of the
period-doubling cascade, the dimension is equal to three;
the additional dimension (over that of a two-dimensional
torus) results from the Lee symmetry of the system. For
the chaotic branch, there is roughly a linear dependence
of the dimension on the bifurcation parameter f (see
Fig. 9).

It would be interesting to compare the function in
Fig. 9 with analogous calculations for a truncation in-
cluding much more modes. If the Kaplan-Yorke dimen-
sion would be of the same order, these higher modes could
be interpreted as slaved modes and the qualitative behav-
ior of the system would be essentially determined by the

to the direction of the trajectory, the other is related to
the continuous symmetry of the system.

The Lyapunov exponents have been used to calculate
the Kaplan- Yorke dimension DK~ of the attractor, which
is a good approximation of its Hausdorff dimension [15].
If the Lyapunov exponents A; are ordered descendingly
and j is the largest index satisfying

lower modes. We shall try to attack this problem in a
future study.

VI. CONCLUSION

We have studied bifurcations and patterns in an in-
compressible 2D Navier-Stokes Quid with periodic bound-
ary conditions and an external forcing in a single Fourier
mode. The strength of the forcing has been our bifurca-
tion parameter. Remarkably, qualitative changes of the
streamline topology of the Huid in real (2D) space are
not necessarily coupled to bifurcations in phase (Fourier)
space. For increasing strength of the forcing, the sys-
tem shows various bifurcations to steady states, travel-
ing waves, modulated traveling waves, periodic and torus
solutions, with a Gnal transition to chaos. Deviating
&om the standard Ruelle- Takens-Newhouse scenario, the
transition to chaos occurs via a period-doubling cascade
on a degenerate torus branch. This may be a conse-
quence of our special forcing. For the chaotic branch,
Lyapunov exponents and Kaplan- Yorke dimensions have
been calculated. In the parameter interval we studied,
the Kaplan- Yorke dimension depends roughly linearly on
the strength of the forcing.
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