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Heat generation required by information erasure
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Landauer argued that the erasure of 1 bit of information stored in a memory device requires a
minimal heat generation of krrT ln 2 [IBM J. Res. Dev. 5, 183 (1961)],but recently several articles
have been written to dispute the validity of his argument. In this paper, we deal with a basic model of
the memory, that is, a system including a particle making the Brownian motion in a time-dependent
potential well, and show that Landauer's claim holds rigorously if the random force acting on the
particle is white and Gaussian. Our proof is based on the fact that the analogue of the second law
of thermodynamics dQ ( k&TdS holds rigorously by virtue of the Fokker-Pianck equation, even if
the potential is not static. Using the above result, we also discuss the counterargument of Goto et
al. to Landauer's claim based on the quantum flux parametron.

PACS number(s): 05.40.+j, 05.20.—y, 89.70.+c

I. INTRODUCTION

ZERO ONE

FIG. 1. The model of the memory. The particle is making
a Brownian motion in the potential well.

In 1961, Landauer discussed the limitation of the ef-
ficiency of computers imposed by physical laws [1). He
argued that the erasure of 1 bit of information requires a
minimal heat generation of k~T ln 2 based on the second
law of thermodynamics. To be more precise, the argu-
ment is as follows. Consider a memory device that can
hold one of the two values ONE and ZERO. Physically it is
a system which has two stable states. When it is in one
of the two states, it can be regarded as holding the value
ONE, and when it is in another state, ZERO. The erasure
of information stored in the memory means the operation
RESTORE TO ONE (RTO), which sets the value to ONE,
regardless of its initial value. Physically, RTO forces the
system into the state corresponding to ONE regardless of
its initial state. Moreover, this operation must not leave
any trace of the initial value (in other words, any trace
of the initial state) anywhere in the system. I andauer's
claim means that RTO is inevitably accompanied by the
heat generation of at least k~T ln2.

For the sake of concreteness, let us introduce a basic
model of a memory [1,2]. It is a binary device in which a
particle makes the Brownian motion in a bistable poten-
tial well (see Fig. 1). When the particle is in the right-
hand. -side well, one may regard the device as taking the
value ONE, and when it is in the left-hand-sid. e well ZERO.
In this model one can perform RTO by varying the shape

of the potential well with time so that the particle ends
in the right-hand-side well, regardless of its initial po-
sition. In this model Landauer s claim means that, in
whatever way one varies the shape of the potential well
with time, the work dissipated into the environment due
to the &iction cannot be less than k~T ln2.

Inspired by his study, a considerable number of stud-
ies have been made on the thermodynamics of informa-
tion processing, which include Maxwell's demon problem
[2,3], reversible computation [2,4], the proposal of the
algorithmic entropy [5], etc. The thermal cost of more
general information processes have also been investigated
[6]

On the other hand, however, objections have been
raised to his claim. Some authors indicate that his claim
is based only on the second law of thermodynamics, and,
although plausible, not very rigorous [7,8]. Other authors
argued that the information has nothing to do with ther-
modynamical entropy at all [9]. One of the most interest-
ing counterarguments was advanced by Goto et al. [9,10].
They argue that it is possible to erase information with
infinitesimal heat generation by using the quantum Aux
parametron (QFP) [9—13] developed by themselves (see
Sec. III). Their counterargument has special importance
because one may be able to realize the basic model of the
memory introduced above by using the QFP. Although
some discussions have appeared thereafter [14,15], they
are not quantitative or rigorous.

A major drawback in Landauer's discussion that makes
these objections possible is that it is based only on the
second law. Although the second law is very general,
these objections seems to suggest that applying it to in-
formation processing requires more careful consideration.
Since Landauer's claim has become a part of the founda-
tions of the thermodynamics of information processing,
more rigorous and quantitative discussion is desired.

In this paper we present a sufficient condition for Lan-
dauer's claim. Our discussion is based on the Fokker-
Planck equation, so that it is less general than Landauer's
discussion but more de6nite and instructive. We show
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that Landauer's claim holds rigorously in the basic model
of the memory introduced above if the random force act-
ing on the particle is a white and Gaussian noise force.

More specifically, we show rigorously that, no matter
how one changes the potential well with time to perform
RTo, the average of the total heat generated during the
operation will be greater than k~Tln2 if the random
force acting on the particle is white and Gaussian. In
our proof, which is given in Sec. II, we do not presume
the second law of thermodynamics as Landauer did. Be-
cause of our assumption about the nature of the random
force, the time dependence of the distribution function of
the particle is described by the Fokker-Planck equation
(FPE) [16] as is well known. We show that the analogue
of the second law of thermodynamics dQ & kRTdS is
derived from the FPE, even if the potential is time de
pendent. The minimal heat generation caused by Rvo
can be obtained as a direct result of the analogue of the
second law.

Based on this result, Goto et al. 's counterargument is
discussed in Sec. III and it is shown that, if the behav-
ior of the Josephson junction used in the QFP can be
described by the FPE, it is impossible to erase informa-
tion with infinitesimal heat generation even by using the
QFP. We also comment on some other discussions relat-
ing to Landauer's claim. We summarize our main results
in Sec. IV. We use the units k~ ——1 below.

dQ (TdS, (2.4)

S = — dxdu ln (2.5)

of the distribution function at time t, the inequality

Q (T (2.6)

holds at any time.
The proof of Eq. (2.6) is straightforward. By virtue of

the energy conservation law, Q is given by

is derived based on the II theorem. [The exact mean-
ing of Eq. (2.4) is given by Eq. (2.6) below. ] Moreover,
several important thermodynamic concepts are incorpo-
rated into the stochastic process framework [17,18]. In
our case, however, the H theorem does not hold because V
is time dependent. (It is easy to show it. One can change
the distribution f cyclically by changing the potential V
cyclically. In this case any functional of f such as II
should also change cyclically, so that it should increase
at some period. ) Nevertheless Eq. (2.4) is valid even in
this case. In fact, letting Q be the ensemble average of
the energy given to the particle by the environment per
unit time (the dot over Q means "per unit time") and S
be the Shannon —von Neumann entropy

II. THE MINIMUM HEAT GENERATION
d(E)

dt
(2.7)

We study the model of the memory involving a par-
ticle making the Brownian motion in a time dependent
potential well. The motion of the particle is described by
the Langevin equation [16]

where

E —= + V(x, t),
2

(2.8)

d2x dx (9V(x, t)
m +mq —= — ' +FR(t),dt2 dt Ox

(2.1)

(FR(t] )FR(t2)) 2m yT()(tl t2) 9 (2.2)

where m is the mass of the particle, p is the kiction
constant, V(x, t) is the potential that is assumed to be
time dependent, and FR(t) is the thermal random force.
We assume the random force FR(t) to be a white and
Gaussian noise force satisfying

(X) denotes the ensemble average of any function X,

(x')—:f dxduf(xu, t)x(zu, t), , (2.9)

and W is the average work done by the potential V on
the particle per unit time. Since the work given to the
particle at a position x by V per unit time is (9V(x, t)/Bt
[19], W is given by

where T is the temperature of the environment of the
memory. Because of this assumption, the motion of the
distribution function f (x, u, t) of the particle in position
and velocity space is described by the FPE [16]

0 8 ( 1 c)V(x t)(
f(x, u, t) =—— u+

~

pu+-
gt Bx (9u ( m Bx )

(2.10)

By inserting Eqs. (2.8)—(2.10) into (2.7) and using the
FPE, we obtain

f(x, u, t).pT
m Ou

(2.3) Q = dxdu ' ' V(x, u, t) = p(T —(mu )).Bf(x, u, t)
Ot

If the potential V is static, the well-known H theorem is
derived &om (2.3), and the analog of the second law of
thermodynamics,

(2.11)

The time derivative of S is given by difFerentiating Eq.
(2.5) with respect to t and using the FPE as follows:
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dS
dt

Therefore, by means of (2.11) and (2.12),

(2.12)
where

Sjfol—:—f dodo fr lo fo (0 = 0 or 1),

and

(2.IS)

dS p ( Din fT + mu
~

( 0. (2.13)
dt m q Bu S[pp, pi] = —) p; lnp;.

i=0)1
(2.19)

Thus we obtain Eq. (2.6).
Equation (2.6) allows us to use reasoning formally iden-

tical to that used in thermodynamics. Especially, let-
ting b, Q „q(t, , tf) be the average energy dissipated into
the environment between any times t; and tf, the lower
bound of AQ z(t, , tt) is determined by the value of
Shannon —von Neumann entropy of the distribution func-
tion at those times as follows:

tf
AQ, (t;, tt) = (—Q)dt & T[S(t;) —S(ty)]. (2.14)

Now we can calculate the lower bound of the heat gen-
eration caused by the erasure of 1 bit of information by
using (2.14). The following argument may be regarded as
a refinement of Landauer's original discussion [1]. Con-
sider an ensemble consisting of N()) 1) memories. Let
us assume that at time ti every memory in the ensemble
stores 1 bit of information. This means that the potential
well of each memory forms the double well form (Fig. 1),
and the distribution of each particle is localized in either
the right-hand-side well (when the stored value is oNE)
or the left-hand-side well (when it is ZERo). Let fi(x, u)
and fo(x, u) be the distribution functions of the parti-
cle when the memory takes the values ONE and ZERO,
respectively, and also p1N and poN be the number of
memories whose values are ONE and ZERO, respectively.
Then the number of particles whose positions and veloc-
ities are within x x+ dx and u u+ du, respectively,
is given by

Npp fp(x, u)dxdu + Npi fi (x, u)dxdu

= N[po fo(x~ u) + pi fi(x~ u)]dxdu. (2.15)

Therefore the Shannon —von Neumann entropy S; it of
the ensemble per memory at time ti is given by

S[fI,] is the entropy due to the distribution of the particle
in the phase space when the memory stores a definite
value k, and S[pp, pi] is that due to the distribution of
the values of the memories. lf RTO is performed, and
then the values of all memories become ONE at time tf,
the entropy Sf;„~ of the ensemble per memory at time
tf is given by

Sx*-~ = S[fi]. (2.20)

By inserting Eqs. (2.17) and (2.20) into (2.14), we obtain
the lower bound of the heat generated by RTO as follows:

&Ql.o ..s .~ = T(S[pp»]
+ppS[fp] + piS[fi] —S[fi]). (2.21)

Then if

S[fp] = S[fi]

holds, Eq. (2.21) is reduced to

(2.22)

~ = TS[pp pi]. (2.23)

S..~
= p.S[f.]+p.S[f.], (2.24)

The right-hand side of Eq. (2.23) is exactly the product of
the temperature and the amounts of erased information,
and gives T ln 2 if pp ——pi ——I/2. Thus we have derived
Landauer's claim rigorously in our model.

In the above discussion, we assumed Eq. (2.22) to de-
rive Eq. (2.23). But, in fact, the assumption can be dis-
pensed with, if we take into account the thermal cost
required to set a definite value for the memory after the
erasure. (Landauer seems to have noted this point in Ref.
[1]. However, because he gave no detailed explanation,
we discuss it here for completeness. ) The entropy of the
ensemble per memory after setting a definite value for
each memory is given by

~init — dud& po 0 + p1 i, ln po 0 + p1 1

(2.16)

The overlapping of fi(x, u) and fp(z, u) should be negli-
gible, because if not it 1s impossible to decide the value
of the memory by the measurement of the position of the
particle. Thus

where it is assumed that the ratio between the memories
whose values are ZERO and those whose values are ONE
is the same as that before the erasure. [S[pp, pi] does not
appear in the right-hand side of Eq. (2.24) because each
memory has a definite value. ] Therefore the lower bound
of the work dissipated into the environment during the
erasure-setting process is given by

T(S;„,t. —S„g) = TS[pp, pi] (2.25)

~init dud& 0 0 ln po 0 + p1 1 ln p1

= poS[fo] + piS[fi] + S[po, pi], (2.17)

ioithout the assumption (2.22). This result can be gener-
alized to the case where each memory can take M (& 2)
values in a straightforward manner.
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III. DISCUSSION

d24 2 dC OV

dt R dt 04 (3.1)

where

In this section we first discuss Goto et al. 's counterar-
gument based on the QFP, and then comment on some
interesting discussions relating to Landauer's claim.

The QFP is a Josephson logic device developed by
Goto et al. , which uses magnetic flux to hold and trans-
fer information. The output flux C' from the QFP can
be controlled by the "input flux" C, and the "activation
flux" 4, because it is governed by the Langevin-type
equation of motion

P is
ty

P' = emu dt.
t,

(3.4)

However, the resistors not only generate but also absorb
heat from the environment. Then "heat generation re-
quired by information erasure" means the difference be-
tween the heat generated and that absorbed by the mem-
ory during the erasure process. In other words, it means
the work done by the time-dependent potential and dissi-
pated into the environment. It is for this reason that we
should use, and have used, b, Q q(t;, ty) rather than P'
as the definition of the "heat generation required by infor-
mation erasure. " It may be worth pointing out that the
relationship between the quantities P' and AQ „t,(t;, tt)
is obtained, by using Eq. (2.11), as

t'2~el t'2~~. l (C —C.)'
V = —2Eg cos cos + 3.2~o. )

P' = AQ g(t;, tt) + pT(tg —t;). (3.5)

(4'p ——h/2e), I~ is the resistive thermal noise current,
and C, R, Ir„and Eg are constants. See Refs. [9—13] for
details. The essential point is that one can make V either
a single well or double well in form by controlling the
activation flux 4 . When 4 = 0, V forms a single well,
and when 4 = 4p/2 it forms a double well. Therefore
one may be able to realize the basic model of the memory
introduced in Sec. I by using the QFP.

Goto et aL [9,10] argued that the heat generated by
QFP per clock period is given by

@,2

P = dt = Hpf„ (3.3)

where Hp is a constant and f, is the clock cycle, and
that by making f small one can make P as small as one
wishes in contradiction to Landauer's claim. However,
since Eq. (3.1) is mathematically the same as Eq. (2.1),
we can apply our result obtained in Sec. II. Therefore we
can conclude that, if the noise current can be regarded as
white and Gaussian, it is impossible even for the QFP to
erase 1 bit of information with less heat generation than
k~T ln 2.

We should keep in mind, however, that we need the
assumption about the nature of the noise current to de-
rive the above conclusion. The assumption that the noise
current is white and Gaussian, or, in other words, the mo-
tion of the Josephson junction used in the QFP can be
described by the FPE, is known to be valid in many cases
[16,20,21]. Nevertheless, it may be possible to construct
a QFP with a Josephson junction whose current noise is
not white and Gaussian. In this case, our discussion is
not enough to contradict Goto et al. 's counterargument
and we must investigate whether the discussion given in
the previous section can be generalized to the case where
the random force is not white and Gaussian. It needs
further investigation.

There is one more point to be discussed concerning
their discussion. As stated above, they take the total
heat P generated by the resistors and discuss whether it
is possible or not to make it lower than k~T ln 2. In the
model discussed in Sec. II the quantity corresponding to

As a result, the inequality

P' ) EQ „t(t;,tf) (3.6)

always holds as expected.
Igeta [22] argued, against Landauer's claim, that "the

physical entropy does not change because there is no ther-
modynamic difference between Zero and One. Each of
them is definite and has no statistical factors. Also, the
physical entropy of the states Zero and One can be the
same by physical symmetry. " His last statement cor-
responds to Eq. (2.22). However, our result supports
Landauer's claim and contradicts Igeta's argument. The
point is that the ensemble before the erasure contains
both of memories whose values are ONE and those whose
values are XERQ. As a result, S;;q given by Eq. (2.17)
contains the term (2.19) which does not appear in Sy;„~.

Fahn [23] argued, in connection with the analysis
of Maxwell's demon (especially Szilard's engine), that
"there is an entropy symmetry between the measurement
and erasure steps, whereby the two steps additively share
a constant entropy change, but the proportion that oc-
curs during each of the two steps is arbitrary. " His "mea-
surement" process corresponds to our "setting process"
in Sec. II, so that our result on the thermal cost of the
erasure-setting process agrees with his argument.

Finally we comment on Schneider's note [24] on Lan-
dauer s claim. According to Schneider, the information
erasure consists of two steps: priming and setting. The
device is in one of the two stable states at the beginning,
so that one must add some energy to the memory device
to alter that state at first. He called this step the "prim-
ing step" and argued that information is lost at this step.
On the next "setting step, " the device is guided by pre-
set inputs to fall into the standard state and the energy
added at the priming step is dissipated. He argued that
Landauer lumped these two steps into a single step.

However, the priming step is not essential for the in-
formation erasure. The information is assumed to be
already lost before the erasure, that is, the value of the
memory is already uncertain before the erasure. (If not
so, one can set the value to ONE expending no energy
[1].) In a typical erasure process energy is added to the
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particle and then dissipated almost simultaneously when
the distribution of the particle is compressed.

IV. SUMMARY

We have investigated the lower bound of the heat gen-
eration required by information erasure in the case of a
basic model of the memory, that is, a Brownian particle
in a moving potential well. We have shown that, if the
random force acting on the particle can be regarded as
white and Gaussian, Landauer's claim that the erasure
of 1 bit of information is accompanied by the heat gener-
ation of at least k~T ln 2 holds rigorously. Next we have

discussed Goto et al. 's counterargument and concluded
that if the resistive thermal current noise involved in the
QFP is white and Gaussian, or, in other words, if the be-
havior of the Josephson junction can be described by the
Fokker-Planck equation, it is impossible to erase infor-
mation with in6nitesimal heat generation even by using
the QFP.
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