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optimal finite-time endoreversible processes
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We treat the general problem of transferring a system from a given initial state to a given final
state in a given finite time such that the produced entropy or the loss of availability is minimized.
We give exact equations for the optimal process for the general case of a system with several state
variables. For linear processes, e.g. , in the limit of slow processes or if the Onsager coefBcients do not
depend on the Buxes, we find a constant entropy production rate or constant loss rate of availability.
An alternative kinetic process length is introduced. The entropy production rate is the square of the
speed based on this length and clock time. This length adequately treats variations of the system
time scale matrix along the path. For the nonlinear case, the entropy production rate or loss rate
of availability is generally not constant for an optimal process.

PACS number(s): 05.70.Ln, 05.60.+w, 44.10.+i

I. INTRODUCTION

The problem of transferring a system from a given ini-
tial state to a given anal state while producing a mini-
mum of entropy or a minimum loss of availability leads
to reversible processes. These processes are all equivalent
to each other and have zero value of both of the entropy
or loss of availability, but need infinitely much process
time.

In many applications it is natural to introduce a con-
straint for the available process time. This approach
is known as fjnite-time thermodynamics and discussed,
e.g. , in [1,2]. In this context, endoreversible [3] pro-
cesses are generally considered, where the system inter-
nally is reversible and the prod. uction of entropy is caused
by the transport to the system. The restriction on en-
doreversible processes excludes, e.g. , distributed systems,
nonequilibrium systems [4], and systems where difFerent
species are not in chemical equilibrium among each other.

However, in chemically interacting systems as dis-
cussed by Mironova et al. [5] some species may be re-
garded. as driving the concentration and reaction rates
of the others. If the concentration of sufFiciently many
of these species may be externally controlled, then such
systems may be in principle treated in the framework out-
lined in this work. For instance, the discussion of near-
equilibrium processes, called slow processes in this work,
can easily be generalized to the case where the kinetic
coefIicients depend on the concentrations of the noncon-
trollable species. These systems thus may be treated
as endoreversible systems, since the controllable species
may always be chosen such that the other species are in
equilibrium. The boundary condition of given average
chemical rates [5] in effect specifies the final concentra-

tions. This conforms with the boundary condition of a
given final state as used in the present work.

It is widely stated that for the optimal process the
entropy production rate, or the loss rate of availability,
is constant [1,2]. However, this result is obtained under
difFerent simplifying assumptions, such as the following.

(Al) The kinetic coeKcients relating driving forces and
fiuxes, the Onsager coefficients, are constant [1] or do not
depend. on the fluxes, but only on the system state.

(A2) The process is slow, i.e. , the available process
time is large compared to the time scales inherent to the
system so that the differences in the intensive variables
between the external source and the system are small.
This is the regime of linearized thermodynamics of irre-
versible processes. This assumption implies a situation
essentially equivalent to assumption (Al) because the in-
tensive variables of the external source are close to the
system's internal variables, and thus the dependency of
the kinetic coeKcients on the state of the external source
can be ignored.

(A3) The difference between the initial and the final
state is small. This implies assumption (A2) since all ki-
netic coefIicients, the heat capacity, etc. , are effectively
assumed to be constant during the process. This assump-
tion is not considered at all in the present paper.

We treat the general problem and require none of these
assumptions. Prom our results we show that any one of
these assumptions is sufFicient for the entropy production
rate or loss rate of availability to be constant along an op-
timal process trajectory. Processes satisfying one of these
assumptions are called linear processes in the sequel. If
none of these assumptions is fulfilled, the corresponding
rate is generally not constant along the optimal process.

II. GENERAL PROBLEM
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We consider a system with extensive parameters X
which are, e.g. , the internal energy U, the volume V,
and the particle numbers N each referring to a different
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species o.. The system is described by an equation of state
S = S(X) in the entropy representation. The intensive
parameters are the conjugate of the extensive variables
Xi,

gf

bo. = (bz;X;+ Z, bX, ) dt

+Z, bX; Ch (6)
BS(X)

OXi

such as the inverse temperature 1/T, the pressure vari-
able p/T, and the chemical variables p /—T [6], where

p is the chemical potential for species o.. It is assumed
that the intensive variables are constant all over the sys-
tem. The system is controlled by a source which is de-
fined by intensive parameters Y,'. It is assumed that the
intensive variables of the source can be controlled at will.

The potential differences Zi = Y,: —Y,. cause fIuxes
of the associated extensive variables X;. The entropy
production rate due to the transfer of heat, volume, and
mass is

do. dXi
dt

'
dh

(2)

We use Einstein's convention of summing over all indices
appearing twice in a product. The functional relation
between the fiuxes X; = dx;/ dt and the driving forces
Zi is written as

Z; = Z;(X, X). (3)

It is the essence of this contribution that we make no
further assumption about the functions Z;(X, X) other
than it is differentiable once. The objective is now to find
the optimal process such that the entropy production o.

in a given interval [t', t~],

gf
dCT

0
dt (4)

assumes a minimum, with the initial and final states
fixed, X(t') =X' and X(t~) =X~. We refer to such a
function X(t) as trajectory. In contrast, a path is the
ordered set of system states without referring explicitly
to time.

All conclusions remain valid if the objective is, instead
of minimization of produced entropy, the minimization
of dissipated availability [2]. Then one starts with an
equation of state U = U(X ), with S instead of U as one
of the extensive variables X, and takes Y,: = BU/BX;,
e.g. , T from S, —p from V, and p from N . However,
the following derivation is written in terms of minimum
entropy production.

In order to find the optimal process trajectory X(t)
we could use Pontrjagin's general maximum principle [7].
However, the problem is greatly simplified by the fact
that X appears in the expression for 8 and at the same
time determines the evolution of the system. We consider
a variation X —+ X + bX, X ~ X + bX. The variation
of the entropy prod. uction 0 is

BZi
8X~ X,

t' 2

d . BZ~ +Z, ~
dt. (7)

The last term is obtained by transforming the terms con-
taining bX; with partial integration, using the fact that
the value of bX, must be zero at t' and t~. In order to
have zero variation of the entropy, the term in square
brackets must be zero for each time t,

. Bz, d . BZ,
'BX,. dt ( 'BX )

These second order differential equations, in conjunction
with the fixed values of the initial and the final state,
determine the optimal trajectory. These equations can
be written as

o-xx"
I BX~ BX;) ~& (BX~j

d ~ BZ~

Bx~

Thus for the optimal process a necessary condition is

ZiX; . ' Xz ——const.
BX~

(12)

If the function Z is expressed by a resistance matrix B,~,

Z;(X, X) = R;, (X,X)x~, (13)

then Eq. (12) reads

do. . BR~+ X, - .' XkX~ = const.
dh

(14)

This is the generalization of the known result [1,2], de-
rived with one of the assumptions (Al) —(A3), that the

o — x *+x '+x-
BX, d& ~BX,)

19Z~ ~ 0Z~+ Xi+ . X,
BXi

&Bz; BZ, ) - (Bz; BZ,
BX~ BX;) '

(BX~ BX,. i
d t'Bz, &

+Xi
BX,)

In order to analyze the entropy production rate, we mul-
tiply with X~. For the case of several state variables,
this reduces the full information of the set of differential
equations to a single equation. The first antisymmetric
term cancels and leaves a total differential:
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rate of entropy production rate or loss of availability is
constant along the optimal trajectory. The theory out-
lined here is exact for small as well as for large Ruxes,
and with no assumption on the form of Z(X, X) except
that it is differentiable once.

A. Constant entropy production rate

tf K2
0. = X,RjXj dt &

ti
(15)

Here the kinetic process length Ks is defined as

For the case of Xi,OR;~/BXI, && R;~, the second term
in Eq. (14) is negligible, and the entropy production rate
is constant for the optimal process. This occurs for linear
processes, that is, if the Buxes are small or if R;j does not
depend on X, but is a function of X only. The case of
small fluxes, that is, the case of a slow process, may also
be treated as if R;~ (X,X) is a function of X only since
the other argument, X, is approximately zero, R;j
R;~(X, O). In this case the R,~ are the inverse of the
matrix of Onsager coeKcients L,~.

Then constant entropy production rate follows from
the Cauchy-Schwarz inequality [2]:

B. Single state variable

In the case of a single free state variable Eq. (12) reads

/'Bin(Z) l
(0ln(X) )

do Z (BZ)
dt X (BX)

1+ Oln(R) )
~»(X) )

Instead of writing the driving force Z as a function of the
Hux X', Z(X, X'), we can describe the flux as a function
of Z, X(X,Z) = I(X, Z)Z. Then Eq. (19) is

do . Z OX 0 ln(X) 8 ln(L)
dt X BZ 8 ln(Z) 0ln(Z)

= ZX ac —. =1+

entropy production or loss of availability if a certain tra-
jectory is traversed. For calculating the loss of avail-
ability from 8 the authors have to introduce an average
system time scale, which then becomes trajectory depen-
dent. The kinetic process lengths Kg and KU as defined
in Eq. (16) incorporate the kinetic functions R. The func-
tions R may be arbitrary functions of the system state
X consistent with thermodynamics. Formally the same
expression for an analog kinetic process length KU is ob-
tained if the objective is minimum loss of availability.

tf 1

Kp = X&RzjXj dt.
ti

It is based on the metric

(dKs) = R;~ dX; dX~.

(16)
In the case of a single state variable, there is only a

single path [X,X~] connecting the initial with the fi-
nal state. Thus for linear processes, the kinetic process
length can be directly computed with Eq. (16), and the
trajectory can be calculated from b = const.

The entropy production rate is equal to the square of the
speed measured by this metric,

d~ ( dlCs)
'

dt i dt )
The value of Kg does not depend on the parametrization
t, but it depends on the path of integration. With the
minimum kinetic process length, taken over all possible
paths from the initial to the final state, the right-hand
side of Eq. (15) is a lower bound on o; it is taken if
the integrand is constant, i.e., if the entropy production
rate is constant. The global optimization problem can
be split into (a) finding the path with the shortest length
Ks and (b) optimizing the trajectory along this path,
i.e. , traveling this path with constant speed based on the
metric Kg. Assume that an optimal solution is known.
The optimal path for taking the same system between
the same initial and final points, but with different total
available time, is the same. The trajectory can simply
be deduced by scaling the time with a constant factor.
For the general nonlinear case, however, a different total
available time might lead to a difFerent path which has
to be found with Eq. (8).

The thermodynamic length 2 defined in [2] does not
contain the kinetic functions R. Therefore the thermo-
dynamic length in general bears no relationship to the

III. HEAT CONDUCTION

In the following we analyze the special case of plain
heat conduction, where the temperature is the only state
variable considered. We substitute Y' = 1/T, Z = Y—
1/T', and X = A(T, T')(T' —T) in Eq. (20):

do. T 0ln A
oc 1+ (T' —T) (21)

The inverse temperature 1/T plays the role of the inten-
sive variable. Therefore Lq~ refers to the inverse temper-
atures, X = Lii(1/T —1/T'), and the thermal conduc-
tance A, with X = A(T' —T), is given by

Lgg ——TT A. (22)

A. The slow case

In the case of a slow process, where the driving forces
T' —T are small, the optimal entropy production rate
per time t is constant, for any form of the specific heat
Cv (T) = dU/ dT and of A(T, T'). The optimal process

Hence even if A does not depend on T', Lii is a function
of T and T', i.e., of X and X, and the entropy production
rate for the optimal process is generally not constant.
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is characterized by

)T' —T]
QA(r, T)

'

and the minimum entropy production is

(23)

)Cs
0

t
where

cv(r) dr
T' QA(T, T) T

(24)

It is remarkable that the specific heat does not appear
in Eq. (21). From this it can be seen that do/ d(, where
d(= A/Cv dt is the normalized process time [8], is gen-
erally not constant for variable time scale Cv/A. The
thermodynamic length, on the other hand, is

C0
3O

O0
Q 2

CL0
1

Q)

T/Tp

10

QCv(T) dTS—
7 'c T (25)

B. The case BA/BT' = 0

For constant time scale, Cg and Kg are proportional to
each other, Ks = QCv /A l:~.

FIG. 1. Entropy production rate for an optimized process
with heat transfer via blackbody radiation as a function of
system temperature, for di8'erent values of the speed parame-
ter b equal to —0.1 (a), —0.02 (b), 0 (c), 0.02 (d), aud 0.1 (e).
Each sector of each curve belongs to a certain process. For
each curve the entropy rate is normalized to 1 for T = To, the
temperature is normalized to a reference temperature To.

We discuss the case that the heat conduction does not
depend on the external temperature, OT A = 0, i.e. , A is
a function of T only, A(T). This is the most general case
considered in [8].

From Eq. (21) we obtain whereby Tp is an arbitrary reference temperature. Thus
for the optimal process holds

doT / Ti'
const = —= A(T) i

1—
dt T, q T') (26)

(T')4 —T4 = bTO' (T') ~ . (29)
Thus for an optimal process the temperature ratio T'/T
should be a function of A, and Eq. (23) applies. In the
special case of constant heat conductance A the entropy
production rate is constant [1] although none of the as-
sumptions (Al) —(A3) are satisfied.

The constant speed parameter b is a decreasing function
of the available process time; 6 ) 0 for heating and b & 0
for cooling. In the limit of slow processes it is given by

C. Blackbody radiative transfer
K2&s

(t~ —t')' ' (30)

As an example for a process where the conductance
strongly depends on the source temperature T', we dis-
cuss radiative heat transfer between two black surfaces,

X = n[(T') —T ]. (27)

= (n[(r') —T ]} s
——const = ™bTo,

OX 4n(T')' 4

We assume that n is constant. From Eq. (12) follows,
with a dimensionless constant 6,

where Kz is calculated from Eq. (24) with the limit value
of the radiative heat conductance for small temperature
differences, A = 40.T . Figure 1 shows the entropy pro-
duction rate for the optimized process as a function of
the system temperature T, for different values of b equal
to —0.1, —0.02, 0, 0.02, and 0.1. For each curve the en-
tropy rate is normalized to 1 for T = To. Note that, in
accordance with the results in [9], for large b the entropy
production rate is not constant, especially at low tem-
peratures. In this case the heat conductance is low but
strongly increases with T, thus justifying an increased
entropy production rate.
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