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Dynamic multiscaling of the reaction-diffusion front for mA + nB; 0
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We consider the reaction zone that grows between separated regions of diQ'using species A and B
that react according to mA+nB ~ 0, within the framework of the mean-field-like reaction-di6'usion
equations. For distances from the center of the reaction zone much smaller than the di8'usion length
Xr& = QDt, the particle density profiles are described by the scaling forms predicted by a quasistatic
approximation, whereas they have a diffusive cutoB at a distance of order XD. This cutoK, and the
power-law decay of the quasistatic profiles, give rise to multiscaling behavior, with anomalous values
for the exponents describing the moments of the density and reaction profiles. Numerical solutions
of the reaction-diffusion equations are in good quantitative agreement with the predictions of this
theory.

PACS number(s): 05.40.+j, 82.40.—g, 82.30.—b, 02.30.3r

I. INTRODUCTION

The problem of a front that grows between initially
separate regions of diffusing species A and B that react
according to mA + nB —+ 0 has provoked much recent
interest [1—9]. Studies have concentrated on the scal-
ing properties of the reaction rate R per unit volume
and particle density profiles a and b, and on the criti-
cal dimension above which the mean-field-like reaction-
diffusion rate equations are valid. The reaction is con-
centrated in the region where the densities of the two
species are comparable. If the penetration of one species
into the other is much shallower than the diffusion length
X~ = QDt, the reaction between the two species takes
place within a distance m (( XD of center xy of the re-
action zone.

Most of the previous studies were devoted to the
study of the properties of the reaction front for distances
~x xf ~

&& XLi. In this regime the physics is governed by
a single length scale m and consequently a simple scaling
theory explains the observed behavior. However, if one
investigates what is happening for ~x —xf

~

) X~, two
length scales m and XD enter in the description. In this
paper, we shall formulate a scaling theory for this sys-
tem that is valid for all length scales. We shall see that,
although the particle densities converge everywhere to
the values predicted by the single-length scaling theory,
the effects of the second length scale can be seen when
measuring the spatial moments.

There are two different, although related, theoretical
approaches to the scaling theory. In the first approach,
one assumes a scaling ansatz for the differential equations
for the densities of the two species. In geometries where

the only spatial variation of the densities is along the x
axis, these equations take the form [1,5]

g~a = DO a —mka 6",
Bgb = DO 6 —nka 6",

(1)
(2)

where A: is the reaction constant, and here and subse-
quently the reagents are assumed to have the same dif-
fusion constant D. The initial conditions appropriate to
this problem are

a(x, 0) = apO(x),

b(x, 0) = bpe( x), —
(3)
(4)

where ao and bo are constants and 0 is the heavyside
function. The quantity u:—(a/m —b/n) obeys a simple
difFusion equation, with solution [5]

1 (ap bp) 1 (ap bpl t' x
(

———
)

——
i

—+ —ierf
i (5)

2 (m n) 2 (m n) (2/Dt)

a(x, t) = t ~A
i

The center xy of the reaction zone may be defined as the
point where u = 0. We therefore have

xf ——2 Dt erf (ap/m —bp/n)

(ap/m + bp/n)

so if ap/m = bp/n we have xI = 0 (note that in Ref. [5],
xf was defined as the point of maximal reaction, which
is not necessarily the same point).

One expects that, for ~x —xI~ && (Dt) I, the profiles
will be described by the single length scale m, leading to
the following scaling hypothesis [1,5]:

b(x, t) = t &Bi— (8)
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R(x, t) = t ~P
i

t'x —xf )
(9)
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where u) t, P = A B, and P = (m+ n)p. The
number of particles of either species arriving at the re-
action front is oc t /, which must equal the total reac-
tion rate, so we must have P —n = 1/2. Consistency of
this scaling ansatz with the equations of motion leads to
n = (1/2) (m + n —1)/(m. + n + 1) [5].

The second approach relies on the fact that in the
above description, the reaction front is formed quasistat-
ically. Indeed, when ~z —zy~ )) u) one of the species is
overwhelmingly in the majority, so ~u~ ~ max(a/m, b/n),
and so from Eq. (5) the profile of the majority particle
density is ~z —zy~/t ) for (Dt) ) )) x )) u). The
diffusion current of particles arriving at xf is therefore
J t /, and the characteristic time scale on which
this current changes is (din J/dt) oc t. The equilibra-
tion time of the front is of order Du)2, so since o. & 1/2
one would expect that the reaction zone has enough time
to reach the steady-state profile it would have if the cur-
rent J were constant. Thus one can consider the case
of a &ont formed by opposing constant diffusion currents
J~ ——m J and J~ ———nJ of A and B particles imposed at
x = —oo and +oo, respectively, which has recently been
studied [10—12]. In this case, the system approaches a
steady state where the equations

the scaling theory and exponents in dimension d & 2

[2—4]. For d = 1, there has been some controversy as to
whether the scaling theory is valid [5,8], but the most
recent results [9] appear to show that the steady-state
results do indeed apply. However, for (m, n) g (1,1),
where rigorous mathematical results are not available,
the case is much less clear. Numerical simulations of
microscopic stochastic models in d = 1 are consistent
with a scaling ansatz [6], but they are of low precision,
since reaction events are much rarer than for m = n = 1.

In this paper, we shall give careful arguments to show
that the scaling ansatz is indeed valid for length scales
much smaller than (Dt)i~2. We shall then show than
the two length scales in the problem, u) and (Dt) i~, to-
gether with the power-law tails of the steady-state profile,
give rise to a multiscaling form for the particle density
profile, whose moments are described by a spectrum of
exponents between n and 1/2. We then present nuineri-
cal solutions of the reaction-diffusion equations, and show
that the results are in good agreement with the theoret-
ical predictions.

II. VALIDITY OF THE SCALINC ANSATZ

(D/m))9 o, = ka b" = (D/n)c) b (10)

and boundary conditions may be written in dimensionless
form, so that the following scaling ansatz is valid for all
* [11]:

Z(s) = —Ass (
—),

s(s) = ZssAss (
—),

6(s) = JssBss (
—),

where u)(J, D, k) oc J " and v = (m + n —1)
/(m + n + 1). From (10), we have c) u = 0 [u
(a/m —b/n)], whose solution with these boundary con-
ditions is u = Jx/D. For —(z/u)) )) 1, the B par-
ticles are overwhelmingly in the majority, so one has
b = nJx/D + na/m = nJz/D, and hence Ass(y)
(Ass) y", leading to

y
~~4 exp( cryi+( ~—)) for m = 1,

Ss (y) —(ss+2) / (m, —1) for I ) 1

as y ~ oo, where o is a constant. Similar results hold
for Bss by interchanging m and n. Equations (7)—(9)
are recovered by simply substituting J oc t / in Eqs.
(ll) —(13). Within this approach, it is also possible to
show [11) that the "mean-field" assumption R = ka b

(assumed in all the above equations) is valid for micro-
scopic stochastic systems in spatial dimension d ) d
2/(m + n —1).

For m = n = 1 the scaling forms (7)—(9) have been
proved rigorously to describe the asymptotic behavior
as t m oo of the reaction-diffusion equations (1) and
(2) [7]. Experiments on real systems, and simulations
of microscopic stochastic models, also appear to verify

The scaling ansatz can be shown to be exact for the
case of a steady-state front formed. between balancing
opposing currents, and so its applicability to the time-
dependent case relies on the front being formed quasi-
statically [11]. Naively, one would expect that the time
for a difFusive system to equilibrate within a region of size

t would be oc t, whereas the time scale upon which
the current J oc t i~ changes is (din J/dt) oc t, which

predicts that quasistatic approximation would be valid
for length scales with v & 1/2. However, since some of
the density profiles decay algebraically, one might wonder
whether the flow of particles towards ]z~ +oo necessa-ry

to sustain these steady-state profiles might be too great
for the quasistatic approximation to be valid.

In this section, we shall show that the quasistatic
approximation is internally consistent for length scales
sinaller than t ~, in that it predicts that (i) the number
of particles up to a distance t ~ is always much less
than the total particles that have reacted, so that the
number of particles in the tails is never too much to have
a feedback effect on the profiles at distances of order t /

(ii) the time taken for each part of the particle density
tail to equilibrate at its quasistatic value is always much
less that the characteristic time scale on which this value

changes.
Consider the part of the tail of the A-particle profile

a(z, t) t ~(x/t ) ", where A = [n + 2]/[I, —1] [see
Eq. (14)], in the region xi & z & x2, with xi oc t" and
z2 oc t" (n ( Ei ( E2 ( 1/2). The current of A particles
at x is

a(x, t)J~ ———DB a
x

so the ratio J~(z2)/J~(zi) = t (" ")(i+") ~ 0
t —+ oo. Almost all of the particles that enter at xi are
therefore removed by the reaction, rather than by dif-
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The number of particles in the tail can diverge for certain
values of A. This could invalidate the assumption that the
total reaction rate equals the number of particles arriving
at the origin if this number was found to be larger than
the total number of particles oc ti/ that have reacted.
However, the total number of particles in the tail up to
a length scale ti~z, found by substituting eq ——1/2, is
found in each of the above cases to be of order less than
t~/' . The time taken for N~ particles to enter the region
X] &X&X21S

t2&1 for A&1
~~/&z(xi) - &" int for A = 1

tery +Kg (Eg —6y ) (1—A) f r P & ]
(17)

which is always (& t since ei ( eq ( 1/2. The f'ront
therefore has enough time to reach its steady-state value
for length scales smaller than ti/' .

III. MULTISCALING THEORY

fusing out at x2. The number of particles in the region
is

a(xi) xi for A & 1
N~=— adx & t ~ln ~ for A=11

, a(xz)xz for A ( 1.

q $ x
G

x

0 0

t~«+') for p) q+1
t~«+~~ ~lnt for p = q+ 1

~+~« "+~~ for ~ & q+ 1.

When p & q + 1, the qth moment of P is finite, whereas,
for p & q + 1, the dominant contribution comes &om
(x/g )'

) = 0(].). Defining X('i) = [fx~F dx/ f F dx]i«,
we find that, for p ( 1, X(~) t ~ (with logarithmic
corrections for p = 1). For p ) 1, we find the multiscal-
ing behavior X~~~ - t~~, where

forq&p —1
—,
' —-' (-,' —n) (p, —1) for q & p —1, (20)

(5) away froin the reaction zone. All positive moments
of the tail of G~(y) and G~(—y) for y & 0 are defined,
and there is no power-law behavior for y ~ 0.

This form leads to multiscaling behavior for the mo-
ments of the particle profiles, by virtue of the power-law
tails of a and/or b when (m, n) g (1, 1). Consider a func-
tion I' of the form E(x, t) = t ~P(x/t )G(x/ti) ~), where
P(y)~y "asy~oo, P —+lasy+O, G(y)~las
y m 0, and all positive moments of G are defined. Then
the qth moment of F is of the form

s(s, t) = ( ,s)sss(sG, is, ),
b(s s) = ass(st)Gss (,i ),, (19)

where ass = t ~Ass(x/t ) and bss = t ~Bss(x/t ) are
the solutions to the steady-state equations (12) and (13),
and G~(y) and G~( —y) are functions that provide a cut-
off at y = O(1), and ensure that a(x, t) and b(x, t) satisfy

The arguments of the preceding section show that the
scaling ansatz (7)—(9) should be consistent for all length
scales t', with e ( 1/2. However, the quasistatic ap-
proximation, and hence the scaling forms (7)—(9), cannot
be valid on length scales of order the difFusion length. To
see this, consider the solutions to Eqs. (1) and (2) in the
case where no reaction is permitted (k = 0). In this case,
the solutions for a and b are error functions, and so the
tails of the densities have an exponential decay of char-
acteristic length (Dt) ) . If we consider the case of finite
k, it is clear that the particles cannot penetrate further
than when there is no reaction, and so the densities in
the tails must be smaller than for k = 0. The algebraic
decay of the tails of the steady-state profiles must there-
fore be superseded by an exponential cutofF at a length
scale of order (Dt) ~, which represents the fact that on
such length scales the particle densities are limited by
difFusion. The shape of this cutofF is in fact irrelevant
to the following discussion —all that is required is that
all spatial moments are defined, which is guaranteed by
the fact that the profiles all have an exponential upper
bound.

We therefore propose the following ansatz for a and 6
in the limit t —+ ao:

f x'R(x, t)dx

f R(x, t)dx
2a

t lnt
]1—( ~~

—ss) (v —i)

f*' x'a(x, t)dx

f ' a(x, t)dx

form —n&3
form —n=3
form —n) 3,

r t2cl

t2~ lnt
t i—( —' n) (A —i)—
1nt

~t

for 3m —n&5
for 3m —n=5
for 3m ) n+ 5 )m+ 2
for m —n=3
form —n) 3,

(22)

f x~b(x, t)dx

f b(x, t)dx

t2'
lnt

&i-(, )( -i)
for m+5 &3n
for m+5 = 3n
for m+5 & 3n,

(23)

where A = (n+ 2)/(m —1), v = 2 + A, and K = (m+
2)/(n —1). If these quantities were described by a one-
length scaling theory, all of these quantities would behave

and X('i) t ln ~ ) t when q = p —1. Notice that (,'~
increases monotonically as a function of q from n to 1/2.

By substituting from (14) the appropriate power-law
tails of Ass and Bss, the multiscaling forms predict the
following behavior for the following quantities (without
loss of generality, we have assumed m ) n):
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as t2, so we describe departure &omom this behavior as
)0"anomalous.

Defining

f xR(x, t)dx
J' R(x, t)dx

(24)

be used to find the scaling be-
f x . ', th t the contribution to

1 r rocedure may e use
f x . Notice, however, a

h ' ' 'd t' llthe scaling term is i en icx coming from th '
g

d = 0. The behavior= DB a implies xBssax = . e e
o x is holi b the correctionsof x is therefore determined w o y y e
to scaling. From (I) and (2), one has
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FIG. 4. Effective exponents for (m, n) = (2, 1). The hori-
zontal lines represent the theoretical asymptotic values from
Table I.

FIG. 6. EfFective exponents for (m, n) = (4, 1). The hori-
zontal lines represent the theoretical asymptotic values from
Table I.

a factor t, the location of this point changes with time
like t . This shows that the definition of xy as the point
of maximal reaction is not equivalent to the definition in
this paper as the point where u = 0.

To verify the multiscaling properties of the reaction
zone, we investigated the behavior of the functions m, n,
tabb, and x, . According to (21)—(24), they should diverge
as t" ln" (t), with v and r being some exponents depen-
dent on m and n. In Figs. 4—6 we have plotted effective
values of v, v, vg, and v, (corresponding to the be-
havior of the properties tu, to, ignis, and x„respectively),
defined as successive gradients &om a log-log plot, as a
function of I/ ln(t). The quantities were first normalized
by the logarithmic prefactor ln "(t) so as to give quicker
convergence to the theoretical values of v. It can be seen
that v and vb converge satisfactorily to the theoretical
values, even though the values for v are anomalous. The
convergence for v is slower, but the data are consistent
with the theoretical predictions. The convergence for v
is also slow, and in fact the trend for m = 4 is in the
wrong direction; however, it is plausible that the trend
may change at later times, as is seen for m = 3 in Fig.
5. The values of the efFective exponents at the last value
of time (10 ) are compared with the theoretical values in
Table I.

0.6
OVw

The reason why some of the exponents deviate from
the theoretical values may be understood from Figs. 1—
3. The convergence to the solid curve for x ( 0, where
Eq. (14) predicts an exponential decay, is very rapid-
semilogarithmic plots of B( x) we—re found to be in
very good agreement with these predictions for up to
10 decades. However, the convergence of the profiles to
the steady-state profiles is much slower for x ) 0 (where
the asymptotic behavior is algebraic). In fact, numerical
investigation of the steady-state profiles showed that the
regime for which the power-law behavior predicted by
(14) appears is beyond the point at which the difFusive
cutofF is already active in the data. This means that the
asymptotic regime has not yet been reached. In view of
this fact, the agreement between the measured exponents
and the theory is surprisingly good.

V. CONCLUSIONS

The multiscaling theory predicts that the reaction pro-
file of the system is described asymptotically by a scal-
ing form, in the sense that Eq. (27) holds, but that the
moments of the reaction and density profiles may have
anomalous behavior. Numerical solutions of the reaction-
diffusion equations verify the asymptotic scaling behav-
ior, and also give values for the anomalous exponents
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TABLE I. The measured values of the exponents v, v,
and vb describing ur, m, mb, and x, respectively, together
with the nonanomalous exponent n, for three values of the
duple (m, n). The values in square brackets are the predic-
tions of the multiscaling theory; the presence of a value for a
indicates the presence of a logarithmic correction of the form
ln" (t), account of which has been taken in calculating the v.

0.0
0.0 0.1

1/ln(t)
0.2

FIG. 6. EfFective exponents for (m, n) = (3, 1). The hori-
zontal lines represent the theoretical asymptotic values from
Table I. The theoretical value for v is 0.

Quantity (2 1)
1
4
0.26
0.28
0.25

—0.25

(3,1)
3
10
0.35
0.45
0.30
0.05

(4,1)
1
3

[—, ] 0.36 [-', ~
[0.45] 0.52 [~, ~
[—,', ] o.33 [-', ]
[o] o.2o [-,']
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close to those predicted by the theory. Longer times
would have to be simulated to find better values for the
exponents.

The convergence to the asymptotic behavior becomes
progressively slower as the order of the reaction is in-
creased. This means that simulations probing the asymp-
totic behavior also become more diKcult. Nevertheless,
Eq. (21) suggests that it would be worthwhile to look at
at least one case where m —n & 3.

In the steady-state problem, it has been shown [11]
that the critical dimension is d = 2/(m + n —1). This
means that the reaction-difFusion equations correctly de-
scribe the scaling behavior of "real" stochastic realiza-
tions for all physical dimensions, except for (m, n)
(2, 1) in dimension 1, where logarithmic corrections to
the steady-state behavior are expected. Because of the
strong link between the steady-state problem and the
time-dependent problem studied in the present paper, we
expect the critical dimensions to be the same. The only
microscopic simulation results available [6] agree broadly
with the picture in the present paper, though they are
not of suKciently high quality to give a thorough test.

For the case m = n = 1, the solutions to the steady-
state difFerential equations (10) have exponential tails,
and so all moments are described by the length scale
and not by the diffusion length (Dt) ~2. These equations
do not apply beneath the critical dimension d, = 2 [ll.],
but simulations show that the steady-state reaction pro-
file for d = 1 is Gaussian in shape [13], so we again have
exponential tails for the particle profiles. This predicts
that the case m = n = 1 should display simple dynami-
cal scaling independently of spatial dimension. However,
Araujo et al. have reported simulation results in one di-
mension that violate dynamical scaling [8], supporting
instead a multiscaling form. The authors of that pa-
per argued that the two competing length scales in the
problem are the separation l t j and midpoint Quc-
tuations m t j of the neighboring A-B particle pair
(the diffusion length did not appear in this theory), and
that the large fluctuations in m make the steady-state
results inapplicable to the problem. This multiscaling

theory predicts that the quantities A ( ) for the reaction
profile should be of the form Xi~l t~, with g increasing
with q from 1/4 to 3/8, which was in apparent agreement
with their measurements. However, more extensive sim-
ulations [9] appear to show that m scales like t, with
0 0.30 apparently decreasing in time, and that appar-
ent departures from simple dynamical scaling behavior
are more likely to be due to transient eEects. The point
remains controversial, however, as a recent field-theoretic
treatment by Howard and Cardy [14] has predicted alge-
braic correction terms to the steady-state profiles in this
problem, which would lead to multiscaling behavior of
the type described in the present paper. These predic-
tions are nevertheless very difFerent from those of Arauj o
et al. because the two length scales are m and the diffu-
sion length (Dt)i~z. Howard and Cardy predict that the
algebraic corrections would only be seen at distances and
times currently out of the range of simulations, and sug-
gest that they might not be present at all for the models
used so far, where reactions occur whenever an A-B pair
meet.

The theory outlined in this paper is based on heuristic
arguments and numerical results only, so a first-principles
analytical justification is needed. It would be possible to
write the equation of motion for the corrections to the
multiscaling terms, and then investigate whether they
are truly small and do not contribute to the behavior of
the moments. Although no conclusive results have been
found, a preliminary attempt at this procedure suggests
that there may be values for m and n where the assump-

tionn

may break down that the interpenetration of the
species is smaller than the number of particles that have
reacted [15]. The multiscaling theory presented in this
paper might therefore have to be revised in those cases.
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