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Lack of self-averaging in critical disordered systems

Shai Wiseman and Eytan Domany
Department of Physics of Comp/ez Systems, Weizmann Institute of Science, Rehovot 76100, IsraeL

(Received 20 June 1995)

We consider the sample to sample auctuations that occur in the value of a thermodynamic
quantity P in an ensemble of 6nite systems with quenched disorder, at equilibrium. The variance of
P, V&, which characterizes these Buctuations is calculated as a function of the systems linear size l,
focusing on the behavior at the critical point. The specific model considered is the bond-disordered
Ashkin-Teller model on a square lattice [Phys. Rev. 64, 178 (1943)]. Using extensive Monte
Carlo simulations, several bond-disordered Ashkin-Teller models were examined, including the bond-
disordered Ising model and the bond-disordered four-state Potts model. It was found that far from
criticality all thermodynamic quantities which were examined (energy, magnetization, specific heat,
susceptibility) are strongly self-averaging, that is Vi I (where d = 2 is the dimension). At
criticality though, the results indicate that the magnetization M and the susceptibility y are non-
self-averaging, i.e., -+, ~~ + 0. The energy E at criticality is clearly weakly self-averaging, that is

V& / " with 0 & y„& d. Less conclusively, and possibly only as a transient behavior, the speci6c
heat too is found to be weakly self-averaging. A phenomenological theory of Gnite size scaling
for disordered systems is developed, based on physical considerations similar to those leading to
the Harris criterion. Its main prediction is that when the specific heat exponent n ( 0 (n of the
disordered model) then, for a quantity P which scales as l~ at criticality, its variance Vz will scale
asymptotically as l ~+ . The theory is not applicable in the asymptotic limit (l —+ oo) to the
bond-disordered Ashkin-Teller model where —= 0+. Nonetheless in the accessible range of lattice
sizes we found very good agreement between the theory and the data for Vx and Vz. The theory
may also be compatible with the data for the variance of the magnetization VM and the variance of
the speci6c heat V~, but evidence for this is less convincing.

PACS number(s): 05.50.+q, 75.50.Lk, 75.40.Mg, 75.10.Nr

I. INTRODUCTION

How is the critical behavior affected by the introduc-
tion of disorder (usually dilution or bond-randomness)
into a model? This question has been extensively stud-
ied [1] experimentally, analytically [2], and numerically
[3] for quite some time now. Many studies concentrate
on finding out to which universality class certain disor-
dered models belong, e.g. , calculating critical exponents.
In this work we consider a different aspect of the same
question. The measurement of any density of an exten-
sive thermodynamic property P (e.g. , P = E, M, Ch, or

y) in a disordered system may hypothetically be done
in the following way. An ensemble of macroscopic disor-
dered samples of size l is prepared; denote by x a sample
with a particular random realization of the quenched dis-
order. Now in each sample x, P (t) is measured over a
long time interval, and P, the average over time t is cal-
culated. Close to the critical point the measurement of
P will require long times due to large thermal Quctua-
tions which will occur. In addition, since in every sam-
ple a different configuration of the quenched disorder is
present, a different value for P will be measured. Next,
the average of P over the ensemble [P ) ([ . .

] stands for
an ensemble average over the difFerent samples) is calcu-
lated and so is its variance

Assume that the time interval of the measurement was
long enough so that thermal fluctuations in P (t) were
averaged out perfectly and P may be considered to be
exact. The question then rises: How will the variance V~
change as the critical temperature is approached or as the
correlation length $ [4] is increased? This question, which
concerns the way in which disorder affects the behavior
of systems near their critical point, is approached in this
work using the framework of finite size scaling.

A common practice in Monte Carlo (MC) simulations
is to examine the critical behavior by simulating a system
at its critical temperature T and changing the lattice
size l. According to the theory of finite size scaling [5]
the lattice size l sets the scale of the correlation length
in such a finite system. Thus the dependence of P on $
in an infinite system close to criticality is substituted by
dependence on / in a finite system at criticality. When
a disordered system is considered, then many samples
need to be simulated in order to obtain estimates of P
which are averaged over the disorder. In this case, the
question, which is the main theme of this work, would be:
how does the effect of disorder on the sample to sample
fIuctuations in P change, as the lattice size l is increased
at the critical temperature? Or how does Vj scale with
l? This question is not only of theoretical interest in its
own right, but also of practical interest for MC studies
of critical disordered systems. If the relative variance
V /[P]2 decreases with increasing l, then the number of
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samples needed to obtain [P] to a given accuracy goes
down with increasing /. If, on the other hand, V /[P] is
independent of /, then the number of samples which need
to be simulated is independent of l and the total amount
of work rises very strongly with l.

The issue which we study in this work should not be
confused with two closely related issues. The first is usu-
ally referred to as the property of self-averaging of ad-
ditive (extensive) quantities in disordered systems [6].
Consider again the ensemble of macroscopic disordered
samples of size L. The question is then whether

V /[P] ~0 as' ~oo. (2)

If so, then the measurement of P in one very large sam-
ple x which occurs with reasonable probability will pro-
vide a good estimate of the ensemble average. This is
very important for the comparison of theoretical work,
where the configurational average is taken, with experi-
ments, where only a large single sample is examined. As
first argued by Brout [7], we may divide the sample x
into n large subsamples (much larger than the correla-
tion length (). If we assume that the coupling between
neighboring subsystems is negligible, then the value of
any density of an extensive quantity over the whole sam-
ple is equal to the average of the (independent) values of
this quantity over the subsamples. Provided the proba-
bility distribution of the P's of the subsamples has a finite
variance, then according to the central limit theorem the
value of P is distributed with a Gaussian probability dis-
tribution around its mean [P ]. The square of the width
of the Gaussian, Vj, is proportional to — l ". In this
case (2) is fulfilled, and P is called self-averaging.

The quantities which are studied here are all densities
of extensive self-averaging quantities (far from critical-
ity). Nonetheless, note that our question, as it was for-
mulated for xnacroscopic samples (I )) (), concerned the
dependence of V on the correlation length ( and not on
the sample size l. On the other hand, as we will exam-
ine finite samples of size I at criticality where ( t, the
Brout argument does not hold, since the average of P
over neighboring subsamples may not be considered as
independent. Thus at criticality there is no reason to ex-
pect that Vj I ". An example for a phase transition,
where sample to sample fluctuations result in non-self-
averaging of certain quantities, is the percolation transi-
tion. It has been shown [8] that the resistive suscepti-
bility and the conductivity are non-self-averaging at the
percolation threshold.

A second related issue is that of self-averaging in ho-
mogeneous systems. This question concerns the ther-
mal fluctuations in the value of a density P in a ho-
mogeneous system of size l. Define the thermal vari-
ance as 0& ——((P —(P))2), where (.. ) denotes ther-
mal or time averaging. The following notions (slightly
modified) have been introduced by Milchev, Binder, and
Heermann [9,10]: If cr&~/(P)2 ~ 0 as l ~ oo, then P
is self-averaging, otherwise it is said to exhibit lack of
self-averaging. If

then P is strongly self-averaging. If

oz, /.(P) -l *' and 0 ( xx & d, (4)

then P is weakly self-averaging. When I )) ( it was found

[9,10] that averages of simple densities such as E, M are
strongly self-averaging while quantities obtained &om the
fluctuations of these densities such as the specific heat C
and susceptibility y are non-self-averaging. At criticality
the singular part of the energy E is weakly self-averaging
while C, M, and y exhibit lack of self-averaging. For
example, (M)2 I 2~~ and o.& M y/l" l~~"

t ~/~, so that M is non-self-averaging.
The issues of self-averaging in disordered systems and

homogeneous systems concern the asymptotic behavior of
the fluctuations due to disorder and the thermal fluctua-
tions, respectively, as the system size is increased. While
self-averaging in homogeneous systems at criticality has
been addressed previously [9,10], this study involves the
question of self-averaging in disordered systems at criti-
cality. With the increase in the available computational
power, a numerical investigation of the sample to sam-
ple fluctuations of thermodynamic quantities is nowadays
feasible (whereas previously only calculation of the en-
semble average, which is less demanding computationally,
was feasible).

The particular model which is used here to study the
question of the self-averaging of fluctuations due to dis-
order at criticality is the bond-disordered Ashkin-Teller
model on a square lattice. Actually this work is based on
further analysis of results which were obtained in a pre-
vious MC study [ll] which aimed to determine the uni-
versality class of the model. The random-bond Ashkin-
Teller model is particularly suitable for studying the ef-
fects of disorder on critical behavior. This is because
the pure model possesses a line of critical points along
which critical exponents vary continuously. In particu-
lar, the scaling exponent corresponding to randomness
P = (n/v)~„„varies continuously and is positive. Thus,
according to the Harris criterion [12], randoxnness is a
relevant operator of varying strength, and the critical
behaviour of the disordered model was indeed found to
differ &om that of the pure system. Our conclusion in
the present work is that the efFective exponent ratio o./v
of a disordered model plays a central role in determining
the self-averaging of the fluctuations due to disorder at
criticality. For the susceptibility, for instance, our results
agree very well with a finite size scaling theory which we
develop, according to which the relative variance of the
susceptibility, Vx/[y], scales as l ~" at the critical texn-
perature. This implies lack of self-averaging when o. = 0
(as is found for the random-bond Ashkin-Teller model)
and only weak self-averaging for negative o.. Our the-
ory is successful also in describing, for models with weak
disorder, the effect of crossover on the variance.

Our finite size scaling theory is very similar to the phys-
ical arguments that led to the Harris criterion [12], which
was derived near the pure system fixed point. The differ-
ence is that we are assuming that, similar considerations
are valid near the disordered fixed point as well.

This work is organized as follows. In Sec. II we define
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the random-bond Ashkin-Teller model (RBAT) and sum-
marize its critical properties as found in a previous study
[ll]. In Sec. III we define various variances of thermody-
namic quantities in disordered systems and explain their
meaning. We explain how the "sample to sample vari-
ance" can be estimated &om MC results. In Sec. IV we
display our results for several bond disordered Ashkin-
Teller models, including the four-state Potts and Ising
models. We have measured the "sample to sample vari-
ance" at criticality for different lattice sizes and also for
different degrees of disorder. We discuss some qualita-
tive features of these results, such as the apparent lack of
self-averaging and the dependence on the amount of dis-
order and on the specific heat exponent o.. In Sec. V we
develop a phenomenological finite size scaling theory for
the "sample to sample variance. " In Sec. VI we compare
the predictions of the theory with the numerical results.
We find good agreement in the case of the susceptibility
and the energy, while the agreement in the case of the
specific heat and magnetization is more questionable.

II. THE RANDOM-BOND ASHKIN-TELLER
MODEL

The model we study is the random-bond Ashin-Teller
model (RBAT) on a square lattice. On every site of the
lattice two Ising spin variables, cr, and 7;, are placed. De-
noting by (ij) a pair of nearest-neighbor sites, the Hamil-
tonian is given by

as a reference pure model [18]. Whereas we found no
essential change induced by randomness in the order pa-
rameters' critical exponents, the divergence of the spe-
cific heat C did change dramatically. Our results favor a
logarithmic type divergence at T„C log l for the en-
tire critical manifold of the random-bond Ashkin-Teller
model, including the four-state Potts model, but exclud-
ing the random-bond Ising model, for which C log log l
was obtained.

Here we give some of the details of the simulations
and our main numerical results for the critical behavior.
These are necessary for understanding and analyzing our
variance results. All the results listed here were presented
in detail in [11];some essential points are reviewed here
for the sake of completeness.

Two series of critical RBAT models were studied in
order to monitor two effects. The first series of mea-
surements were performed at five models (or points in
the couplings space), ((K, A ), (K2, Az) );, i = 0, . . . , 4,
which we label as C;, i = 0, . . . , 4. These were cho-
sen so as to interpolate between Co, which is a random-
bond Ising critical point (Ai = A2 = 0), and C4,
which is a random-bond four-state Potts critical' point
(Ai = Ki, A2 = K2). The points C; interpolate in a
similar manner to the way in which the critical line of
the pure AT connects the pure Ising critical point with
the pure four-state Potts critical point. The extent of
deviation &om pure behavior is determined by the dif-
ference between the two sets of couplings. For the series
C;, i = 0, . . . , 4 the ratio of io was chosen, i.e. ,

'8 = —) [K; ~ o; o~ + K; ~ r; r~ + A; ~ o;r; o~ r~] .
(~»)

~2 ~ ~1
10 (7)

The positive coupling constants K; ~ and A; ~ are chosen
according to

(Ki, Ai) with probability 2

(K~, A2) with probability 2 .

The homogeneous model [13] [ (K, Ai) = (K2, A2) ]
possesses a line of critical points, along which critical ex-
ponents vary continuously. This critical line interpolates
between the Ising and four-state Potts models. Even
though the scaling exponent corresponding to random-
ness, P = (n/v), also varies continuously along this line,
it takes positive values, (1 & P ) 0), so that randomness
is relevant. Indeed the critical behavior of the disordered
model was found to be different &om that of the pure
one [11].In [11]a duality transformation was used to lo-
cate a critical plane of the disordered model; the random
model is critical when (K, A ) are the dual couplings
of (Ki, Ai) [14—17]. This critical plane corresponds to
the line of critical points of the pure model, along which
critical exponents vary continuously. A finite size scaling
study was performed for several critical models, extrap-
olating between the critical bond-disordered Ising and
four-state Potts models. The critical behavior of each
disordered model was compared with the critical behav-
ior of an anisotropic Ashkin-Teller model which was used

so that randomness will be pronounced [19,20].
Two additional measurement points (or xnodels) were

intended to monitor the effect of varying the amount
of randomness on the critical behavior. The points A2,
B2, C2 represent three RBAT models with coupling ra-

d m& = 2~ 4~ io~ respectively. Thus
the model A2 possesses the lowest degree of randomness,
while the model C2 possesses the highest degree of ran-
domness. The usual definitions fer energy E, specific
heat C, magnetization M [21], susceptibility y, polariza-
tion p = (or), and susceptibility of the polarization y~i'~

were used. Since the specific heat seems to play a domi-
nant role in the behavior of the variance, we elaborate on
the specific heat results, and even reproduce one graph.
For the specific heat we found excellent agreement with
the finite size scaling form

C = ao + bo in[1 + co(l~ ~" &"- —1)] (8)

where (n/v)z„„ is the critical exponent ratio of the cor-
responding anisotropic (pure [18]) model. Equation (8)
reproduces expected scaling forms in various limits as we
now show. The constant t"0 can be expressed as

where / is a crossover length, at which crossover from
the pure model's power law behaviour to the random
logarithmic behavior occurs. Thus for l (( l„Eq. (8)
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reduces to the pure model behavior,

t = ap+ baal (10)

while for l )) l and l~ / ~p"- && 1 a logarithmic behavior
is attained,

C = a + b ln(1 + g ln I), (12)

with g = cp(n/v)~„„. This is the finite size scaling form
which was predicted analytically [22] and confirmed nu-
merically [19] for the random-bond Ising model.

In Fig. 1 the specific heat of the critical RBAT mod-
els is plotted on a log-log scale, with fits to (8) using
the full lattice size range 4 & l & 256. The fitting
parameters ap, bp, and cp together with (n/v)~„„and
the crossover lengths l are listed in Table I. Note that
(n/v)~„„was not a fitting parameter, and was taken for
each RBAT model from results of independent simula-
tions of the corresponding anisotropic AT model. For

Kthe models Cp 4 (with large randomness, ~, = ip),
the crossover lengths l were found to be 1. Nonethe-
less these models dier by exhibiting some crossover with
difFerent values of (n/v)~„„(see Table I). On the other
hand, (n/v)~„„of the three models A2, B2, C2 is very
similar (0.40, 0.37, 0.37, respectively) but they differ in

their amount of randomness ~$ 2 4 yp respec-
tively. Consequently, as one would expect, we found that
their crossover lengths decrease as randomness increases:
l = 51 + 7, l = 4.0 + 0.4, l, = 1, respectively.

We found that the magnetization M, susceptibility y,
and the susceptibility of the polarization y~"~ are well
described at criticality by the following scaling laws:

/3

M =AMI (13a)

C = a+ blnl .

Apart from crossing over to the correct pure result (10)
when cp ~ 0, in the Ising model limit, (n/v)~„„~ 0,
Eq. (8) becomes

TABLE I. The fitting parameters of the critical specific
heat of the random-bond Ashkin-Teller model. ap, bp, and cp
were obtained by fitting the specific heat results of the seven
critical RBAT models Cp. ..4 and A2, H2 to Eq. (8) using lattice
sizes 4 ( I & 256. ( —)~„„is the specific heat exponent of the
corresponding anisotropic (pure) models. I, is the crossover
length deffned in (9). Errors are given in parentheses only
when the error is smaller than or of the same order as the
number itself.

Cp
(Ising)
Cg
C2
C3
C4
(Potts)
B2
Ag

ap ~p Cp l,
-0.37(12) 0.58(1) 5.2E4(1.5E4) 1.0

P llI'8

0 .0001(150)

-4.6
-4.1
-3.9
-4.1

0.51(2) 1.5E6
0.46(127) 5.5E4
0.43(4) 5.5E4
0.42(1) 1.0E5

1.0
1.0
1.0
1.0

0.171(5)
0.375(5)
0.549(8)
0.630(8)

-0.09(5) 2.00(4) 1.47(10)
-0.07(6) 9.35(33) 0.26(2)

4.0(4) 0.371(5)
51(7) 0.40(1)

y = A~l=, (13b)

~(J )
g&» = A („)l'- (13c)

&(J )
The estimates for the exponents ~, ~, and ~, which
were obtained using lattice sizes l & 24, are listed in
Table II. Even though one observes slight variation of

and ~ &om model to model, the results are consis-

tent also with fixed, nonvarying exponents ~ =
8 and

4, modified by a logarithmic correction. So
shows very little variation or does not vary at all. This
is nearly the same behavior as was found for the corre-
sponding anisotropic models where — is predicted ana-
lytically [23,24] to be constant for all models & = 4. The

&(I )
exponent ratio ~ connected with the susceptibility of
the polarization which varies continuously for the pure
Ashkin-Teller model seems to do so also for the random
models (see Table II).

C~

Cz

C o

TABLE II. Critical exponents ratios for seven critical
RBAT models Cp. ..4 and A~, B2. These exponent ratios for
the magnetization M, the susceptibility y, and the suscepti-
bility of the polarization y " were obtained by fitting results
for lattice sizes I ) 24 to Eq. (13).

1 OO

FIG. 1. Specific heat, C, as a function of l on a log-log
scale for seven critical RBAT models. Cp is a random-bond
Ising model and C4 is a random-bond four-state Potts model.
The curves are fits to the form (8), yielding estimates for the
coefficients of (8) which are listed in Table I.

Cp (Ising)
Cg
C2
C3
C4 (Potts)
Bg
A2

1.751(5)
1.751(6)
1.743(5)
1.736(3)
1.714(5)
1.738(4)
1.739(5)

V

0.125(3)
0.124(3)
0.129(3)
O.133(2)
0.145(3)
0.132(3)
O.132(3)

1.549(9)
1.575(8)
1.597(9)
1.638(5)
1.714(5)
1.586(6)
1.590(8)
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III. VARIANCES: DEFINITIONS AND
ESTIMATORS

IV. VARIANCE RESULTS OF THE
RANDOM-BOND ASHKIN- TELLER MODELS

In this section we de6ne two types of variances of ther-
modynamic quantities in disordered systems and explain
their relation to error estimates. We explain how the
"sample to sample variance" can be estimated &om MC
data.

First consider some sample x which is simulated at
some temperature T. Because of the thermal Quctuations
and the finite simulation time, we obtain for this sample
an estimate P of the exact P, with an error

2

(SP ) = '*, TMc large .
TMC

(14)

TM~ is the length of the MC runs and w is the autocorre-
lation time of the MC dynamics. o& is the variance of P
within the sample x due to thermal Quctuations. In prac-
tice, in order to avoid the estimation of w which requires a
long simulation time, we estimate (bP ) by binning the
MC sequence into 10 subsequences and treating each
subsequence as independent (the Jack-knife procedure).

The estimate for the error in the estimation of [P ],
the average of P over all samples, is given by

A. Far from criticality

Far &om criticality the correlation length is Gnite and
one would expect the system to behave similarly to a
collection of independent smaller systems. Thus one
would expect the Brout argument to hold with the vari-
ance scaling as l ". Nonetheless this is not obvious:
Note that the thermal Quctuations of the speci6c heat
C and the susceptibility y are non-self-averaging even
away &om criticality [9,10]. Thus the RBAT model C2
(the choice of model was arbitrary) was simulated at
the reduced temperature t = 1. In Fig. 2 we show the
relative variances VJ /[P]2, where Vx is defined in (16)
and P = E, M, C, g, as a function of logypl The lin-
ear curves are fits to the form Vj /P2 = A/ ~. We find

p = 2.06(7), 2.13(7),2.04(6), 2.12(7) for y, C, E, M, re-
spectively. Thus the Brout argument is con6rmed and
far &om criticality strong self-averaging holds.

B. The variance at criticality

n

(b[P ])2 = ) (P —[P ]), n large, (15)
+=1

where n is the number of random-bond samples. In
contrast to (14) this total error has two contributions,
namely the sample to sample Quctuations of the exact P
around [P ] and the thermal Huctuations of P around
P within each sample, that is,

(b[P*])' = —„+
2~r, z n, TMc large.

n+M c (16)

Thus by estimating (bP ) for all x and (b[P ]) with
(15) we obtain V through (16); it is an unbiased esti-
mate of the variance of the exact P due to sample to
sample Huctuations (see Ref. [25] for a basic statistical
explanation). In order to minimize the error of [P ] for
a given amount of computer time, one needs to adjust
TMC so that the two terms in (16) are equal. However, if
one is interested in obtaining a reasonable estimate of V,
TMg needs to be chosen larger, so as to obtain accurate
estimates of the P 's and minimize the second term on
the left-hand-side of (16).

As explained in the Introduction, the dependence of
thermal variance o.& on the lattice size / has been exam-
ined (for hoxnogeneous models) in Refs. [9,10]. Thus &oxn
here on the term variance will refer to the variance due to
disorder. Here it is our aim to examine the dependence
of the variance V on l at criticality, one reason being that
for MC simulations of disordered systems, it has the big-
ger inQuence on their accuracy. This is in addition to the
theoretical motivation given in the Introduction. In the
next section we display our results for the variance V of
the random-bond Ashkin-Teller model.

Diets ibutione

&~Pe
V~/C

&c

MM AM

ZO SO

FIG. 2. The relative variances Vx /[P], P = E, M, C, y as
a function of logyp l for the RBAT model t q at the reduced
temperature t = 1. The linear curves are fits to the form
Vx /P = Al ~, yielding p = 2.06(7), 2.13(7),2.04(6), 2.12(7)
for y, C, E, M, respectively.

In order to visualize how large the sample to sample
Quctuations are, at the critical temperature, several his-
tograms of the number of occurrences of samples accord-
ing to their susceptibility y or according to their speci6c
heat C, are shown in Figs. 3—7. The abscissa is scaled
by the average susceptibility [y] (or specific heat [C]) of
all samples. The histogram of the susceptibility for lat-
tice size l = 192 is shown in Fig. 3 for the Ising model
Cp and in Fig. 4 for the four-state Potts model C4. The
y axis of both figures is scaled so that the area of both
histograms is the same. Even though the lattice size is
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O. 6
xY[x]

O. 0
c/[c]

FIG. 3. Histogram of the number of occurrences of samples
according to their susceptibility scaled by the average suscep-
tibility, for the Ising model Co and lattice size l = 192; with
240 samples.

FIG. 6. Histogram of the number of occurrences of samples
according to their specific heat scaled by the average specific
heat, for the Ising model Co and lattice size L = 48 with 600
samples.

O. S
xP[x]

FIG. 4. Histogram of the number of occurrences of sam-
ples according to their susceptibility scaled by the average
susceptibility, for the four-state Potts model C4 and lattice
size l = 192; with 370 samples.

rather large, the distributions are very wide; a measure-
ment of a value of y at 40'Fp above the mean [y] has a
non-negligible probability for the four-state Potts model.

There is a marked difference between the width of the
distribution of the Ising model (gVz/[y] 0.2) and the
much wider distribution of the four-state Potts model

(/A/[y] = 0.32). The histogram of the susceptibility
for the four-state Potts model with lattice size l = 24 is
shown in Fig. 5. Note that the width of the distribution
here is slightly narrower (= 0.29) than that of Fig. 4.
This very small difference (and even slight increase) of
the width as l increases hints at a lack of self-averaging of
the susceptibility of the four-state Potts model. An addi-
tional striking difference between the susceptibility distri-
butions of the four-state Potts model, Figs. 4 and 5, and
the Ising model, Fig. 3, is that the former are strongly
asymmetric (this asymmetry was measured by measuring

xY[x]
I

O. S
c/[c]

FIG. 5. Histogram of the number of occurrences of sam-
ples according to their susceptibility scaled by the average
susceptibility, for the four-state Potts model C4 and lattice
size l = 24; with 920 samples.

FIG. 7. Histogram of the number of occurrences of samples
according to their specific heat scaled by the average specific
heat, for the four-state Potts model C4 and lattice size l = 48
with 630 samples.
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the third moment of the distribution). A possible expla-
nation for this asymmetry, which exists to some degree
in all the models, is given in Sec. V and in [26] . The
average errors in the estimation of the susceptibility of
a single sample x, divided by the average susceptibility,
[by ]/[y], are 0.01,0.017, and 0.012 in Figs. 3, 4, and
5, respectively. Since these errors are negligible as com-
pared to the widths, the histograms are highly reliable.

The histograms of the specific heat for lattice size
l = 48 are shown in Fig. 6 for the Ising model Co and in
Fig. 7 for the four-state Potts model C4. Note that the
distributions of the specific heat are much narrower than
those of the susceptibility. The width of the distribution
for the four-state Potts model (= 0.126) is about twice
wider than the width of the distribution for the Ising
model (= 0.062). The asymmetry of the distribution for
the four-state Potts model is almost unnoticeable and is
of the opposite sign than the asymmetry of the suscepti-
bility. The average error in the estimation of the specific
heat of a single sample x divided by the average specific
heat [bC ]/[C] is 0.038 for the Ising model and 0.048 for
the four-state Potts model, so that these histograms are
much less accurate than those of the susceptibility. For
the larger lattices the ratio between the width and the er-
ror becomes smaller, mostly because the width becomes
smaller, and histograms become even less accurate. Thus
in order to obtain more accurate histograms and also bet-
ter estimates of the variance (which is the square of the
width of the histograms), longer siinulation times would
be needed, in order to obtain more accurate estimates of
the C 's. This may be done in a future study.

2. The var'iance

In Fig. 8 we show the variance of y, V~, of the seven
critical RBAT models. For the sake of clarity (so that the
data do not fall on top of each other) Vx of the inodel
C, was multiplied by 2'+ . The lines are fits according

to a theory which we develop in the next section. Here
we just note that V~ is measured with high precision, so
that it may be faithfully tested against theory.

The relative variance Vx/[y] is plotted in Fig. 9. Since
it is the ratio of two Quctuating quantities, the errors are
quite large. Nonetheless the main trends can be seen.
First note that apparently for all models (except for the
weakly random model A2) V~/[y] m const, so that the
susceptibility is non-self-averaging. It is also possible
that Vx/[y] is slightly increasing with l for some models
(e.g. , the four-state Potts model C4) or slightly decreas-
ing for the Ising model Co. Upon comparison of the mod-
els C; i = 0, . . . , 4 we make the following observations.
The higher the specific heat of a model is, the larger is
its relative variance (see Fig. 1). The higher the expo-
nent ( —)~„„ofthe pure model (see Table I) is, the larger
is the initial slope of the relative variance of the corre-
sponding random model. Thus the relative variance of
the Ising model Co is the smallest and the increase with
l, for small l, is the smallest. The relative variance of the
four-state Potts model C4 is the largest and the increase
with l, for small I,, is the largest. The relative variances
of the RBAT models Ci ~ 3 fall in between. The relative
variance of the weakly random model A2 shows a steady
increase with /, in contrast with the highly random model
Cq, in which a shorter increase is followed by a plateau.
This is reminiscent of the specific heat of the A2 model
which exhibits very slow crossover kom the power-law be-
havior (10) to the asymptotic logarithmic behavior (11)
with a crossover length of l —50. Thus for small lat-
tice sizes the model A2 exhibits efFective exponents (of
the specific heat) of the pure model, and also exhibits
a small variance due to its small degree of randomness.
But as the lattice size increases, this eKect diminishes,
the efFective exponents approach the random value, and
the variance approaches that of the highly random mod-
els.

A very similar picture is obtained for the relative vari-
ance of the magnetization VM/[M]2, as seen in Fig. 10.
The qualitative picture of the magnetization results,
Fig. 10, is very similar to that of the susceptibility results,
Fig. 9, showing the same trends as outlined above. Yet
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FIG. 8. The variance of y, V~, as a function of logyp l for
all critical models, Cp. ..4, and Az, B2 of the RBAT model. For
the sake of clarity V~ of the model C, was multiplied by 2'+ .
The solid lines are fits to the form (41), yielding estimates for
6tting parameters which are listed in Table IV.

I

1 OO

FIG. 9. The scaled variance of the susceptibility, V~/[y]
as a function of log~p I, for all critical models, Cp ..4, and A2, Hq
of the RBAT model.
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FIG. 10. The scaled variance of M, V~/[M] as a function
oflog~p / for all critical models, Cp. ..4, and A2, B2 of the RBAT
model.

FIG. 12. The scaled variance of C, Vc/[C], as a function
of logyp l for all critical models, Cp. ..4, and A2, Bq of the RBAT
model.

we emphasize that even though the magnetization is an
intensive quantity, it does not seem that VM/[M]2 ~ 0 as
l increases so that the magnetization is not self-averaging
at criticality.

In Fig. 11 the variance of the energy Va [27] is plotted
on a log-log scale. For the sake of clarity (so that the
data do not fall on top of each other) Va of the model
C, was multiplied by 2'+ . We fit the data to the form
Va ~ l s for lattice sizes l ) 16 (but the fitting curves
shown in Fig. 11 are not made with this form but with
a more complicated one which is due to a theory which
we develop in the next section). The highest value of 8,
0 = 1.855(13), was obtained for the Ising model Co. For
the four-state Potts model, |4, we obtained 0 = 1.72(2),
while for the models Cg 2 3 the values of 0 fell between
these two values. Thus in contrast with the susceptibility
and the magnetization, the variance of the energy V~ is
weakly self-averaging. But similar to the susceptibility,
models with a higher specific heat or with a higher ef-

C~ 0

C~

C

Co

P3 x

Az a

0

1 O
I I

1 OO

FIG. 11. The variance of the energy, V~, as a function of
logy p L for all critical models, Cp. ..4, and A~, B~ of the RBAT
model. For the sake of clarity V& of the model C, was multi-
plied by 2'+ . The solid lines are fits to the form (42), yielding
estimates for the fitting parameters a„,b„which are listed in
Table IV.

fective —have a smaller 0, and thus their V~ decreases
more slowly with l. For the weakly random model A2,
8 = 1.30(3) so that again the slope of the variance is
correlated with the high slope of the specific heat of this
model.

The results of the relative variance Vc/t, plotted in
Fig. 12, seem to indicate that the specific heat is weakly
self-averaging. Nonetheless the e8'ective slopes increase
with l (or the absolute values of the slopes decrease with I,
this trend being strongest for the four-state Potts model
C4) so that it is possible that self-averaging does not
hold for very large l. It also seems possible that the Ising
model is self-averaging while the other models are not.
Clearly more accurate data and data &om larger sys-
tems would be useful. As in other variances, we observe
qualitatively that the relative variance of the moderately
random models, A2 and B2, approaches that of the highly
random ones as l increases and even exceeds it. The find-
ings of this section are partly summarized in Table III,
where the self-averaging properties of the highly random
critical models are displayed.

In the next section we develop a phenomenological fi-
nite size scaling theory for the variance. This theory ex-
plains the apparent connection between the variance and

TABLE III. Summary of the self-averaging properties of
the critical random-bond four-state Potts C4, Ashkin-Teller
Ci ..3 and Ising Cp models. The letter "n" stands for
non-self-averaging, "w" for weakly self-averaging, and "?" for
inconclusive results. This summary is according to a sub-
jective examination of the numerical results as displayed in
Figs. 9, 10, 11, 12, and 13. According to our theory, only the
energy E is weakly self-averaging while all other quantities
are non-self-averaging in all of these models. If the theory is
correct, then any numerical indication to the contrary is due
to a "transient" finite size effect.

Model
Co (Ising)
C$...3 (Ashkin-Teller)
C4 (Four-state Pot ts)
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the specific heat behavior of the random models. In the
final section we explain how this theory was applied to
the results we have displayed here and discuss the com-
parison between our scaling theory and the numerical
results.

V. FINITE SIZE SCALING OF SAMPLE TO
SAMPLE FLUCTUATIONS AT CRITICALITY

As our numerical results show, we have obtained quite
accurate estimates of the variance V of the thermody-
namic functions at the critical temperature for difFerent
lattice sizes l. In order to understand these results, a phe-
nomenological theory of finite size scaling of disordered
systems, which will take into account sample to sample
fluctuations, needs to be developed.

The main result of our theory will be the scaling of the
variance V with l at criticality. To be precise, we will
calculate the variance V of P (e.g. , P = C, M, E, or
y, where all these quantities are normalized per volume;
i.e., they are densities)

V(T, I) = [(P*(T,I) —[P-(T.I)])'1

P (T, l) is the exact value of P (that is, after the thermal
Buctuations have been averaged over) of a specific sample
x (with some specific realization of randomly distributed
bonds) of linear size l at temperature T. Again the square
brackets denote averaging over the different samples x.

Our conclusion will be that when the specific heat ex-
ponent o. is negative, the leading behavior of V at T
1s

ture at which a maximum in the specific heat of the sam-
ple occurs. We denote the average pseudocritical tem-
perature as T (l) = [T,(x, l)]. We assume that, as is the
case in homogeneous systems,

T, (l) —T, = al (19)

where a is a constant, yq
——1/v, and T, = limx~~ T,(l).

T is the average critical temperature of the ensemble of
infinite samples. Equation (19) is supported by a nu-
merical study [28] of the three-dimensional dilute Ising
model.

DifFerent realizations of bonds lead to (slightly) difFer-
ent pseudocritical temperatures T,(x, l). We assume that
T (x, l) fiuctuates around T, (l) with width

bT, (l) - l "~2 . (20)

(21a)

This assumption is in the spirit of the assumption leading
to the Harris criterion [12,1], that weak bond disorder
in subsystems of volume (" (where $ is the correlation
length) leads to fiuctuations of the local subsystem effec-
tive critical temperature, which are of width bT,
Thus (20) is probably true for small disorder and small l,
or close to the pure system fixed point. Without proof,
we assume (20) to be valid for large disorder as well,
though for large disorder (or close to the random fixed
point) the possibility that b'T, (l) l ~' has been raised
[29]

Next define reduced temperatures

V (T„l) K„l ~+ implying
"

l . (18)
Z Ct

Where K„ is a measure of the amount of randomness or
disorder and p is the critical exponent of the quantity
P, e.g. , if P = y, then p = ~. Equation (18) implies
that disordered systems at criticality are only weakly
self-averaging when —( 0. For —= 0+(logio), as was
found [11]for the random bond Ashkin-Teller model, our
derivation is strictly not valid for l )& 1. Nonetheless
for the range of lattice sizes considered, we found good
agreement between the numerical results for the variance
of y, g„, and E and theoretical fits according to (18) to-
gether with next to leading terxns (see Figs. 8, 13, and 11
and the discussion in the next section). If no dramatic
change occurs at larger sizes, then the sample to sample
fluctuations of the randoxn-bond Ashkin-Teller model are
non-self-averaging.

The result (18) indicates that the sample to sam-
ple Quctuations at the critical temperature T depend
strongly on the specific heat exponent —. This strong
dependence can be made plausible based on heuristic ar-
guments. These heuristic arguments will serve to define
some basic ingredients of our approach and will be fol-
lowed by a more quantitative treatment.

We start by characterizing every specific sample x of
size l by a pseudocritical temperature T (x, l). This pseu-
docritical temperature can, for instance, be the tempera-

(21b)

and the reduced width

(2lc)

We make (20) more specific by assuming for t (x, l) a
Gaussian probability distribution q(t, (x, l))

)d/2
q(t, (x, l)) = exp( —[t,(x, l) —t, (l)] l /2K ) .

(22)

The width of the distribution is controlled by the lattice
size l and by K„which is a measure of the amount of
randomness or disorder.

The scaling relations (19) and (20) already make the
result (18) plausible. The main idea is that the sample
to sample fluctuations at T, are governed by the rela-
tive magnitude of two temperature differences. The first
is the difference between the average pseudocritical tem-
perature T (l) and the critical temperature of the infinite
system T, . The second is the difFerence between T, (l)
and T, (x, l), the pseudocritical temperature of the sam-
ple x, which is governed by bt, (l). If bt, (l) » ~t, (l)~,
then fiuctuations in t (x, l) are so large that for some
samples oxie will find T, & T (x, l) while for other sam-
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T —T, (x, /)

T

We assume [for samples with T close to T, (x, /)] a finite
size scaling form for the singular part of P,

P""s(T,/) = /~Q (t /"') . (24)

The form of the function Q (Z) (or its coefficients) is as-
sumed to be sample dependent but the critical exponents
p, yq are assumed to be universal or sample independent.

Equation (24) embodies the usual [31] finite size scaling
assumption that in the vicinity of the critical tempera-
ture the behavior of a large finite system is governed by
the scaled variable ( //. We use this assumption, even
though in the present context it implies that a single
correlation length $ is sufficient to describe the state of
a disordered sample, which is not obvious at all. This

I

ples T, ( T, (x, /). In this case, even though we are
simulating all samples at T, some samples are in their
high-temperature phase while others are in their low-
temperature phase. This will obviously increase the sam-
ple to sample fluctuations in any observable. If, on the
other hand, ht, (/) &( ~t, (/)~, then T, —T, (x, /) will al-
ways have the same sign and fluctuations will be smaller.
The condition bt, (/) (( ~t (/)

~

will be fulfilled for large / if
yq

—
2 ( 0 or, using the hyperscaling relation —= 2' —d,

if —( 0. For disordered systems, the bound yq & d/2
has been proven by Chayes et a/. [30], so that asymptot-
ically one always finds —& 0. However, for small l and
small disorder, the system may be governed by a positive
( —)~„„. In this case sample to sample fluctuations can
increase with lattice size, as is indeed seen in our numer-
ical results for the weakly disordered model A2. Thus on
the basis of these considerations one can conclude that
the sign and magnitude of the specific heat exponent o;

of the disordered model have a strong influence on the
sample to sample fluctuations [26], and will determine
whether they are self-averaging. The discussion above is
analogous to the physical arguments leading to the Har-
ris criterion [12], but in a finite size scaling formulation.
The difference is that the Harris criterion was derived
near the pure system fixed point, while we are assuming
that similar conditions apply also next to the disordered
critical fixed point.

In order to put these general considerations on more
quantitative grounds, we proceed to derive the finite size
scaling expression (18) for the variance of various ther-
modynamic quantities. Start by introducing the reduced
temperature of each sample 2:,

"thermal" l dependence is compounded by the fact that
if we increase L, we must generate additional random
bonds, and hence increasing l necessitates, effectively,
changing x (that represents a particular realization of the
random-bond variables). Since x affects P""s through
the nonuniversal coefficients of Q, a nonthermal depen-
dence of P""g on l is induced. The main task of our
analysis is to separate the thermal l dependence &om
the nonthermal component.

At this stage it is possible to draw some more con-
clusions based on (24), without making strong assump-
tions about the coefficients of Q . We leave such deriva-
tions for the Appendix. Here we proceed in a Inore
straightforward manner by using a simplifying ansatz.
Our ansatz states that the coefficients of Q depend only
on At, (x, /), the deviation of the pseudocritical temper-
ature of the sample Rom the average pseudocritical tem-
perature, defined as

At. (x, /) = t.(x, /) —t.(/) . (25)

It is convenient to proceed by rewriting t as t
& —A&, (x, /) —t, (/) with t = T '. Using the scaling of

t, (/) [see (19) and (21b)], we substitute Q by a difFerent
scaling function Q and rewrite Eq. (24) as

P"" (T, /) = / Q ((t —At, (x, /) —t, (/))/"')
= /'Q. ((t —At. (x, /))/" ) . (26)

A = Ap + AiAt (x, /) + A2(At (x, /)) +, (28)

where Ao, Ai, A2 are sample independent. The same type
of expansion is assumed for B,C, etc.

We are interested in knowing what happens at T =
T, the average critical temperature of the ensemble of
infinite samples. Thus we set T = T which implies t = 0.
For the analytic part of (27) we get

For completeness of the treatment which will later prove
to be necessary we do not neglect the analytic dependence
of P (T, /) on (t —At, (x, /)) [32], and write

P.(T, /) = A. + B.(t —At. (x, /)) + C.(t —At. (x, /))'
+ . . + /~Q ((t —At, (x, /))/"') . (27)

The coefIicients A, B,C are assumed to be sample de-
pendent in the same way that the coefficients of Q are,
namely, they depend only on At, (x, /) [33]. Next, as-
sume the dependence of the coefficients on At, (x, /) is
analytic. Since according to (22) and (25) At, (x, /) is
distributed around. zero with width that scales as L

we can expand

P " '"'"(T„/) = 4 —B At, (x, /) + C At, (x, /) +
= Ap + (Ai —Bp) At~(x~ /) + (A2 —Bi + Cp) (At~(x~ /) ) +
—= a+ bAt (x, /) + c(At (x, /))

where the second equality is reached by use of (28) and the same expansions for other coefficients. The last equality
is a redefinition of constants. In a similar way we expand Q

Q (Z) = D +E Z+E Z'+ (30)
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where D, E,F are again expanded as in (28). Again setting t = 0, we obtain for the singular part of (27)

P""s"' '(T, /) = lp(Do + (D —EoP') 4t (x, l) + (D2 —Ei/"' + Fp/ "')(&t (x /)) ] + ' (31)

We stress that since we set 2 = b,t,—(x, l)l"', Z is 8uctuating around zero with width that scales as l ~ . Thus the
expansion (30) is justified asymptotically only for o. & 0. Putting together (29) and (31) we have

P (T, l) = (a + Dplp) + (6+ Dil —Epl +"')Zt (x, l)

+(c+ D2l —Eil +"' + Fplp+ "')(At, (x, l)) + . = d+ eAt, (x, l) + f(At, (x, l)) (32)

Notice that here the only dependence on the specific sample x is through explicit dependence on At, (x, l), the deviation
of its reduced pseudocritical temperature from the average pseudocritical temperature. Taking the quenched sample
average [ ] with the probability distribution (22), using [At, (x, l)] = 0, we get

[P*(T. l)) = d+ f [(&t-(x l))'] (33)

and using [(At, (x, l)) ] = 0 we further obtain

[(P (T, /)) ] = d + e [(At (x, l)) ] + f [(At, (x, l)) ]+2df[(At, (x, l)) ] . (34)

The variance is then given by

V(T. l) = "[(&t.(x, /))') + f'([(&t.(x, /))') —[(&t.(x, /))']') = "[(&t.(x, /))') + 2f'[(&t-(x l))']' (»)
where the last equality is a property of the Gaussian distribution. Lastly we use [(At, (x, l)) ] = K„/ and obtain
to the leading orders in l

V(T l) =(6 +D l +E l +"*+26D /P —26E l+"' —2D E/P+"')K l

+(F2/2p+4yq )2K4/ —2d + (36)

V(T., l) - E,'K„'/"+"* "=E,'K„'/"-+=- . (37)

Since yq & 0, and usually p + yq & 0, the leading term in
(36) is

So that the leading behavior of P is

[P (T, /)] = a+ D lP+ F K„lP+ "'
= a+ Dol~+ FOK„l~+ (40)

The last term in (36) is proportional to K4l2P+2=, and
may be neglected with respect to (37) only for —& 0, or
if K„« 1 and / is not too large. (37) is our main result
for the variance, where all exponents p, o., v are expo-
nents that characterize the disordered system. It means
that disordered systems at criticality are only weakly self-
averaging when —( 0. Though our derivation is not
valid when —= 0+ (C logip/) it seems that in this
case there is no self-averaging of the sample to sample
fluctuations. This point is further discussed in the next
section.

We note that for o. ( 0 and in the large l limit consid-
ered at the end of the Appendix [Eq. (A4)], where

Q ( —At, (x, l)l"') m Q( —bt, (x, l)l"'),
the coefFicients of Q are independent of x so that
D = Do, E = Eo etc. Neglecting the analytic part
of P, this limit corresponds to our derivation with only
Dp, Ep Fp g 0 and all other coefficients (Di, D2, Ei, etc. )
equal to zero. Thus in this limit the main result (37) is
unchanged, though less assumptions are needed.

From (33) corrections to the scaling of P are obtaiiied,

[P (T„l)] = a + Dpl + (c + D2l —Eilp+"'

+F /
p+2yq )K2/ —d

Thus for negative n, the third term in (40) is a correc-
tion to scaling due to sample to sample fluctuations. It
follows that for —& 0, (40) and (37) are consistent with
V/[P)2 l=. A special case is when a~„„&0 and ran-
domness is an irrelevant operator (at the pure system
fixed point) with a scaling exponent (—)~„„.In this case
the disordered system has the same exponents as the pure
one, —= ( —)~„„.Therefore the correction to scaling we
have obtained due to sample to sample fluctuations has
the same exponent as the correction term connected with
the irrelevant operator corresponding to randomness.

VI. COMPARISON OF THEORY WITH
VARIANCE RESULTS OF THE RBAT MODELS

The derivation presented in the preceding section,
as can be readily seen &om Eqs. (27), (28), and
(30), involved an expansion in the two parameters

[(b,t, (x, l)) ] and [(At, (x, l)) ]l"'. These scale as

K„/ 2 and K„I&' 2 = K„/& . Thus the derivation is
valid for small K„, meaning small disorder and small —.
For negative —the validity of the expansion improves as
/ increases, while a positive —is not possible [30].
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In the case of the random-bond Ashkin-Teller model,
we have asymptotically C 6 lnl so that —= 0+. It
seems that in this case the expansion is not justified.
Practically though, for the accessible range of lattice
sizes, things depend on the constant of proportionality
b. If b is small, then for a finite but large interval of lat-
tice sizes l the expansion is justified. Indeed, in the case
of the highly random RBAT models Co 4, 6 falls in the
range 0.138(4) ( b ( 0.280(6). Upon inspection of Fig. 1
one may also see that the value of the specific heat of
these models shows very little variation for lattice sizes
l & 16. Thus the parameter K„l, which should scale
with l as the specific heat does, increases very slowly with
l. This implies that for the accessible range of lattice sizes
l our expansion is valid. The specific heat of the weakly
random model A2 effectively diverges with a positive ef-
fective —but because of its weak degree of randomness
there is good reason to believe that the expansion will
be valid due to a small value of K„expected for models
with small randomness. The B2 model with moderate
disorder is expected to fall between the A2 model and
the Co 4 models. Thus there is reason to hope that our
theory is applicable to the variance results in the acces-
sible range 4 & l & 256. Indeed the agreement we now
display between numerical data and theory is good.

For observables with p ) 0 the two leading terms in
(36) are the third and sixth terms. We use hyperscaling
to write lv' = I ~ +2 and substitute in (18) l by the
behavior of the specific heat (8). Thus we propose for
the RBAT models the leading behavior [34]

V(T„l) = a„l in[1+ cp(l " '"" —1)]

+c„l 2 (in[1+ cp(l{ ~ """—1)]P, (41)

with a„= EpK„and c„—: 2DiEpK (—note that for
every thermodynamic quantity there are different coefB-
cients Ep, Di, etc.). The expression in[1 + cp(l{
1)] describes the singular behavior of the specific heat
including the crossover &om the pure model behavior,
characterized by the pure model exponent (n/v)~„„[see
Eq. (8)]. p is the critical exponent of the quantity whose

&(» )
variance is measured (e.g. , p = ~ for y and p = ~ for
&(i ))

In Fig. 8 we show the variance of y, V~, of the seven
critical RBAT models fitted by the function (41), where
the parameters cp, (a/v)&„„, and ~ were taken from
Tables I and II. For the sake of clarity (so that the data
do not fall on top of each other) Vz of the model {;
was multiplied by 2'+ . The fitting parameters a»c„
are given in Table IV. The agreement with our scaling
prediction is quite encouraging. The same analysis has

&(» )
been carried out for the variance of y~"~, where ~ was
taken &om Table II, and the results are plotted in Fig. 13.
Again the fitting parameters a„,c„are given in Table IV
and the agreement between the numerical results and
our scaling prediction is encouraging. We stress that the
only fitting parameters of the fits in Figs. 8 and 13 are a,
c; the other parameters of Eq. (41), p, cp, (n/v)„, were
obtained previously [11]from the specific heat results and
from the results for y and y~"~.

C

C„
Co

x

Az c

1 OO

FIG. 13. The variance of y ",V („) as a function of log~o l
for all critical models, C0...4, and Aq, B2 of the RBAT model.
For the sake of clarity V („) of the model C; was multiplied

by 2'+ . The solid lines are fits to the form (41), yielding
estimates for fitting parameters which are listed in Table IV.

Since the first term in (41) is the dominant one (by a
factor of l"', where yi & 1 ), we test (41) again in another
manner. In Fig. 14 we plot the scaled Vz .'Vxl ~/in[1+
cp(l{ ~ )& —1)]. Indeed it seems that the data points
approach a constant value, confirming the leading term
in (41) which originates in the leading behavior of the
variance (37). For the energy p = (n —I)/v ( 0 so that
the two leading terms in (36) are the third and the fifth
ones. Again by using hyperscaling and substituting I

by the behavior of the specific heat (8), we arrive at the
scaling form for the variance of the energy

V (T. l) =( -(I [1+ o(~' '"'"- —I)])'
+b„ in[1 + cp(l{ ""—1)])l (42)

Co
{

1 OO

FIG. 14. The scaled variance of y, Vzl /
in[1 + cp(l{ l"l& —I, )], as a function of logio l for all critical
models, C0...4, and Aq, Bq of the RBAT model.

with 6„= —26EOK„. In Fig. 11 we show the variance
of the energy, V~, of the seven critical RBAT models
fitted by the function (42). For the sake of clarity V@
of the model C, was multiplied by 2'+ . The agreement
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TABLE IV. Fitting parameters for the variances of y, y ",E for the critical models C0...4, and
A2, Bz according to Eqs. (41) and (42), using lattice sizes l ) 8.

Cs (Ising)
Cg
Cg
C3
C4 (Pot ts)
B2
Ag

a„
0.0145(7)
0.0039(1)
0.0059(1)
0.0069(2)
0.0082(2)
0.033(1)
0.056(1)

cv
0.11(2)
0.026 (10)
0.014(10)
-0.01(1)
-0.04(1)
O.13(2)
0.028(12)

0.033(1)
0.0134(3)
0.0172(2)
0.0147(3)
0.082(2)
0.092(2)
0.143(3)

0.07(4)
-0.03(2)
-0.09(2)
-0.12(2)
-0.04(1)
0.19(4)
o.o5(3)

0.29(7)
0.128(14)
0.135(13)
0.133(15)
0.121(13)
0.99(15)
5.49(44)

b„
0.8(2)
-1.45(19)
-1.19(16)
-1.27(18)
-1.25(17)
1.2(2)
1.28(23)

V~(T„l) = a„(in[i + co(l( l")'""—I)])
+b„l--"~in[1+ ..(l(-~").-.—I)])"
+c„l 2 (in[I + co(l ~"- —I)]) (43)

In Fig. 15 the variance of the speci6c heat, V~, of the
seven critical RBAT models is fitted by the function (43),
with the fitting coefficients given in Table V. The data
for large lattice sizes are rather noisy and three param-
eter fits are not so reliable with only eleven data points,
so that both the results and the fitting curves in Fig. 15
should be taken with a grain of salt. The obtained fit-
ting coefficients are consistent with the coefficient Ep be-
ing much smaller than b, D~. A small value for Ep is
quite plausible if the speci6c heat as a function of the
temperature is close to being symmetric around the crit-

between theory and the numerical data is good and the
6tting parameters a„,b are given in Table IV.

For the magnetization and the specific heat p = —and

p = ~, respectively. In these cases ~p[ is small and
the fifth and the sixth terms in Eq. (36) are of similar
order in. l . Thus one may not neglect one term with
respect to the other as was done for the energy and. the
susceptibility. Thus we 6t the variance of the speci6c
heat to the form

VM = a„/ in[1+ co(l "~""—1)]

+b„l - ~ (in[1+ co(l( ~ '"- —1))j&

+c„l - ~ (in[1+ co(l( "~""—I)])2 . (44)

The fitting coefficients a„,b, and c are given in Ta-
ble V. The data are much more noisy than the data of
the susceptibility (see Fig. 8).

ical point [see (30)]. This syxnmetry is supported by the
symmetric form of the histograms of the speci6c heat
as shown in Figs. 6 and 7. For the Ising model Cp the
errors of the coefficients a„,b„, and c are of the same
order of magnitude as the coefficients themselves. How-
ever, for the other models the errors are reasonable and
though a„ is small, we have EpK = a„& 0, meaning
that, asymptotically, the first term in (43) will dominate.
This implies that the speci6c heat of the RBAT models is
non-self-averaging, excluding possibly the random-bond
Ising model. Possibly, the theory needs some changes
in order to be applied to the speci6c heat C which di-
verges logarithmically (and as a double logarithm for the
random-bond Ising model) and not with a simple power
law.

In Fig. 16 the variance of the magnetization, V~, of
the seven critical RBAT models is 6tted by the function

C

C „x
co

C~ o

C„
Co

A& o
c)-
4b

1 OO 1 OO

FIG. 15. The variance of the specific heat, V~ as a func-
tion of log~o l for all critical models, C0...4, and A2, B2 of the
RBAT model. The solid lines are fits to the form (43), yield-
ing estimates for the fitting parameters a„,b„,c which are
listed in Table V.

FIG. 16. The variance of the magnetization, V~, as a func-
tion of log~o 1 for all critical models, C0...4, and A2, H2 of the
RBAT model. The solid lines are fits to the form (44), yield-
ing estimates for the fitting parameters a„,b„,c which are
listed in Table V.
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TABLE V. Fitting parameters for the variances of the specific heat V~ and the magnetization
V~ for the critical models Co. . 4, and A2, B2 according to Eqs. (43) and (44), using lattice sizes
l &4.

Co (Ising)

C2
C3
C4(Pot ts)
Bg
A.g

av
0.000016(12)
0.0000011(1)
0.0000028(5)
0.0000079(6)
0.0000099(4)
0.0079(6)
O.67(7)

6„
0.028(10)
-0.045 (4)
-0.078(8)
-0.069(5)
-0.062(5)
-O.44(9)
-4.9(18)

0.008(4)
0.0038(3)
0.0081(7)
0.0069(5)
0.0057(4)
1.4(1)
36.5(54)

a„
0.0037(1)
0.00108(3)
0.00169(7)
0.00213(9)
0.0027(1)
0.0089(3)
0.0167(8)

bv

0.25(2)
0.102(9)
0.10(2)
0.054(20)
-0.004(23)
O.27(3)
o.o7(7)

Cv

-0.28(2)
-O. 12(1)
-O. 12(2)
-0.068(24)
-0.004(28)
-0.30(4)
-0.07(10)

To summarize, we have examined the sample to sam-
ple Quctuations in various thermodynamic quantities of
some random-bond Ashkin-Teller models. These include
the random-bond Ising and four-state Potts models. It
was found that far &om criticality all thermodynamic
quantities examined are strongly self-averaging (that is,
their variance scales as l "). At the critical point we
found that the susceptibility y, the susceptibility of the
polarization y~"~, and the magnetization M are non-self-
averaging, while the energy E is weakly self-averaging.
The data for the variance of the specific heat seem to
imply weak self-averaging of the specific heat. Since the
data are not accurate at the larger sizes used, this may
well be a transient behavior, compatible with our theory
which predicts that asymptotically the specific heat is
non-self-averaging. A phenomenological finite size scal-
ing theory was developed for the sample to sample Quc-
tuations. Its main prediction is that when the specific
heat exponent o. ( 0 (o. of the disordered model) then,
for a quantity P which scales as ll' at criticality, its vari-
ance V will scale asymptotically as l ~+ . The theory is
not applicable in the asymptotic limit (l -+ oo) to cases
where —= 0+. Nonetheless in the accessible range of
lattice sizes we found very good agreement between the
theory and the data for V„,V („~, and V~. The data for
Vz are especially convincing. The theory also describes
well the variance of models with weak disorder, exhibit-
ing slow crossover to the randomness dominated behav-
ior. The theory may also be compatible with the data for
VM and V~, but evidence for this is less convincing. We
note that if our assumption (20) is incorrect and should
be replaced asymptotically by [29] bT, (l) l "', then
our theory predicts that V~ l ~ independent of o;. In
this case all quantities (excluding the energy which has
a nonvanishing nonsingular part) are non-self-averaging
independent of o.. In order to further test our theory we
intend to study the sample to sample Quctuations in the
site dilute three-dimensional Ising model where —( 0
and our analysis holds.
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APPENDIX

T —T, (l)
T. (A1)

Q (t P') m Q(tl"'), (A2)

so that we recover the usual [31] finite size scaling behav-
ior.

The limit (A2) cannot account for the large sample to
sample Quctuations that we have numerically observed
at T = T even for rather large values of l. Indeed,
special care is needed in the case T = T„where (/l is
not small and the Brout argument does not hold. It turns
out that in this case the limit, where the x dependence
of t can be ignored as in (A2), does not occur or is
reached "slowly. " When T = T„ then t = —t (x, l) =
(t, (l) —t, (x, l)) —t, (l), so that according to (20) and (19)
t is a diH'erence of a Quctuating term of order l "/ and

In this section we draw some more conclusions based
on the finite size scaling form (24), without making any
assumptions on the explicit x dependence of the coeK-
cients of Q

What can we deduce about the coefficients of Q from
the Brout argument? Consider (24) in the limit l ~ oo,
t finite. In this case ( is fiinte, the Brout argument
holds, and one expects P (T) to be sample independent.
This means that in this limit we expect the coefBcients
of Q and its arguinent to converge to some x indepen-
dent values. It follows that we can assume that these
coeFicients are distributed according to some unknown
distribution function whose width tu(l) depends on l and
tends to zero as l -+ oo.

Is there any limit in which one may recover the usual
finite size scaling behavior, completely independent of
the specific sample x? Consider the limit l large but fi-
nite and T = T, . Let us now add the assumption that
the width tU(l) tends to zero no slower than l +2. Then
for large enough l, according to Eqs. (20)—(23), t ap-
proaches t given by
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a term of a constant sign of order / "'. Therefore

[~4[ O' I = l2- = l ]~-~ if d/2 ) yi (n ( 0)
[t [» f "/2(yt (cr) 0).

(A3)

Thus for T = T, and positive n, t + t for large l and
(A2) is not justified. In this case the relative fluctuations
in the argument of Q are of order 1 and their absolute
magnitude scales as l2 so that it increases with L. So
for large l the argument of Q is a constant plus a large
Buctuating quantity which increases with l. It follows
that Q cannot be expanded as is done in Sec. V, and
that the limit (A2) does not exist.

For negative o. it follows that the Buctuations in the

argument of Q scale as l i . Since we have assumed
that the fluctuations in the coefficients of Q, ur(l), scale
as l I, then if ]2 ]

( —,then at T = T, iv(l) decreases
faster than the fluctuations in the argument of Q . Thus
one may consider the range of l for which

Q.(t.l" ) -+ Q(t.P*), (A4)

where only the argument of Q is x dependent. In this
case the coefficients of Q are some constants for which we
need not assume anything about their x or l dependence.
Consideration of the limit (A4) suffices to reach our main
result (18) [but not corrections to (18)], independent of
the assumptions made in Sec. V on the x dependence of
the coefficients of Q
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