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Theory of the absorption probability density of diffusing particles in the presence of a dynamic trap
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There have been a number of recent investigations of difFusing particles in the presence of traps.
Among many applications of this process, we find phenomena such as reaction rates, biological models,
and dielectric relaxation. In this paper we present a theory for the absorption probability density for a
walker in the presence of a dynamic trap by using the multistate continuous-time random-walk ap-
proach. The results are exact for every switching-time probability density of the trap. The deterministic
and Markovian cases can be obtained by selecting the appropriate switching-time density for the trap.
Siegert s result is reobtained in the static case. We perform Monte Carlo simulations, and compare these
results with our analytical prediction, ending excellent agreement for symmetric and nonsymmetric
switching-time densities.

PACS number{s): 05.40.+j, 05.60.+w, 02.50.Ey, 82.20.Fd

I. INTRODUCTION

A well established method for studying reaction rates
[1], biological problems [2], solid state transport [3,4],
dielectric relaxation [5], etc. is developed through ran-
dom walk (RW) modeling. The magnitude of interest in
these models is the absorption probability density (APD)
of the walker by a trap [which coincides with the first
passage time density (FPTD) in presence of a static trap].
Di6'erent generalizations have been proposed for continu-
ous time RW (CTRW) on lines such as the study of the
presence of an imperfect trap [6]. The authors have start-
ed with the study of the inAuence in the APD by the
presence of a dynamic trap due to the problem of a gate
which opens and closes at random times [7]. In these
generalizations, the APD does not coincide with the
FPTD because a path of the walker through the trap po-
sition does not mean that it will be absorbed.

The problem is solved using the multistate CTRW
(MCTRW) [3,8 —10] technique in a similar way as applied
to the problem of non-Markovian global dynamic disor-
der [11,12]. The method proceeds by using the internal
state scheme, which is mathematically equivalent to non-
Markovian local dynamic disorder. The deterministic,
static, and Markovian cases are particular situations in-
cluded in our solution, and may be calculated by selecting
the appropriate switching-time density of the trap.

In Sec. II we solve the problem of a CTRW in an
infinite homogeneous medium with an impurity. This is
achieved by generalizing a technique developed by Mon-
troll and West in his study of the eFect of traps on lattice
walks [3]. The dynamic trap is introduced in Sec. III
through the MCTRW scheme, where internal states are
given by the activation or deactivation of the trap. In Sec.
IV we present an explicit analytical solution for the one-
dimensional case in the Laplace representation. Marko-

vian and non-Markovian situations are analyzed by
selecting appropriate functions for the switching-time
probability density of the trap. In Sec. V the asymptotic
behavior of the APD in the limits for t —+0 and t ~ ~ are
presented.

The results in the time domain are numerically calcu-
lated from the analytical results in the Laplace represen-
tation, and then compared with the output of Monte Car-
lo simulations. Both approaches show a very good agree-
ment.

The solution obtained can be extended to higher di-
mensions or to the problem of diffusion with bias. The
APD will also be used in a generalization of the Glarum
model to the case of a dynamic relaxation rate. Work
along these lines will be presented in a future paper.

II. RAND&M WALK IN THE PRESENCE
QF AN IMPURITY

Let us start with the problem of a particle that does a
random walk in an infinite homogeneous medium. Let
Ho(s, s', t) be the probability density for the hopping so
that Ho(s, s'; t ) =Ho(s —s'; t ). If in the site s, there is an
impurity, we can characterize the jump from this site by
the hopping probability density H, (s, s„'t).

Let R (s, t )dt be the probability to arrive at site s just at
the time between t and t +dt. From its definition it is
clear that R (s, t )dt is diFerent from P(s, t ), the probabili-
ty to be at site s at time t. Therefore R(s, t) satisfies the
following integral equation (here we assume that the ran-
dom walk starts at so in t =0):

R(s, t) —g J R( ',s)rH(s, s', t ~)dr=5, , 5, 0—+,
S

where H ( s, s', t ) is given by
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Hp(s —s';t) if s'As,

H, (s, s, ;t) if s =s, . (2)

tained from (9) by replacing H(s', s, t) by Hp(s' —s, t),
and then calculating its Laplace transform we get

We write Eq. (1) in the Laplace representation as
Po(si sp'u )

R( si,
' u)= (12)

R(s, u }=g Ho(s —s'; u )R (s', u )
S XSl

+Hi(s, si', u )R(si, u )+5, ,

=+Ho(s —s', u )R(s', u)+H, (s, s, ;u )R(s„u)

—Hp(s —s, ;u )R(si, u )+5, ,
(3)

+R(s„u) g H, (s', s„u)Ro(s —s', u )

where we have used the homogeneous Green function

Ro(s, u )=g Ho(s —s';u )Rp(s', u)+5, o .

As the solution (5) is valid for every s, if we take the
particular value s=s, we get

R(s„u)= Rp(si so', u )

Ro(0;u ) —QH, (s', s„u)Ro(s, s';u )—

With this result we have got an explicit expression for
R (s; u ). We obtain P(s; u ) in terms of R (s; u ) as

P(s;u)=R(s;u)V(s;u) .

V(s; u ) is the Laplace transform of the probability that
no jump occurs in a given time interval. This function
may be calculated by

V(s;t ) =1—J g H(s', s;t')dt''
S

(9)

in the time domain.
The particular case of a static trap at site s, is included

in our solution by taking H, (s, si,'t ) as

H, (s, s, ;t)=0, itt, s . (10)

R(s, u) and H(s, s';u) are the Laplace transform func-
tions calculated by

R(s, u)= f e "'R(s, t)dt (4)
0

for the function R, and in a similar way for function H.
The solution of Eq. (3) is as follows:

R (s, u ) =Ro(s —so, u ) —R (s, , u )[Ro(s—si, u ) —5, , ]

We wish to remark that R (si, t ) is the FPTD from sp
to sI. When the impurity corresponds to a static trap,
R (si, u ) should be interpreted as the APD by the trap or
the equivalent FPTD. This is the Siegert formula [13,14]
for a homogenoeus RW. Thus we have proved the
Siegert theorem in the framework of the CTR%' theory.

By means of the CTRW approach, we will be able to
tackle the problem when the trap is dynamic by introduc-
ing the internal state scheme. We will use a method
largely inspired in a recently developed one to study
diffusion in the presence of external anomalous noise [12].

III. DYNAMIC TRAP

&, ,(s, s, ;t)=0, V s;i =1,2, and t . (13)

The condition of independent processes imposes a
decoupled structure similar to the one used in [12]. Let
us consider that the particle does a Markovian random
walk (i.e., the waiting time of the walker is exponential).
Therefore, we can define the bulk matrix gf (s, s'; t ) in the
following way:

We represent a dynamic trap as a place on the lattice
(the impurity in the previous section) whose properties
change in time. This change in time will be characterized
by a switching between a perfect trap state and a regular
site state (no trap present). The process is controlled by
two switching-time probability densities denoted by
f;&(t), which in principle could be nonsymmetric, where
f~(t)dt is the probability that the impurity, having ac-
quired the state j at t =0, makes a transition to state i be-
tween t and t+dt The . subindex i,j (i') can take the
values 1 (active or perfect trap state) or 2 (inactive or reg-
ular site state). In order to use the MCTRW approach,
we have to introduce a generalization of the probability
density for the hopping function H(s, s', t), as was given
in [9].

Let &(s,s';t) be the (2X2) probability density matrix
in such a way that this matrix takes into account the hop-
ping of the random walk and also independently the
change of the states of the dynamic trap. This matrix
must refiect the fact that s, (where the impurity is locat-
ed) is an absorbent site when the trap is active (state
j =1), and s, is an indistinguishable site of the lattice
when the trap is inactive (state j =2). This condition is
achieved by requiring that if the walker falls in s, , it can-
not leave that site if it has been absorbed:

With this choice replaced in (7), we find that the La-
place transform of the probability density for the walker
to arrive at site s, just at time t, is given by

Ro(si —so;u )
R(s, ;u)=

Ro 0;u

Multiplying and dividing by V(0;u), which may be ob- where

Mii(s, s';t)pii(t) ~i2(s;t)fi2(t)
M»(s; t )f»(t) M»(s, s'; t }P»(t)

(14)
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M»(s, s', t) =M»(s —s', t) which characterizes the MCTRW can be written as

=B(s,s')exp —g B(s', s)t
A(s, s';t)=

W(s —s'; t ) if s'As,
r

&'(s,s„t) if s'=s,
,

' (17)

M &z(s, t ) =—M,z(t) =exp —g B(s', s)t
S

(16) where the elements of &(s', s, ;u ) are given in terms of
(13) and (14) as

The elements of the matrix W(s, s'; t ) =W(s —s', t ) have
to be interpreted in the following forms:

(i) B(s,s')exp[ —+,,8(s, s')t] is the waiting-time prob-
ability density for the walker, where 8(s, s') =8(s—s') is
the walker hopping structure in a generic d-dimensional
regular lattice.

(ii) fJ ( t) is the switching-time probability density of
the trap de6ned above.

(iii) i';;(t) is the probability that the impurity is still in
the state i after a time t since it has got that state.

Therefore the matrix &(s,s', t), with one impurity,

&;2(s,s)) u ) =W2(s, s),'u )

A;)(s, sy', u )=0 .

Now the multistate generalization of (1), in the Laplace
representation, acquires the form [9]

R, (s, u ) =g&,"(s,s';u )R, (s', u )+5, , 5, ,
S J

Using (17) and (19) in a similar way as we did to get (5),
and introducing the homogeneous Green matrix
%;J.(s;u ), we obtain for the solution of R, (s;u ):

R;(s;ti ) =%;; (s sp', u )+g Rl(sl~u } g +ij (s s ~u )~jl(s ~sl~u } +il(s sl~u }+~ss ~il
I S J

(20)

This expression is valid for every s and i; thus, if we
take s =s, we get a system of linear equations for
R;(s, ;t ). Obviously, the number of equations is equal to
the number of internal states. The solution of this prob-
lem gives the probability to arrive at site s& as a function
of the homogeneous Green matrix %; (s;t). As before,
the vector probability P;(s;u } can be written in terms of
the vector R;(s;u ) [9], [12] by using the generalization of
(8) and (9) to the MCTRW scheme. The solution of (20),
for s =s&, can be written in the form

R )(s,;u ) =A„(s,—sp, u )[%„(0;u)]
R2(s, ;u)=[A„(0;u)%2;(s, —sp', u)

0 21—%~,(0;u )%„(s,—sp, u )]

X[%„(0;u)]
I

I

where the initial position of the walker is s0, and the ini-
tial state of the trap is ip R&(s&', u. ), the Laplace repre-
sentation of APD, is the main goal of our work. This
probability is expressed in terms of the known functions
of the problem: the waiting time of the walker and the
switching-time probability density for the change of
states of the trap. Obviously, this APD is expressed in
terms of the homogeneous Green matrix. In the Fourier
representation (s~k) this Green matrix can be written as

A;J (k; u ) = [J—W(k; u ) ];J ', which, in principle, can be
solved in any dimension and for any lattice structure
(with or without bias). Due to the structure of the matrix
W(s —s', t ) [see Eqs. (14)—(16)], its Fourier and Laplace
transforms wi11 be

B(k)g, i(u+8(k=O))
f2i (u +8(k=0) )

f,2(u +8(k =0) )

B(k}$22(u+8(k=O))

Using the definition of P;; (t) [see the remarks after Eq.
(16)],we get its Laplace transform

P),(u) = [1—f )( 2)]u/u, Pq2(u) = [1—f,2(u)]/u . (23)

In this way, all the elements of W(k;u) are given in
terms of an arbitrary walker structure function 8(k), and
a general dynamic for the trap: f2, (u) and f,2(u).

IV. THE DYNAMIC TRAP IN A
ONE-DIMENSIONAL RANDOM WALK

As an example of our theory, we present here the solu-
tion for the one-dimensional case without bias, deter-

I

mined by the walker's hopping structure of the bulk,

where A, =Q,.B(s—s') is the inverse of the walker mean
waiting-time (( t )„)at any site of the lattice. In this case
8(k)=k cos(k). Then AJ(k;u ) is obtained straightfor-
wardly using (22) to (24). Taking the inverse Fourier
transform of %;~(k;u), formula (21) gives the desired
quantity. R &(s&', u ) gives the probability density to be ab-
sorbed by the dynamic trap located at s, (the APD in the
Laplace representation).

Because there is not bias, the result will only depend on
the distance r =

~
s

&

—sp ~
. Assuming that the initial condi-
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QR, (s,;u)= 1+ C(u)[ 3 (u) ]"+D(u )[B(u) ]"
C(u)+D(u)

where we have defined the auxiliary functions

(25)

tion of the trap is active we have to use io = 1 in (21); thus,
the expression for R

1 (si', u ) is
t =0). In the rest of this section we illustrate the result
obtained in (25), presenting some typical situations.

(i) The first case that is analyzed corresponds to a Mar-
kovian dynamic for the trap, with symmetric switching-
time probability density; i.e., the activation and deactiva-
tion of the trap are controlled by the same probability
density function

f12(t)=f21(t)=A, , exp( k, t)—with A, , '=(t), .

f21 1 f12
&a(u) 1 —f21

D(Q)=
p(u)

1 —f i2f2i
(1—f12)(1—f21)

B (u) = 1 —&P(u),

and we have used the notation

f12 f12(u +~ ) f21 f21(u +~+ )

2 rf12f21 ~w
a(u) =

(1—f i2)(1 —f2i ) 1, +u

2

(26)

In this expression ( t ), corresponds to the impurity mean
time in a given state (1=active trap state; 2=regular site
state). The results for difFerent values of (t ), are shown
in Fig. 1. These were numerically computed from (25),
using the Laplace inversion program LAPIN [15].

The inset of this figure shows a comparison with the
values obtained from Monte Carlo simulation of the pro-
cess for two particular cases: the static trap (no deactiva-
tion) and the Markovian dynamic trap with (t),=l.
The agreement between both approaches is very good at
any time, as expected because (25) is an exact result.

(ii) The following case presented corresponds to a Mar-
kovian dynamic trap, where we have relaxed the sym-
metric condition. So the switching-time probability den-
sities are given by

f, .(t)=A, . exp( At) w—ith, AJ '=(t)J .

P(u) =1-
k,~+0

Formula (25) is exact for every switching-time density
of the trap: f,, (t). The case when the trap is always ac-
tive can easily be reobtained by taking f2, (u)=0
(remember that the trap was assumed to be active in

In this expression ( t ) . corresponds to the impurity mean
time in the state j with j =1 (active trap state), and j =2
(regular site state). The results for the different values of
the parameter A, (j =1,2) are shown in Fig. 2. Figure
2(a) shows the influence of the value of A, ,

' = ( t ), in the
APD, keeping a constant value for A,2. However, Fig.

io --
&t& = 1'W

Dynamic Trap

iO

|o

FIG. 1. Absorption probabili-
ty density vs time for the sym-
metric Markovian case. In all
cases the walker mean waiting
time and its initial separation
r = 10 are kept constant. The in-
set shows a comparison with
Monte Carlo simulations.

Dynamic

10 I

10'
I

10

]

to' io'
I

i08
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I

1O' 1O'

FIG. 2. Absorption probabili-
ty density vs time for the more
general Markovian case, without
the symmetric condition (see
text). (a) shows the influence in
the APD of the variation of the
mean active time for the trap,
keeping constant ( t ) d =k~ ' = 1.
(b) shows the dependence with
the variation of the mean inac-
tive time, with (t ),:—A. , = l.
In both cases the initial separa-
tion is r =10.

10

10

10
1O' 10

I

1o'

io
1o' 1O'

2(b) shows the inhuence of the value of A, 2
' ——(t)d. In

both plots we have included the symmetric case
(A, , =A.z

=A, = 1) for reference.
The greater inhuence of the mean inactive time on the

APD functions can be appreciated, showing this fact
(during the transient) an intuitively expected result, i.e.,

the peak value of the APD is a decreasing function of the
mean inactive time (t )d. However, the most probable
value (for the RW to be trapped) moves to later times for
increasing ( r )d. What is clearly important about this
analysis is the possibility of having analytically the whole
transient behavior of the APD for any kind of switching



52 THEORY OF THE ABSORPTION PROBABILITY DENSITY OF. . . 3467

io
V=O
v i
v = 3
v=5

io

10

/

-eio
io'

/
/

/
/

/

/
/

/
/

/

t

/

/

/

/

/

/

I

io'
I

io io'

FIG. 3. Absorption probabili-
ty density vs time for the non-
Markovian case presented. The
APD dependence with the fami-
ly parameter v is shown. All
other parameters are kept con-
stant: &t).=1; &t&, =1O;
r =10.

time. We have also included an inset in Fig. 2(b) to show
the comparison between the analytical results (through
numerical Laplace inversion) and Monte Carlo simula-
tions.

(iii) Finally, in Fig. 3, we show the results for a non-
Markovian case, with a nonsymmetric switching-time
probability density given by the family of functions

[A, (v+1)]'+'fJ(t)= t'exp[ —AJ(v+1)t]I v+1
with k, '=&t),

f12 fol +fllu, f21 fo2+f i2u

with the definitions

dv
fo; =fJ(A, ) and f„= (u =0) iAj .

(28)

This approximation is valid for any function f (u) since
the shift introduced in the Laplace transform, as indicat-
ed in (27), eliminates any possible anomalous behavior in
the limit u —+0, inherent in the dynamic of the trap. Sub-
stituting the approximations (28) in the general expres-
sion (25), and keeping just the first power of u we get

and v the index of the family function. The variation of
the APD can be observed with this family parameter.
The variation of the A, parameters have a similar
inAuence as shown for the Markovian case, so these
figures have not been included for this trap dynamic.
Note that in the limit v~ ~ the deterministic (periodic)
case is obtained, i.e., f; (t)~5(t —&t) ). Thus, if the
trap behaves (opens and closes) in a deterministic way,
the APD decreases its value at the early stage and the
most probable value remains approximately at the same
place.

V. ASYMPTOTIC LIMITS

R t(s„u) = 1+8(u '~

with

f„v'g
1 —foifo2 —v'0

(1—foi )(1—fo2)

foifo2
)' —(1—foi )'(1 —fo2 )'

(29)

(30)

In this section, we consider the behavior of the APD in
the limits t —+0 and t~ ~. The calculation may be car-
ried out starting with the exact expression given in (25)
(the APD Laplace transform) in the corresponding limits
u ~ ao and u ~0, by using a Tauberian theorem [16].

In order to study the long-time limit, we assume that
the Laplace transform of the shifted switching-time prob-
ability densities can be approximated, for u ~0, by

R, (s„t)= a, t
+2~1 (31)

All the time scales of the system appear in a nontrivial
form in this expression, but the asymptotic behavior

From Eq. (29) and using a Tauberian theorem [16],we
get for the long-time limit of the APD, in one dimension,
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remains the same whatever the non-Markovian dynamic
of the trap is.

The short-time behavior is obtained by taking the limit
u ~ ac in (25). Therefore, using an Abelian theorem we
get

R, (s„t)=
2

(32)

In this expression we have used t « ( t ) and
t « ( t )~. , so in this short-time limit the time scale of the
absorption is controlled by the time scale of the walker.

VI. CONCLUSIONS

In this paper, we have presented a systematic approach
to the problem of diffusion in the presence of a dynamic
trap by using a Green matrix technique. In particular,
we have worked out the case where the trap has only two
internal states (i.e. , active or deactive); therefore, the
problem was reduced to solve a 2 X 2 matrix system. As a
particular example we have shown the explicit expression
for the APD in a one-dimensional RW in the presence of
a trap with arbitrary switching-time probability density.
It is important to remark that the long-time behavior of

the APD is essentially the same as that of a static trap
with a prefactor that depends on the statistics of the trap
dynamic. We recall that our analytical approach is very
useful for obtaining the transient behavior of the APD.
For example, the case where there are several indepen-
dent RW's can also be treated, within our theory, analyti-
cally, in the Laplace domain. The agreement between the
theory and Monte Carlo simulations is very good for any
kind of dynamic of the trap, as expected.

The figures in this paper show the dependence of the
APD with different switching-time probability densities
of the trap, including asymmetric and non-Markovian
cases. The decreasing of the APD in the peak zone with
greater values of ( t )d in asymmetric cases is of particu-
lar importance. Applications of the present approach to
the study of biomembrances and Glarum model with dy-
namic relaxation rates are in progress and will be report-
ed elsewhere.
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