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We develop a set of statistics which are intended to characterize in terms of probabilities or confidence
levels whether two data sets are related by a mapping with certain mathematical properties. Given these
statistics we can ask how confident we can be that the mapping is continuous, injective, differentiable, or
has a differentiable inverse. The intended use is for experimental or numerical situations in which multi-
ple time series are generated and one wants to know what relation exists among them, but the mapping
between them is unknown or intractable. Examples of applications are testing filtered chaotic data for
continuity and differentiability, testing two data sets for synchronization (in the most general sense),
testing one data set for determinism forward and backward in time, and determining when transforma-
tions on two- or three-dimensional images are well behaved (diffeomorphisms). We test the statistics on
several of these cases and show that they are useful for characterizing relations between data sets and for
shedding light on phenomena which occur when data are transformed, for example, a dimension in-

crease on filtering a chaotic data set.

PACS number(s): 05.45.+b, 47.52.+j, 02.40.—k, 02.50.—r

I. INTRODUCTION

The dynamics of physical systems can be represented
concisely by geometric objects in an n-dimensional physi-
cal phase space. These are trajectories, attractors, basins
of attraction, unstable manifolds, etc. For some time spe-

" cial techniques, centered around time-series reconstruc-
tions, have allowed scientists to connect experimental re-
sults to those geometrical objects. This technique con-
sists of forming a mapping between a time series of
N measurements (hy,h,,h3,...,hy and vectors in
some simple d-dimensional space, viz.
vi=(h;,hi g 1B 490 -+ h;1q—1). These vectors then
form points on a trajectory and the d-dimensional space
becomes a representation of the actual physical phase
space of the system.

The main theorems connecting these two realms of
measurement and physical phase space are Takens’
theorem [1], its precursors (e.g., [2]), and its sequels (e.g.,
[3]). The essence of these mathematical demonstrations
is that the trajectory formed from the time series is
diffeomorphically related to the actual phase-space trajec-
tory of the dynamical system. Diffeomorphically means
that the map between the original, physical phase space
and the time-series reconstructions has no tears (is con-
tinuous), does not glue together geometrically separate
points (is injective), and is smooth both from the phase
space to the reconstruction (differentiable) and in the te-
verse direction (differentiable inverse). In addition, it is
an embedding in that it preserves the dimension of the
manifold on which the trajectory exists (the Jacobian of
the map has a rank equal to the manifold’s dimension in
the original phase space).

Some or all of these properties are important for the
preservation of a link between the actual system dynam-
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ics and a faithful reconstruction of the physical system’s
motion. This link is crucial to making confident con-
clusions about experimental results. There are several
situations in which such a link is desirable, but tests for
reliability are absent.

The general question we are investigating here is, given
two time series, when can we say with some confidence
that there is a map relating them which is a
diffeomorphism or which at least has some of the proper-
ties of a diffeomorphism, such as continuity or
differentiability? In this case we know data points in the
domain and associated data points in the range of the
function, but we do not know the function directly. This
is a rather general problem transcending time-series
analysis. We make some comments on this point in the
conclusions.

We have found several statistical approaches to prop-
erties such as continuity, injectivity, and differentiability
which provide quantitative tests for each property.
Specifically, we have focused on statistical tests to deter-
mine when one can be confident that two data sets have a
particular property relating them (e.g., one is a continu-
ous function of the other). We introduce these statistics
here and show several common applications including
one which sheds light on the question of filtering chaotic
data. We first motivate the search for statistical ap-
proaches to such properties and review some recent pro-
gress.

Also because we are staying close to the mathematical
meaning of the properties of functions, we use the word
“embedding” only to mean a diffeomorphism that
preserves rank. In much of the literature the word
embedding is also used loosely to describe the reconstruc-
tion of a phase-space trajectory by a delay technique.
For the latter we will use the word reconstruction. We
want to avoid confusing the two uses of embedding here.
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II. MOTIVATION

A. Filtering

Although filtering of time-series data is often practiced
with great liberty, the work of Badii et al. [4] has shown
that certain filters can add to the dynamics of the experi-
mental system, distorting the reconstruction of the at-
tractor and increasing its dimension. Other filters [5] do
not affect the reconstruction as much, in some case not at
all. The process of filtering a data set can be written as a
transformation on the attractor; the mapping is between
the original attractor and the filtered version. The ques-
tion becomes, when is this transformation continuous and
differentiable? That link, if established, would guarantee
the preservation of dimension [6].

B. General synchronization

Dynamical systems, even chaotic ones, can be in syn-
chrony [7-19]. Simple synchronization occurs in com-
pound systems when two dynamical variables asymptoti-
cally converge to the same dynamical values: they vary
in time, but are always equal at any time. Afraimovich
et al. have suggested a more general definition of synch-
ronization [8]. This latter type occurs when two vari-
ables in a physical system are not necessarily equal, but
are in a one-to-one, smooth relation with each other. In
more mathematical terminology they are
diffeomorphically related. This can occur, for example,
when nearly identical systems are coupled, but the sys-
tems have slightly different parameters [8,9,20-22]. Ex-
perimentally, this question is of great interest in situa-
tions where multiple measurements are taken simultane-
ously on the system and one is interested in discerning
whether any of the signals are in synchrony with any of
the others (e.g., in brain/neural activity during decision-
making tests [23]).

C. Determinism

The question of whether a time series even represents a
deterministic system is of fundamental interest. In this
case the mapping is between one time series and another
which is just a time-shifted version of the first. For exam-
ple, certain colored noise systems can have many proper-
ties of deterministic systems, like a finite fractal dimen-
sion [24]. A basic property one expects from a deter-
ministic system is that of continuity forward in time.
That is, points very close in phase space should map for-
ward to points still close in phase space. Beyond this
“lowest” form of determinism one could ask that the for-
ward mapping be smooth. In that case we would like to
extend the test for continuity to a test for (forward)
differentiability. We can also ask if the dynamics are in-
vertible (a test for injectivity of the forward mapping) and
smoothly invertible (differentiability of the backward
mapping). Each test would help us to determine what
type of system we are measuring and how best to model
it.
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D. Recent work

Much work has been done on gauging whether the ini-
tial reconstruction of a time series trajectory is a good
one. Good here means the reconstruction has some prop-
erties of or relating to Taken’s embedding theorem.

The problem of determining the correct embedding di-
mension has been attacked from two directions. One is
the use of false nearest neighbors first suggested by
Schuster et al. [25] and later Liebert et al. [26], and
refined by Kennel et al. [27], in which one reconstructs
the times series in increasingly larger dimensions until
there cease to be pairs of points which are nearest neigh-
bors in one dimension, but are not nearest neighbors in
the next larger dimension. This is essentially a test for
continuity; points close in the original manifold should
not be mapped to distant points in the image, which is
the reconstruction in this case. Kennel et al. propose a
simple statistic and some guidelines on using it to help
determine when one has false nearest neighbors.

Another approach is to test for the smoothness of the
reconstruction. This test and an associated statistic was
originally presented by Kaplan and Glass [28] with re-
cent variations by Salvino and Cawley [29,30]. Essential-
ly, a local vector field is approximated on a grid over the
reconstructed attractor. The statistic attempts to mea-
sure the smoothness and the significance of the local vec-
tor field. This is essentially a test for differentiability of
the reconstruction, with a useful statistic to test how
meaningful the result is.

Wayland et al. [31] developed a simple test for deter-
minism which measures the variance of measured error in
translation vectors for nearby phase-space points to their
images at future times. This gives a good indication of
how far into the future one can extrapolate until the rela-
tion between nearby points becomes equivalent to white
noise. Their translation error quantity is like a crude
continuity test, although they do not associate a statisti-
cal or probabilistic quantity with it.

Other work tests for the best time-interval size to
choose in generating a time series. This is an important
issue, but is not central to the present paper. See Refs.
[32-36] and the references there in for more information.

The issue of determinism has been approached using
surrogate data by Theiler [37,38]. Here one creates
another data set (the surrogate) which has some statisti-
cal properties (e.g., autocorrelations) which are identical
to the actual time series. The surrogate, however, is not a
deterministic series. For example, it can be generated
from a Fourier series which has the same coefficient am-
plitudes as the original series, but has its phases random-
ized. This provides a good statistical null hypothesis
[39], however, the relation to analysis-calculus properties
and their statistics is unclear.

In his recent approach to finding a statistic for deter-
minism, Kaplan [40] has come closest to deriving statis-
tics for mathematical proprieties of time series. As we
noted above, the “lowest level” on which one could define
forward determinism is to check for continuity in the
mapping between a reconstruction point at one time and
its image at a later time. Kaplan’s approach is to check
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the relation between the number of points at the present
time in a small set (defined by 8) and the number of
points at a later time in an image set (defined by ¢).
These numbers are then compared to those expected for
various random distributions which form the null hy-
potheses. Applications to some simple maps and some
vector fields show that the statistic holds promise as a
gauge of determinism. Throughout Kaplan often impli-
citly assumes more than continuity. Near-neighbor
points are often assumed to have a linear relation to their
images. This assumes differentiability. It is not always
clear what level of determinism Kaplan’s statistic is test-
ing, although that should be easy to clear up in applica-
tions. We note that this test comes closest of all to con-
necting a mathematical analysis definition (that of con-
tinuity by 5-¢ distances) with statistics. We will return to
this point later and use it as the foundation for our statis-
tics, although our approach differs somewhat from
Kaplan’s.

Another recent approach to a statistic for a mathemat-
ical property (difffomorphism) is that of Rul’kov et al.
[41]. They were interested in determining when two sys-
tems were in generalized synchronization, as determined
from their respective time series. One can “line up” the
two time series and check properties in the mapping from
one to the other. Here, as in determinism, we can think
of testing at two levels. One is just to test for a one-to-
one property in the mapping from one reconstruction to
another (a homeomorphism). Another is to test for the
smoothness in this mapping and its inverse (a
diffeomorphism). The test Rul’kov et al. actually
developed is a mutual false nearest-neighbor statistic
modeled on previous definitions of false nearest neighbors
[27]. Calculation of this statistic requires the average
over the two reconstructions of the quotient of two ra-
tios. One ratio is the nearest-neighbor distance on the
first reconstruction to the distance between the corre-
sponding points on the second reconstruction. The other
ratio is just the reverse; it is the nearest-neighbor distance
on the second reconstruction to the distance between the
corresponding points on the first reconstruction. If there
is a smooth one-to-one mapping between the time series,
the quotient of these two ratios should be close to unity.
Here, again, the tacit assumption is that of
differentiability (just a one-to-one continuous mapping
would not necessarily give unity for the quotient). The
statistic appears to be a robust one at least for some sim-
ple cases and (importantly) for time series from a real cir-
cuit. However, faithfulness to actual mathematical
definitions of continuity or differentiability is not clear.
We will show later that this statistic is a simple approxi-
mation to local statistical correlations which we employ
for differentiability testing.

E. Objectives

Many of the above methods implicitly and occasionally
explicitly assume certain analytical properties. In the fol-
lowing we will develop statistical tests which are explicit-
ly related to certain analysis properties. We attempt to
derive the statistics by closely following the original
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analysis definition of the property (e.g., the 8- definition
of continuity). In this way compound statistics can be
easily derived to characterize a compound mathematical
property (e.g., continuously differentiable, C!).

One of our aims is to make explicit use of the statistical
tool of the null hypothesis. This is an assumption that is
usually contrary to what one is trying to show. The ob-
ject will be to test if we can reject the assumption and
thereby lend confidence to what we wish to show. The
reason for using such a hypothesis is that it helps to
quantify our statistic, defined below, when we do not
have a priori a probability distribution for the particular
system we are studying. Not all tests developed for
chaotic time series use this approach, but several of the
more fruitful ones do [30,37,38,40,42].

In all the following we will try to characterize the en-
tire reconstruction. To do this we will average our sta-
tistical quantities over all points or over a random collec-
tion of points in the time series. We feel this generates an
average statistic that can be used to gauge how well other
average quantities such as fractal dimension or Lyapunov
exponents are preserved from one data set to the other.
In doing this we are tacitly assuming some sort of ergodi-
city. Certainly one could also focus on particular points
or regions of the attractor and apply the same statistics.

To generate the actual statistics we work primarily
with the null hypotheses that the two data sets we are
testing are randomly related, with no correlations. Other
hypotheses are certainly possible (e.g., that the time series
are correlated noise [40]). Similarly, we suspect that
there may be other approaches to our objectives,
refinements to our results, and certainly other analysis
properties to characterize statistically.

III. ANALYSIS STATISTICS

We are interested in characterizing, in a statistical
sense, the mathematical property of embedding from one
time series (the first) to another (the second). See Fig. 1(a)
for a diagram of the mapping. We emphasize here that
we are in the position of knowing data points in the
domain and range of a function, but we do not explicitly
know the function in the sense of knowing the rules for
generating a range point given a domain point.

Characterizing an embedding breaks down to charac-
terizing several elementary mathematical properties of a
mapping; continuity, injectivity, differentiability, and
rank invariance; we sometimes refer to these as analysis
properties. An embedding can heuristically be viewed in
three steps which serve to introduce the nomenclature.
First an embedding is a homeomorphism from the first
time series onto the second. A mapping is homeomorph-
ic if it is continuous, injective, and has continuous in-
verse. In terms of time series this means [see Fig. 1(b)]
there are no points in the first time series’ phase space
which are arbitrarily close, but which are mapped to dis-
tant points on the second time series. Injectivity, rough-
ly, is just the opposite: no arbitrarily close points in the
second time series are mapped by the inverse to distant
points back in the first time series [see Fig. 1(c)]. Con-
tinuity guarantees that there are no rips or tears in the
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FIG. 1. (a) Diagram of mapping f: X—Y, (b) diagram of
discontinuity, (c) diagram of noninjectivity.

mapping. Injectivity (and inverse continuity) guarantee
that the mapping does not glue together separate parts of
the first time series. Points that are close in one time
series are always close in the other.

Second, an embedding is differentiable. Dif-
ferentiability is a smoothness criterion. In one direction
[Fig. 1(b)] we require the mapping to have a derivative.
This means the mapping can be approximated locally by
a linear operator. In the other direction [Fig. 1(c)] we
want the inverse mapping to have this quality. This puts
even more restrictions on the map which will also lead to
a statistic beyond continuity.

Finally, an embedding must preserve rank. What this
means is that if we start with an object on some surface
that is of a certain dimension, we want to map to an ob-
ject on another surface that has the same dimension.
This is guaranteed by requiring that the rank of the Jaco-
bian of the mapping be equal to the original surface di-
mension. This requirement if often ignored in work on
embeddings, but it is an important part of the definition
(see Ref. [43]). We do not focus any attention on a sta-
tistical test for the rank, but we do note that some atten-
tion must be paid to rank in the differentiability test
below.

A. Continuity

We start with a basic concept of continuity of a map-
ping f from a space X to another space Y. We assume
there is a metric || || on each space. In practice we use the
Euclidean metric. The function f is continuous at a
point x,E€X if Ve>038>0 such that |x—xp| <8
= ||f(x)—f(x0)|| <e. Simply put, if we pick an open &-
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sized set around f(x;), then there is some small enough
6-sized set around x, from which all of the points are
mapped by f into the € set. This guarantees that nearby
points are not mapped to distant points as in Fig. 1(b).

A statistical version of the standard analysis statement
of continuity when we only know some points in the
domain and range of f, but not f itself, simply amounts
to counting points in 8 and € sets. The statistical version
can be generated in two steps. First we construct an al-
gorithm to select points that, given 8 and &, are consistent
with the mathematical definition of continuity. Second
we apply an appropriate probability distribution con-
sistent with the null hypothesis we have chosen. Note
that these two steps are independent. Given points
selected by the algorithm we can use different null hy-
potheses and thereby generate different probability distri-
butions for our statistic. These two steps are used to gen-
erate other statistics, too, for example, the
differentiability statistic below.

For the first step, the algorithm for finding points, start
with € and 8 values. Find all the points x; which are
within a distance § of x,. Now check to see if all the im-
ages y; = f(x;) of those points are within a distance € of
Yo=/S(xp). If not, decrease 8 by some factor, find a new
set of x;’s, and check that the new images are within € of
Yo- We repeat this process until we either have all y;’s in
the € set or 8 has been decreased so far that we cannot
find any x; points, other than x,. All we are doing here is
requiring the points to fulfill the definition of continuity
above.

For the second step we introduce a null hypothesis
which we use to generate a probability for our simple
statistic for continuity. Let there be N points in the
reconstructions, let ng be the number of x; points found
in the 8 set, and r, be the total number of y; points found
in the £ set. We exclude x; and y, since they are always
present by construction and their presences should not
influence the statistic. Also note that, in general, n, > ng
since points from other parts of the attractor outside the
8 set may be mapped into the € set, too. That latter fact
does not affect continuity. Our null hypothesis is that the
y points are randomly and independently distributed over
the Y space reconstruction with respect to the x points.
For this situation the probability p of one of the ng &
points mapping into the € set is just the ratio n, /N. Here
we assume that n./N is a good estimate for the actual
probability. The probability of all ng x points mapping
into the € set is then p >=(n,/N)"®.

If this probability is low enough, then we can reject our
null hypothesis; the x and y points are not randomly re-
lated. Note that this does not mean we have proven they
are related in any particular way. Rejection of the null
hypothesis is not an automatic acceptance of the alter-
nate hypothesis [44,45] that the mapping is continuous.
Rather, it gives us confidence that the effect we are see-
ing, in this case ng points all mapped into the € set, it not
caused by some random coincidence.

We express this confidence by quantifying what we
meant above by having a probability that is “low
enough.” First note that we are really dealing with a bi-
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nomial distribution [46] b(m;ns,p), which gives the
probability of finding m points out of ng inside the € set if
the probability for finding one point in the € set is p. In
our case our event is in the “tail” of the distribution,
m =ng, and so the probability of this happening is pn8

The likelihood of this happening we define as the ratio of
the probabilities pnﬁ/ Pmax- The quantity p_ . is the max-
imum in the binomial distribution which occurs, usually,
at some intermediate m <ng value. In other words, it is

not enough to have the probability pn’s of the event be
small, but it must be small compared to the probability of
the most likely event, which here occurs with probability
pmax'

Then we define the confidence as the continuity statis-
tic ®Co(s,j)=1—pnﬁ/pmax, where j is the index of the
point at which we are testing for continuity (x,=x;).
The subscript C° shows that the statistic is for cont1nu1ty
(differentiability is not assumed here) and the dependence
on ¢ is made explicit. When ® Cozl we are confident, vis

a vis the null hypothesis, that we have a continuous func-
tion. When ®_o~0 we are not confident that we have

continuity since we cannot reject the null hypothesis that
the event happened by accident.

We note several things about our statistic in relation to
time-series applications. First we typically have several
thousand points in a time series and for small € values we
would expect n, to be at least an order of magnitude
smaller. This implies that finding only a few & points that
all map into the € set would be all that is required to re-
ject an assumption of random relation between the x’s
and y’s. This is in agreement with Kaplan [40] who
found that for determinism tests, close points mapping
forward in time to close points, was a rare event for a se-
quence of random points. In fact we often find that in
calculating ® o(e,j) at points on an attractor we get
“binary” results: either ® o(e,j)=~1 or 0. Hence, this
property is generic for continuity of any mapping and is
not restricted to tests for determinism.

Second, these results give no guidance on choosing &,
except that if the confidence in continuity is low below
some €, value, then one must work at a lower resolution
(larger € value) in the Y space. In working below &, we
cannot be sure if the mapping will have the properties of
a continuous function. Working above €, similarly does
not guarantee that we are in a small enough neighbor-
hood where we can be sure there are no effects like curva-
ture. Estimation of how small an € we need must come
from other tests. These are important considerations
when, as in an experiment, we do not know the form of
the dynamics and/or the mapping between the two time
series.

In our applications we will examine the average of
®o(g,j) over the attractor or over a set of randomly

chosen points on the attractor. We write

2®C0(8,]) (1)

P ji=1
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where we calculate ® Co(e, J) at n, points. When no con-
fusion arises we drop the explicit dependence on €.

B. Inverse continuity

The statistic for inverse continuity of the mapping f is
actually easy to generate. This statistic must cover the
following mathematical statement: at a point y,EY
if V8>03e>0 such that |y—y,l<e =|f Uy)
—f " Ny,)|| <& the map f has a continuous inverse. See
Fig. 1(c) for a graphical description of when this
definition fails. Note that this is just the reverse of the
continuity definition. Hence we can formulate a statistic
0,0(g,j) just like ® (e, j) above, where by I° we imply
the continuous inverse function statistic with no
differentiability assumption. Then we write
®10(8,j)=1—pn5/pmax, where p=ngs/N. Note that in
these formulas p .., ns, and n, are not the same values as
for the continuity statistic, even when the set sizes are the
same. Analogous to the continuity statistic the require-
ment is that all n_ points map into the § set and the 5 set
can, in general, contain points mapped from regions of
the attractor other than the € set. In general, ng>n, for
inverse continuity.

As for continuity we have confidence in the injectivity
and inverse continuity when ©® Io(a, Jj)=1 and little

confidence when the statistic is nearly zero. Other com-
ments on the continuity statistic translate to the inverse
continuity statistic with appropriate interchange of x’s,
y’s, 8’s, and €’s. Finally, we have the average statistic

p
CIRES —;‘—E © o(e,j) , @

which we will use to characterize the entire mapping re-
lating the two time series.

C. Injectivity and homeomorphism

Injectivity, whether a function is one to one, is deter-
mined from the ® p and ® 10 statistics. The relation be-

tween the two reconstructions which we have been cal-
ling f is not guaranteed to be a function from X to Y in
the strictest mathematical sense. The mapping f is a
function providing that there is only one point in the
range of each domain point. For example, f(x)=x2is a
function, but f(x)=Vx is not, unless we put some re-
strictions on the range. Our continuity statistic ® co ac-
tually simultaneously tests for “functionality” since by
proving continuity we also are showing that the (less
demanding) requirement of being a function is fulfilled.
The inverse continuity statistic simultaneously tests
whether f ! is a function (only one point in the domain
of f for each range point), as well as whether it is con-
tinuous. Combining ® co and ®1° provides a statistical
test of injectivity. This combination can be expressed as
the new compound statistic ® c°(®1°)' In fact, if the

product ® Co(@ 10) is near 1, we can be confident that we
are dealing with a mapping that is a homeomorphism.
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We do not make use of this statistic here, but this serves
to show that other mathematical properties can have
statistics associated with them and that some can be re-
lated to more basic statistics such as ® co or ® 10

D. Differentiability

For differentiability we again start with a mathematical
definition. A mapping f: X — Y is differentiable at x, if
there exists a linear operator A such that V €>038>0
for which ||x—xg| <8=||f(xy)+ A(x—x5)—f(x)||
<e||lx—xp||. This means f is well approximated locally
by A and is therefore smooth. The question is what sta-
tistical connection can we make to this analysis concept?
The problem here is that we need to establish the ex-
istence of a linear operator and estimate how well it maps
points localty.

We have chosen to use the well-known statistic of mul-
tivariate correlation and use a null hypothesis which gen-
erates a probability for a confidence statistic analogous to
that for the continuity at x,. We give here a heuristic
reason for this choice. See Refs. [44,45] for more details
and proofs.

It is known that the method of least squares yields the
best estimate of a linear operator that satisfies the equa-
tion

Aa=b (3)

for a given set of (a;,b;) pairs of measurements [44] when
the data have a normal distribution. For our (a;,b;)
pairs will use the zero-mean variables Ax; =(x; —X) and
Ay;=(y;—¥), where X is the mean of the ng vectors
found for the continuity statistic and § is the mean of

their images. The least-squares solution is given by
A=YXT(xx")" 1, @

where X is the matrix whose columns are the x vectors,
X=(Ax,,Ax,,...,Ax,), and Y is the matrix whose

columns are the y vectors, Y =(Ay,,Ay,, ..., Ay,). For
the inverse of 4 we get the estimate
A7'=XYN(yyhH!. (5)

If we have good estimates of 4 and A4 1 we should
get AA"1=1 (the unit matrix). Putting this together
with (4) and (5) we have a correlation statistic 7:

r2=tr[ XY YY) lYXT(XxXT)"11/4d, , (6

where tr means the trace and d, is the dimension of the
attractor (more on this later). This is typically the statis-
tic used in multivariate analysis to estimate the amount
of linear correlation between two data sets [44,45]. For
example if #2=0.6, then we can say that 60% of the rela-
tion between the Ax and Ay pairs is a linear one.

Now we can ask how probable this correlation is for
our null hypothesis. In our case we want to establish that
such a correlation will not likely occur by accident. We
take our null hypothesis to be that the Ax and Ay pairs
are uncorrelated. The correlation for uncorrelated data
is 0. We can derive a probability for finding a certain

3425

correlation >0 for our null hypothesis. The derivation is
straightforward, but tedious. It is based on estimates for
the distribution of covariance coefficients [44,47]. We
show this derivation in Appendix A. The result is that
the approximate probability for finding a correlation 2 in
spaces of d-dimension vector pairs on a d,-dimensional
subspace (the attractor) that are assumed uncorrelated is
2,2

p~e 1/2ng—d, =%, o

As before, the process of determining a likelihood or
confidence level is a two-step process.

First we define our algorithm for finding points x;
which satisfy the definition of differentiability for the map
(locally at x,) from X to Y. We choose the € value, which
in this case now determines the error we will allow in the
local linear estimate of our function. This € has a
different meaning from that used in continuity. We pick
a 8 value and find associated x; points within § of x.
This gives us a set of local Ax and corresponding Ay
pairs. We use these to find a least-squares approximation
to A, the local linear map. Now we check whether
||Ay— A Ax|| <e;Ax as the definition of differentiability
requires. We use a scaled €;=ge0,,/0,, Wwhere
oay=standard deviation of the Ay vectors and
o ,,=standard deviation of the Ax vectors. Using g, is
necessary to eliminate scale differences between X and Y
vectors. If all Ax and Ay pairs satisfy the inequality we
move on the calculation of the statistic. If not, we choose
a smaller § and try again with a new, smaller set of Ax
and Ay pairs. We continue this algorithm until the in-
equality is satisfied or we run out of points.

The second step is to calculate the correlation »? and
the associated probability p for obtaining r? given by Eq.
(7) which is determined by our null hypothesis of no
correlation between Ax and Ay pairs. Our
differentiability statistic at the point x; becomes

J
®_i(g,j)=1—p. If we find no x points in the 8 set, then

we choose ®Cl(s, j) to be zero. The average statistic, as
before, becomes

n

1
n

h}

@Cl(ﬁ)z ®C1(E,j) . (8)

1

P J
Note that we could also take into account the actual
value of the correlation since it, too, has a value between

— _ 12,2
0 and 1 and define @C,(e,j)ZrZe 1/2ng =d, =17°r7d, For

now we keep the above definition, but this serves to point
out that there are often many ways to generate a useful
statistic in a given situation.

For the differentiability of the inverse mapping we fol-
low the approach for the inverse continuity statistic and
use the above algorithm to calculate 2 for that situation
where the roles of X and Y and 8 and ¢ are reversed. It is
important to note that the Ax and Ay pairs for
differentiability and inverse differentiability are not neces-
sarily the same. For example, we can have a continuous
function which is not injective (e.g., y =x2) and we will
find many Ax and Ay pairs for the continuity and there-
fore differentiability statistic, but few or no pairs for the
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inverse
2

associated injectivity and therefore
differentiability statistic. Hence, we must calculate r
separately for each case. As before we switch the roles of
X and Y and & and € to define an inverse differentiability
- . —1/2(n,—d, —1)?r%d,
statistic ®11(8’1):1_e e e , so that when
® 1‘(8’ Jj)=1 we are confident that we have a differentiable

function at the jth point. We further define an average
statistic for the entire attractor as

"p
©,(e)=— 3 ©,(c,)) . ©)
p j=1

We remark here that what we have mostly done is to
take standard statistical approaches and apply them lo-
cally to the time-series trajectory reconstructions. In-
stead of applying statistical measures to the entire set of
data we apply them only to a subset which we choose us-
ing geometric or analysis considerations.

E. Rank

In the above we have not made clear what value one
uses for d,;, the dimension. The choice of d, =the dimen-
sion of X and Y is not usually correct. To see this consid-
er that we can embed an attractor that exists on a two-
dimensional manifold in a five-dimensional space, for ex-
ample, the Henon system, which we use below. Then the
dimension of the derivative correlation matrices, locally,
should be 2, not 5. Also, we would have to use the
singular-value decomposition (SVD) of the matrices XX T
and YY7 to determine their inverses.

This observation brings up a crucial issue. If one
knows the dimension ahead of time, then one can choose
d, and use SVD to cut off the less relevant dimensions in
the correlation calculation. Even if one does not know
d,, care must be taken in calculating quantities like
(XXT)~1. We should still use SVD and pick a cutoff ap-
propriate to our time-series data, for example, the noise
level. The significant directions in the phase space have a
dimension which we assign to d,. This type of situation
has also been studied in the context of noise reduction
and attractor reconstruction [48—52].

Note that for large values for € we will include large
portions of the attractor which may be curved or folded
in our € set causing d, to equal the dimension of Y. As
we decrease € we find that d, decreases and levels off.
Only at the smallest sets where all the statistics decrease
rapidly does d, also drop to 1 (or zero when no points are
found). We use the upper and mid-range d,’s in our cal-
culation of differentiability statistics.

Cawley and Hsu have examined this problem in other
contexts [49]. More research needs to be done on finding
the best estimate of the embedded manifold dimension.
Since this is a separate manifold property one could,
perhaps, design a null hypothesis to estimate the proba-
bility of obtaining certain values of d, given the x and y
pairs or, equivalently, the matrices XX7 and YY7. We
have not explored this possibility yet.
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IV. APPLICATIONS

Below we show the results of our approach to some
test situations: filtering of Henon data, synchronization
in chaotic, coupled systems, and tests for determinism.
We show typical results here. More detailed conclusions
on each set of applications will be published elsewhere.
Throughout we emphasize mostly the continuity and in-
verse continuity statistics [® o(€) and @ ,o(¢)], although

we do display some results for the differentiability statis-
tics. In all our tests and applications we scale € and 8 to
the standard deviation of the attractor which serves to
give a good feeling for the relative € and & set sizes
(which are all that matter) when examining graphs of the
statistics. By standard deviation we mean the estimate
computed from the second moment of the distances from
the mean of the reconstructed vectors.

A. Test results

The very process of reconstructing a time-series trajec-
tory is itself something that can be studied by the present
approach. We examined the reconstruction of a two-
dimensional (2D) system, the Henon system (a=1.4,
b=0.3), in a 5D space using the first coordinate of the
Henon map as the time-series variable. Hence, we are ex-
amining the mapping f: (x;,y;)—(X;,X;415--->%X;44)
which is a direct experimental test of these statistics vis a
vis Taken’s embedding theorem. In this case we know
the manifold dimension d =2 and we choose this for our
differentiability tests. We take 200 random x; points on
the attractors to calculate our average statistics. We
worked solely in single-precision computer calculations.

Figure 2 shows the Henon attractor along with several
€ sets of various sizes. We see that set sizes 0.05 and

,
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FIG. 2. Two-dimensional time-delay plot of the Henon x
time series with various € set sizes shown.
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below should capture the local features of the attractor
quite well.

Figure 3(a) shows the continuity statistic for time series
of various lengths. As we expect, the continuity drops
when we go to small enough € values. This results from a
simple lack of points in the small sets, so the null hy-
pothesis cannot be rejected for many random centers
around the attractor. However, when more points are
added to the time series we see that the confidence in con-
tinuity goes up at the smaller € set sizes. This is a hall-
mark of these statistics. When the mapping is truly con-
tinuous, injective, or whatever, the respective statistic
continually improves, approaching 1.0 asymptotically.
Only as we approach the single-precision level (approxi-
mately 10~ % set sizes) might we experience a saturation.
In an experiment we would expect saturation at the noise
level as tests below bear out.

Figure 3(b) shows the differentiability statistic for vari-

104 (a)

0.8

0.6
0.4
- 1K
0.2 Continuity Statistic
2D to 5D embedding of Henon attractor
0.0
T T T T T T T T T T
0.001 0.01 0.1 1
€
10 (b)
0.8 o
0.6 —
&F
0.4 —
Differentiability Statistic
0.2 - Henon 2D to 5D embedding

T T
0.001 0.01 0.1 1
€

T T T T T T T T

FIG. 3. (a) The continuity statistic for the 5D reconstruction
of a Henon map, (b) the injectivity statistic for the same recon-
struction. Individual curves are labeled by the number of points
in the time series used to generate them.
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ous length time series. The inverse continuity and in-
verse differentiability statistics follow very similar pat-
terns. If these data were from an experiment, we would
conclude that we have, with high confidence at high reso-
lution, a true embedding.

As a check on the differentiability statistics we exam-
ined a 3D linear transformation on the Lorenz system. A
Lorenz system with parameters =10, b=8/3, and
p=60 was integrated for 64 000 points using a fourth-
order Runge-Kutta routine with a 0.02 time step. A
linear transformation

1.0 0.1 0.01
A= (0.1 1.0 0.1 (10)
0.01 0.1 1.0

was applied to the full time series of the Lorenz system
(x;,9:,2;)T, i=1 to 64000 to generate a new 3D time

0.8 — 0% noise

0.6 H

0,0(e)

0.4
10% noise

0.2 —
100% noise

0.0+

1.0~ (b)

0.8 4

0% noise
0.6 —

611(8)

0.4 H

10% noise /
0.2 -
100% noise

0.0p—9=Nv o oWV V¥ o g g g g

FIG. 4. (a) Injectivity for Lorenz linear tests of clean, 10%,
and 100% noise, (b) inverse differentiability for the same.



3428

series. For both time series the dimension is equal to 3.
Both continuity and inverse continuity gave high
confidence levels to small € set sizes (e.g., 0.01 for 16 000
time-series points), but more importantly, the correla-
tions were =~ 1.0 as were the differentiability statistics
down to that resolution, too. The latter result is expected
for linearly correlated data [44,45]. Figure 4(a) shows the
inverse continuity statistic and Fig. 4(b) shows the inverse
differentiability statistic for the mapping between the
original Lorenz series and the linearly transformed one.
We then added noise from a random number algorithm

(a) Lorenz Attractor
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[53] to the linearly transformed Lorenz data. Figure 4(a)
shows the injectivity and Fig. 4(b) shows the inverse
differentiability statistics for these data sets as compared
to the clean set mentioned above. The effect of 10%
noise is the cause of the “cutoff”’ in the statistics at
€=10% of the standard deviation. Adding more points
to the time series does not cause this cutoff to move to
smaller € values, unlike in the clean data. The continuity
and differentiability statistics follow the same patterns. A
noise level of 100% removes all confidence in all the
statistics. We expect this since this situation is almost ex-

(b)  Lorenz attractor after nonlinear transformation

(c) Lorenz Attractor after Nonlinear transformed
and rescaled axes

FIG. 5. (a) Original Lorenz attractor with 0.05 & set, (b) nonlinearly transformed Lorenz attractor, (c) scaled, nonlinearly
transformed Lorenz attractor with (x,y,z) scaling factors of (20,1,100), respectively.
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actly our null hypothesis.
We next transformed the 3D Lorenz data using a non-
linear transformation given by

x'=ax+py?,
y'=ay—PByz, (11)

A

'=qaz + 100
z'=az B cos 25

’

with @=0.0 and B=1.0. Figure 5(a) shows the original
Lorenz attractor, 5(b) shows the unscaled transformed at-
tractor, and 5(c) shows the rescaled transformed attrac-
tor. We can see that the transformation (11) severely dis-
torts the trajectory. Figure 6 shows the continuity statis-
tic for this case. The results imply that the continuity of
the nonlinear transformation is quite good despite distor-
tions. Note that the statistics do not saturate. They im-
prove as we add points.

Finally, we tested an extreme version of a nonlinear
transformation. We took a 1D time series from a Lorenz
system, the x component. We squared it and examined
the mapping from the 4D reconstruction using the origi-
nal time series to the 4D reconstruction using the squared
values. Since y =x2 is a continuous function, we do see a
good continuity statistic (Fig. 7, solid lines with boxes)
that improves as we lengthen the time series until for the
longer series we can be >90% confident in continuity
down to € values of ~0.1. However, the same function is
not injective. Figure 7 (dashed lines with triangles) shows
the injectivity which falls quickly for € values less than
0.5 even for long time series.

We conclude here that the statistics are performing as
expected for known mappings. We now use them on ap-
plications where they help shed light on the relation be-
tween time series generated by methods other than simple
functions.

1.0

0.8 -

Lorenz, @CO, nonlinear transformalion]

|

T T T

T T T

0.01 0.1

FIG. 6. Continuity statistic for nonlinearity transformed 3D
Lorenz time series.
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FIG. 7. Continuity (solid lines) and injectivity (dashed lines)
statistics for square transformation of Lorenz x time series.

B. Filtering

Filtering time series can be hazardous, as shown by
Badii et al. [4]. The use of a dynamical filter, like a
linear, time-invariant (LTI) filter, can cause the fractal di-
mension of the resulting reconstruction based on the
filtered data to be larger than the actual fractal dimension
of the physical system. On the other hand, Mitschke [5]
has shown that other filters, like an acausal filter, may
have little or no effect on the fractal dimension. If the
filter induces a smooth, continuous transformation [6] we
know the fractal dimension will be invariant. If not, we
cannot be certain of the fractal dimension we calculate
from the filtered time series. Below we use our statistical
measures to shed light on the differences between the LTI
and acausal filters.

The act of filtering a time series with a convolutional
filter can be viewed as a mapping between the original
and the filtered time series. We can make this explicit.

The vectors in X are constructed by the usual time-
delay method:

x(¢)=(h(t),h(t+7),...,h(t+[d—1]7))EX,

where A(t) is the time series of measurement. If g(¢)
is the time series obtained by a filtering of A(z), then
the vectors in Y are given by y(z)=(g(z),g(t
+7)...,8(t+[d—1]7)). We write y(¢)=/f(x(z)). We
show the details of this relationship in Appendix B.

We can now ask the questions as to when f is continu-
ous, injective, differentiable, or diffeomorphic. Broom-
head et al. [54] have shown that finite-impulse-response
(FIR) filters, essentially those with finite extent in time, in
principle induce a difffomorphism between the original
resolution and the filtered reconstruction. Presumably,
LTI and acausal filters, which have infinite extent, might
also induce diffeomorphisms (and thereby guarantee the
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preservation of fractal dimension) if the filter falls off fast
enough. Just how fast is given by Isabelle et al. [55]: ex-
ponentially faster than the smallest Lyapunov exponent
into the past and faster than minus the largest Lyapunov
exponent into the future. However, we introduce a
caveat here in that we need to invert the filter to get an
inverse mapping, which is an ill-posed problem for an
infinite filter [56], and surely will be one for all practical
purposes for an FIR which has a long time domain.
However, if we are only searching for continuity to
preserve fractal dimension, then we may still be in luck,
since we do not need the filter inverse for this property.
We examine several mathematical properties of filtered
time series next.

We started with a time series from the Henon map (pa-
rameters a =1.4, b=0.3). We filtered this series through
a set of LTI or acausal filters. Each filter was
parametrized by 1 which defines the action of the filter in
the Fourier domain. The LTI filter has a time-domain
form «<e~ ", which has a Fourier transform given by
iw/(n*+w?). The LTI filter changes the phases of the
Fourier series of the original time series. The acausal
filter does not have a simple form in the time domain, but
it does have a Fourier domain form given by 1/V n*+w?.
The acausal filter does not change phases of the original
time series. Both filters have the same 1/w amplitude fall
off at high frequency. Note that the “amount of filtering”
increases for both filters as 7 decreases.

According to the Kaplan-Yorke conjecture [57], as im-
plemented for LTI filters by Badii et al. [4], we calculate
that the dimension of the LTI filtered data should begin
increasing as 7 falls below ~1.58. For the acausal filter
there is, at present, no corresponding estimate. Figure 8
shows the results of the fractal dimension for the attrac-
tors reconstructed from the filtered time series. The di-
mensions were determined using the method of [58] for a
data reconstruction in five dimensions. We see that both
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FIG. 8. Dimensions of attractor reconstructed from filtered
Henon time series for LTI and acausal filter.
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filters increase the dimension, but the LTI filter causes
the largest increase at any particular 7 value.

Figure 9 shows the continuity of the mapping from the
original 5D reconstruction to the reconstruction of the
filtered data as a function of 7 at a typical resolution (e
value). We chose an € value of 0.04 in the filtered recon-
struction where the standard fractal dimension plots are
linear. We see immediately that we begin to lose con-
tinuity in both LTI and acausal cases near n=1.1. How-
ever, the LTI filtered reconstruction consistently has a
lower continuity statistic (® o) than the acausal data.

This immediately sheds some light on why acausal filters
appear to be “safer” for filtering chaotic data than LTI
filters [S]—they preserve the continuous differentiability
property better than LTI filters.

If we look further at the continuity statistic versus € in
Fig. 10 for two 7 values, one (17=1.2) just below the 1.58
threshold and one (7=0.4) at a point where both data
sets are highly filtered, we see some interesting results.
First, we note that ® o(€) for n=1.2 improves as we add

points to the time series as shown in Fig. 10(a). This indi-
cates that, as we might suspect, the discontinuities caused
by either filter are still small. However, as shown in Fig.
10(b) for the LTI filter at n=0.4, ® Co(e) saturates at

values of low statistical confidence as more points are
added to the series. This implies that the mapping
caused by the LTI filter is highly discontinuous. Al-
though this does not imply that the fractal dimension will
change, we should not be surprised when that happens.
The values of ® o(¢) for 7=0.4 for the acausal filter do

not saturate so dramatically, but clearly do not improve
to high confidence levels as they do for larger 7 values or
for the known continuous examples in the preceding sec-
tion. Hence, the fractal dimensions calculated for these
time series are also suspect. This is in line with the small-
er change in fractal dimension for the acausal filter at this
7 value.

It is also interesting to examine the inverse continuity
statistic ® Io(s) for these filters. Figure 11 shows this

Oc0()

o2 7 [Continuity Statistic LTI&Acausal]

0.0 - T T T T

05 1.0 15 2.0
n

FIG. 9. Continuity statistic at €=0.04 vs 1 for LTI and
acausal filtered Henon data.
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statistic at €e=0.04 for LTI and acausal data as a function
of . This case is just the reverse of the continuity case in
that the acausal filter is consistently less injective than
the LTI filter. This might affect any properties that de-
pend on injectivity or continuity of the inverse function.
However, it is not relevant for fractal dimension since
only continuity matters [6].

Generally, for these tests the differentiability statistics
follow the trends in the continuity and injectivity statis-

0.2+ Continuity Statistic for
LTI and Acausal Filtered Henon
n=1.2
0.0 Y ——rvy T — T
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€
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0.2 Continuity Statistic for
LTI and Acausal Filtered Henon
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0.0 T — ————rr
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€

FIG. 10. Continuity statistic vs € for several time-series
lengths (4000 to 128 000 points) for LTI and acausal filtered
Henon data, (a) for slight filtering (n=1.2), (b) for heavy filter-
ing (7=0.4).
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FIG. 11. Injectivity statistic at €=0.04 vs 1 for LTI and
acausal filtered Henon data.

tics, so we can conclude that the LTI also leads to time
series in which, for small enough 7, we cannot be
confident that the mapping from the original series to the
filtered series is C'. We will cover more details on the
embedding of filtered data and our statistics elsewhere
[59].

C. Synchronization

A great deal of interest has been generated from the
discoveries of various scenarios in which chaotic systems
can synchronize. These scenarios include mutually cou-
pled systems [8,10,13,14,18,19,60—-62], one-way driving
of systems [9,11,20,22,60,63—-66], and control schemes to
synchronize chaos [67,68]. In almost all of these studies
synchronization is assumed to be the situation in which
the variables of one system equal, exactly, those in anoth-
er.

However, Afraimovich et al. [8] considered a more
general situation in which the variables in one system are
in a smooth, one-to-one correspondence with those in
another system. This is another way of saying that there
is a diffeomorphism between the two systems [8]. This
might occur when we have two chaotic systems coupled
strongly enough to cause synchronization, but whose pa-
rameters differ slightly. Exact synchronization is not
possible [8,21,22], but there may still be a unique relation
between the phase-space positions of each system. This
situation is usually labeled as generalized synchronization
[41].

Since generalized synchronization would be expected
in any experiment (we can never get two dynamical sys-
tems with exactly equal parameters), we would like a way
to determine when two systems display such behavior.
This usually means we want to compare two times series
and conclude whether or not they are synchronized in a
general way.
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Recently, a method based on the idea of false, nearest
neighbors [27,69] was proposed. It concerns the search
for mutual, false, nearest neighbors. This test is per-
formed using two time series, just like our X and Y sets in
this paper. One calculates the quantity P(d) which is a
quotient as explained in the Introduction. If the systems
are in general synchronization one would expect that
nearest neighbors would be mapped into nearest neigh-
bors and that the ratio P(d)=1. This is a heuristic re-
statement of the Afraimovich diffeomorphism criteria [8].
Rulkov et al. show that for some model systems and for
a real set of synchronized, chaotic, electronic circuits
P(d) does indeed approach 1. For unsynchronized sys-
tems P(d) is often much greater than 1, since in that case
nearest-neighbor pairs in X usually map into distant
neighbors in Y.

From our vantage point we can see that the Rulkov
method is a simple version of our differentiability statis-
tic, the local correlation. The basic difference is that our
correlation will go to zero if the systems are not syn-
chronized. We can also test for synchronization by using
only the continuity and injectivity statistics. In this case
we would really be testing for a homeomorphism between
the X and Y times series.

The advantage of the Rulkov P(d ) quantity is that it is
relatively easy to implement and is fast computationally.
The advantage of our statistical analysis approach is that
we can measure several general synchronization quanti-
ties (homeomorphism or diffeomorphism) and associate a
confidence level with them. Additionally, since the statis-
tics depend on the level of resolution desired (&), we can
state at what resolution we can still have confidence that
both systems are synchronized. Both approaches should
be complimentary and useful in several situations.

We tested for general synchronization in a pair of
Lorenz systems which were dissipatively coupled through
their y components:

X1=0y(yy—x1), X;=05(y;7x3),

y=—xz;+trix;—y;tely,—y1),
: R (12)
Vo=—xyzytrx, =y, ey —y;3),

Zy=x1y1—b1zy, =X, bz, ,

and which were integrated with a fourth-order Runge-
Kutta algorithm with a time step of 0.02. A time-series
pair was generated for each different coupling and
{o,b,r} parameter set by taking the x component from
each system every seven integration steps (time step equal
to 0.14). Another time-series pair was generated by tak-
ing the z component from each system at time intervals of
0.14. For both pairs 16 000 data points were used in the
analysis.

In order to give some feel for the size of the € sets used
in the analysis, Fig. 12 shows the attractor in two dimen-
sions and several typical € sizes. Note that sizes below
about 0.1 standard deviations are small and cover only lo-
cal areas of the attractor. Although our reconstructions
are in five dimensions to guarantee full unfolding of the
attractor [69], the € sets should be similarly sized.
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€ set sizes

FIG. 12. Plot of the Lorenz attractor with ¢ sets of typical
sizes in fractions of the standard deviation of the data is shown.

For the x component sets we integrated Eqgs. (12) for (i)
a fully synchronized identical system case
{o;b;,r;}=1{10,8/3,60} for i=1,2 and ¢=60, (ii) par-
tially synchronized systems with slightly different param-
eters {opby,r}={10,8/3,62} and {03,075}
={10,8/3,60} near the threshold of synchronization
¢ =2.8 where intermittent behavior is seen—the systems
synchronize, then burst out of synchrony occasionally
[70,71], (iii) strongly coupled systems ¢ =60 with a large
parameter difference {o,,b,,7;}={10,8/3,136} and

X2
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X1

(i) -
XI / /

X2

FIG. 13. Phase plots of x components from two Lorenz sys-
tems with various couplings and parameter settings (see text for
exact values). (i) Highly coupled, matching parameters, (ii)
weakly coupled, near sync threshold, slight parameter
mismatch, (iii) strongly coupled with large parameter mismatch,
and (iv) uncoupled, matching parameters. In (c) the circular
hole shows an ¢ set of size 0.06.
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7]
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FIG. 14. similar to Fig. 13, except for the z component. The
plot is for case (iii) in the text which is also (iii) in Fig. 13.

{0,,byr,}={10,8/3,60}, and (iv) completely unsyn-
chronized systems {o,b;,r;}={10,8/3,62} and
{05,b,,7,}={10,8/3,60} and ¢=0. For the z com-
ponent we duplicated run (iii) above.

Figure 13 shows the behavior of the x component of
the systems when plotted against each other for runs (i)
to (iv). Figure 14 shows the behavior of the z components
for run (iii). Note that the z component figure is quite
different from the corresponding x component figure.

Figure 15 shows the continuity statistic for the four x
component cases (i) to (iv). The other statistics follow
these trends very closely, so we will only focus on this
one. The first case (i) may seem trivial, but it serves to
define limits on the statistics. Note that ® .o(¢) eventual-

ly falls off sharply below an € of about 0.03. We saw this
effect in the above tests as a result of having a finite num-
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FIG. 15. Continuity statistic ® o(e) for general synchroniza-
tion tests. (i) Exactly synchronized case, (ii) partially synchron-
ized case, (iii) general synchronization case, (iv) completely un-
synchronized case.
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ber of points in the time series. In other words, given the
number of points (and in an experiment, a noise level) this
curve is the best we could achieve in putting a confidence
level on whether the two x time series are related by a
continuous function. Similar statements apply to the oth-
er statistics. In this case € sizes below 0.1 are quite small
on this attractor and we can be confident that we are
looking at local effects. Finally, and most importantly, in
this case we know the system in great detail, but in an ex-
periment, where we rarely known the system in any de-
tail, it would indeed be correct to say that we can only be
confident about the continuity and subsequently the
synchronization for € sets above ~0.03.

For case (ii), the intermittency causes the systems to
lose synchrony occasionally. In fact for € sets with good
statistics (€ >0.1) we can say that the system is in sync
only about 70—-80 % of the time. This might be a good
way to measure asynchronous intermittent bursts since
the statistics will not discount points off the diagonal like
a simple test might, so long as the systems are truly syn-
chronized. In many experiments, getting data strictly on
the diagonal is not possible, yet the systems may still be
in sync; these statistics will detect that case.

Case (iii) is the most interesting. Despite the distortion
caused by the large difference in the » parameter between
the systems we see that the systems are still in sync to a
good confidence level (~80% at €~=0.06). This corre-
sponds to a small € set and is shown in Fig. 13(c). At this
resolution we are only sampling points completely off the
diagonal.

Case (iii) for the z component is shown in Fig. 16. We

0.8+

Continuity and Inverse Continuity
from z-component of
general synchronized Lorenz systems

0.2

T T T T

T T —
0.01 0.1
€

FIG. 16. Continuity statistic ® o(€) (squares) and inverse
continuity statistic ® o(e) (triangles) and for general synchroni-

zation tests in the Lorenz system using z component time series
for 14000 points (dashed lines) and 30000 points (solid lines),
case (iii) system in text.
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show @ o(e) and ® (e) for 14000 points as in the x

component cases and for 30000 points. Increasing the
number of points increases the confidence levels of the
statistic. This suggests that true synchronization is tak-
ing place down to £~0.05 at 80% confidence.

Case (iv) shown in Fig. 15 shows what we expect from
our previous tests. The phase-space points of two uncou-
pled chaotic systems are randomly related to each other.

We applied the same tests to synchronized and unsyn-
chronized circuits. The details of the circuits are given in
[7,10]. The circuits consist of a drive and a response,
which are modeled by [7]

49X _ _ o(Tx+By +Az)

dt
a _
dt

dz _ .
i a[—g(x)+z],

—a(—x—yy+0.02y) , (13)

(a) Synchronized Chaotic Circuits
matched parameters

B
T T T T
4 -2 0 2 4
x(t)
(b) Synchronized Chaotic Circuits
4 — Unmatched parameters
2 —
O —
x

x(t)

FIG. 17. Phase plots of x voltage from (a) well-matched and
(b) poorly matched synchronized, chaotic circuits. Typical €
sets are shown for reference.
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for the drive and

X (Tx'+By+Az')
dt
ay’ _ , ,
?———a(—x —vyy+0.02p’) , (14)
& —af—gx)+2],
for the response, where
0 ifx<3
glx)=

pwlx—3) if x >3

and a=10*s, I'=0.05, 8=0.5, A=1.0, y=0.133, and
u=15. The y signal from the drive (13) drives the
response (14).

We extracted two time series from the drive-response
circuits for two scenarios, one where the circuits were
well matched and we expect good synchronization and
one where the ¥ parameter was changed by ~20% to a
value of 0.160 and we expect degraded synchronization.
The data were sampled at 0.1-ms intervals. We collected
32000 points. Figure 17 shows the plot of the x variable
in the response versus its counterpart in the drive for (a)
the matched and (b) the unmatched systems. Conclusions
from Fig. 17 would be obvious, that the unmatched sys-
tem is not as well synchronized. We might even be able
to quantify this by measuring the “width” of the diagonal
band of points in Fig. 17(b) versus Fig. 17(a). However,
the statistics @Co(e) and ® Io(a) show an interesting oc-

currence not discernible from Fig. 17.
We calculated ® o(g) and ® o(¢) by reconstructing the

0.8 —
Matched

0.6

O(¢)

Oc0
0.4 €

Matched-Self-Sync

O

Unmatched

0.2 4
G)Co

Unmatched

O'O i T T L
0.001 0.01 0.1

FIG. 18. Continuity and injectivity statistics for well-
matched and poorly matched synchronized, chaotic circuits
along with the continuity statistic calculated for the drive cir-
cuit which is mapped to itself (the identity map). The latter is
the best case possible and is used as a comparison for statistics
for the other mappings between reconstructions.
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two time series (one from the drive and one from the
response) each in a six-dimensional space, taking every
third point from the time series to avoid in-sample corre-
lations. Figure 18 shows the results for the matched and
unmatched data sets as well as the results from a pair of
identical data sets (the same drive set used twice). The
latter serves to set the limits on the best statistics we can
hope for since it represents the identity mapping, which
is perfectly continuous and injective. The matched cir-
cuit has nearly equal continuity and injectivity statistics,
but the confidence levels are lower than for the identical
data set case. This is probably due to some inevitable
slight mismatch which must occur in any experiment and
to a small noise level which is around the 0.003 ¢ level.
The surprise is that the statistics are not the same for the
mismatched case. Both confidence levels are lower, but
the continuity statistic is at a low level even for large €
sets (see Fig. 17 for a guide to € sizes). The injectivity
statistic does not fall off until well below e=0.1. We con-
clude that the association of points on the drive attractor
with points on the response attractor is not unique. That
is, points in the same & neighborhood of the drive are
often mapped to widely separated points in the response.
However, the reverse situation is that points in 6 neigh-
borhoods of the response are almost always mapped to
points on the drive within €=0.1 of each other.
Response points are highly correlated with associated
drive points, but not vice versa. This is even slightly evi-
dent in the values of ® Co(s) and ® 10(8) for the matched

case. It is not at all evident in Fig. 16. Heuristically, we
can say that even for a mismatched case the response of
this system is still highly “slaved” to the drive.

D. Determinism

For our last test of analysis statistics we examined the
problem of detecting deterministic behavior, both for-
ward and backward in time, for a Lorenz series generated
as in the general synchronization tests from the x com-
ponent. We integrated the data the same way as for the
general synchronization study and sampled the data
every seven integration steps (sample interval =0.14) for a
16 000 point time series.

Forward determinism can be measured by ('Dco(s) for

simple determinism and by ®(¢) for smooth determin-

ism. Similarly, backward (reversible) determinism can be
measured by either ®I0(e) or ®11(8)' We chose 1, 2, 4, 8,

16, 32, and 64 points into the future and calculated all
four statistics. Figure 19 shows the relationship of the
points on the attractor to the starting point. The point
size in the figure is scaled to the € set size (0.0719) used to
calculate the statistic. Points far into the future (numbers
16 and 32) are connected to point O (the starting point) by
trajectories that wind several times around the attractor.
Figure 20 shows the continuity and injectivity statistic
along with their differentiability counterparts. For rela-
tively short times (up to the fourth sample equal to 16
sample time steps <0.56) we can be 90% confident that
the x times series represents a deterministic process. By
the 16th step the system has gone around the attractor
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FIG. 19. Points on the Lorenz attractor for which determin-
ism statistics were calculated. The point size is representative of
the € set size used which was 0.0719. Points 16 and 32 are
reached by traversing several circulations of the attractor.

approximately three times. The maximum Lyapunov ex-
ponent for this system is ~ 1.2 so that the € set will be ex-
panded approximately 2.3 times in one direction. This is
apparently enough to cause all the points in the original
set at time step O to fall outside of the € set at the 16th
point. Adding more points to the time series will cause
the statistic’s fall off to move further into the future.

The inverse continuity statistic falls off much faster
than the continuity statistic. Presumably this is because
the smallest Lyapunov exponent, which dominates the
time-reversed behavior, it so negative (or positive for re-
verse time). For these parameters the smallest exponent

0.8

0.6 4
©O(e=0.07)
0.4 T
0.2
Diffeomorphism statistics vs. time step

-~

00 T T T T T
2 2 2 1 20 VY 2 3 24 25 26
time steps

FIG. 20. The statistics for continuity, injectivity, and their
differentiability counterparts for the x component time series
from the Lorenz system shown in Fig. 18.
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~ —22. hence, we can have a 90% confidence level that
the dynamics are invertible only to the first point (0.14 in
time from the Oth point). Again, adding more data to the
time series will cause this fall off to move to larger time
steps, so we would conclude that we are examining an in-
vertible dynamical process.

Finally, both differentiability statistics follow their
counterparts closely. We conclude that the dynamics are
smooth both forward and backward in time.

An interesting observation from all this is that the fall
offs in all statistics are sigmoidal with a roughly exponen-
tial behavior at intermediate times. The fall off in predic-
tability for a time series from a chaotic system is also sig-
noidal [72] with roughly exponential behavior at inter-
mediate times. For the statistics the fall off is caused by
the requirement of going to smaller and smaller § sets
which eventually have no points at all mapped to the
(forward-time) € set. The positive Lyapunov exponent
causes this “loss” of points as a function of forward time.
The same loss of points will cause poor statistics for pred-
ictability. We conjecture that fall off of statistics and
predictability are related, although more work needs to
be done on this topic.

V. CONCLUSION

By adhering to the original mathematical definitions
we have shown that we can devise reliable statistics
which can be applied to pairs of time series from experi-
ments or numerical studies to determine their relation to
each other. These are most useful in situations where the
relationship between the series is unknown or intractable
(e.g., the acausal filter). There are most likely several ap-
proaches to devising such statistics, limited only by one’s
ingenuity in devising null hypotheses or in combining
them in compound forms, e.g., to get a continuously
differentiability statistic =@ _o(e)®_ .(¢). Our choices
here were offered for simplicity and generality. Specific
choices for particular circumstances (e.g., colored noise
[40]) might be more appropriate.

The advantage of deriving such statistics is that they
apply for fundamental analysis concepts and hence are
very general. This is evident in the variety of tests we
used: filtering, determinism, and synchronization. Many
data-analysis questions are often restatements of more
fundamental mathematical questions. Deriving statistics
for the fundamental concepts yields tools that have broad
application. We have only touched on a few here and we
will present more detailed results elsewhere.

With regard to the continuity statistic we note that
there may exist mathematical functions which are discon-
tinuous, say on a set of measure zero, but whose X and Y
samplings will, with probability 1, miss those discontinui-
ties hence yielding good continuity statistics. We do not
want to enter here into a philosophical argument over
whether such functions are or are not truly observable in
toto, but we note that from a practical standpoint it is un-
likely that such discontinuities would affect real measure-
ments and data analysis.

One application that is not necessarily time-series relat-
ed that we have not mentioned is the comparison of two-
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and three-dimensional images. This has important medi-
cal application. Images of “‘text-book anatomy” can be
kept in a computer database and used for comparison
with images from a patient. The problem is that no two
people are alike and the patient’s images must be contort-
ed, usually by diffeomorphic transformations to match
those of the database. This system is being developed by
Greander and Miller [73,74]. One question that comes
up is when is the transformation of the patient’s images a
reliable diffeomorphism and when is it not. If it is not, it
may indicate a pathology and so the reliability measure
becomes a diagnostic tool [74]. Statistics similar to those
suggested here might fill the roll of that diagnostic tool.

Another, more general consideration is that in any
multivariate statistical setting one often wants to test
whether there is any relation between several measured
variables and another independent measurement (for ex-
ample, does the state of the economy depend on unem-
ployment, the interest rate, and the inflation rate).
Presently, this is done with tools like correlations. The
continuity statistic we present here is actually a more
fundamental test for a relationship. At the very least we
are usually interested in whether future measurements of
several variables with similar values can predict the same
relationship. That is just a colloquial statement of con-
tinuity. At this time we have not found evidence of this
approach in statistics.

The use of statistics appears to be on the rise in the
analysis of time series of dynamical systems and attrac-
tors. Simultaneously, the use of geometric or mathemati-
cal concepts is also increasing (including extraction of
differential-geometric quantities from data [75]). Both
fields are necessary for understanding experimental re-
sults in dynamical systems. The marriage of classical
analysis (calculus, differential topology) and statistics sug-
gests that a new topic perhaps called topological statistics
is being born.
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APPENDIX A: DERIVATION
OF LIKELIHOOD FOR CORRELATION

In deriving a likelihood for continuity we considered
the probability of obtaining ng points in the e-sized set
from a random mapping. This was rather straightfor-
ward in that we simply used the ‘“last term” of the bino-
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mial distribution, pns. In obtaining a likelihood for cal-
culating a correlation (or its trace) we are faced with the
problem of finding the probability of deviations in second
moments. Second moments are what the correlation de-
pends on. This problem has an approximate solution
based on the central limit theorem [44,47]. We use this
approximate solution to generate a distribution for our
null hypothesis of no correlation between the Ax and Ay
vectors. For simplicity in this section we simply write x
and y for Ax and Ay. There will be no confusion.

First, we transform to canonical coordinates [44,45]
z'=(XXT)"12%x!, for i=1 to ny and XX is defined in
Sec. IIIC. Similarly, w'=(YY7?)"!/2y/, We define a
compound data set by combining the z and w d-
dimensional vectors into a 2d vector u=(z,w)”. In ap-
proximating a probability distribution for the second mo-
ments of the compound data set the moments themselves
E[u;u;] are treated like a set of d(2d +1) independent
random variables. In the end we will be interested in the
distribution of the E[z;w;] variables since only these re-
late directly back to our statistics. Note that u; is the ith
component of the measured u vector, not the ith mea-
surement, i.e., we would approximate E[u;u;] by

ng
Eluu)=7- 3 ufu} a1

j b
d k=1

where n, is the number of degrees of freedom (see below).
Using the central limit theorem Layland [47] has
shown the distributions of E[u;u;] have a Gaussian
form. This means in order to get the approximate distri-
bution we need the second moments of these second mo-
ments, i.e., their covariances. Following Refs. [44,47,76]

the covariance of the second moments becomes

E[E[u;u;)E[uju, ]1=E[uujuu,]

—E[uwu;1E[uu,,] . (A2)

In order to evaluate these moments we note the follow-
ing. The hypothesis of no correlation between x and y
pairs and the canonical form of the variables imply that

E[zw, ]=0, (A3)
Elziz;]=E[ww;]= e __da 1 (A4)
E[z;z;zjw,, |=E[ww;w,z,, ]=0, (AS5)
E[z;z;ww, ]=E[zz;1E[w;w;] . (A6)

We use ng—d, — 1, rather than just ng in the denomina-
tor to determine an estimate of the residue. This is be-
cause we are determining d, parameters (a row of the ma-
trix 4) and we really only have ng—d, —1 degrees of
freedom [46]. In simpler terms we need to correct for the
fact that in a d,-dimensional space almost any random
d,+1 pairs of vectors will be perfectly correlated since
the number of parameters in the fit (the 4 matrix) equals
the number of variables, x and y. Hence for the first
d,+1 vectors a good correlation cannot cause a low
probability and thereby a rejection of the null hypothesis.
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These relations show that the covariances in (A2) can
be written in a block-matrix form of dimensions
d(2d +1)Xd(2d +1). Let T" be the matrix of the covari-
ances of the second moments [Eq. (A2)], then

'=lo 1,

) (A7)

where I'; is the submatrix of covariances for E[w;w;]
and E[z;z;] variables, and T, is the submatrix of covari-
ances for E[z;w;] variables. The “off-diagonal” terms for
these two submatrices are zero since they amount to cal-
culating the moments which have three z(w) factors and
one w(z) factor which by (AS5) will vanish.

The approximate distribution for the second moments
becomes [44]

e —(1/2NTT v —(1/2)vTrl‘1ve —(1/23Tr5 v , (A8)
where we have written v as generic for the appropriate
vector of variables E[u;u;] in each term. Equation (A8)
shows that the probability distribution factors because of
the block form of T".

We are interested only in the second term containing
I';. This leaves an exponent which when transformed
back to the original x and y variables using (A1) becomes
our correlation trace statistic for differentiability:

vTv= 2 [(XXT)_(I/Z)XYT(YYT)_(1/2)],-j
ij=1

X[(YYT)~ /2y xX(XXT)~ /2],
Jji
=tr[(XXD) " IXYT(YYD) " 'YXT]=r%, ,

(A9)

where r? is the correlation in Eq. (6). Including the fac-
tors from I" ! the final distribution becomes
=e—<1/z><n5—da—1>2r2da ' (A10)
Note that this falls off rapidly with the number of
points in the 8 set and with increasing dimension. This is
not hard to understand when one considers that we are
asking the probability that noncorrelated data series “ac-
cidentally” generate a correlation of 2. If r2~1.0, then
we are asking that n vectors accidentally arrange them-
selves to have a high correlation among most pairs of
vectors. This requires roughly (ns—d,—1)*> combina-
tions of d, components to be highly correlated. This is a
much more stringent criteria than we have for the con-
tinuity statistic where we only require that points individ-
ually fall in a certain set, but other than that their devia-
tions from the mean of the set have no correlation with
each other.

APPENDIX B: DERIVATION
OF FILTER MAPPING

Let h(t) be a measured signal (a function of the physi-
cal phase space point). In the following we will work
with continuous signals for simplicity, but the scheme fol-
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lows through for discrete measurements as are done in
experiments. Then the original reconstruction can be
written as

x(t)=(h(t),h(t+71),...,h(t+[d—1]T))EX,

where d is the embedding dimension. We must
remember that the flow of the physical system plays a
crucial role in writing time-lag reconstructions [1,3] and
it does so in the filtering version, too. Let ®, be the flow
on the physical system represented in its phase space by
s(tz). Then we get s at a later time by application of ®:
s(t+7)=® (s(¢)). Our measurement # is then a function
of sand ®: h(t +7)=h(s(t +7))=h(P (s(2))).

If R is the convolutional filter, the filtered signal g(¢) is
given by

g(t)= [R(t—t)h(t)dt'
= [R(t—1)h(®,_ (s(t))dt’ (B1)

and the reconstruction from the filtered time series is
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y(t)=(g(z),g(t+7),...,8(t+[d—1]m))EY .

Now using the property ®,® _=®,, we can write the
filtered time-series reconstruction as a map from a point
in the physical phase space to a point in the final recon-
structed phase space. The intermediate mapping between
X and Y is given by

y()=f(x(t))= [ R(z—1")x(¢")dt’
= [Rt—t"W,_(x(t))dt", (B2)

where

W (X(EN=(. . h( Dy i(s(2))),. . ) (B3)

fori=0,...,d—1.

Although most of this seems like formal maneuvering,
it is necessary to show that we indeed have a point-to-
point mapping between all spaces: the physical space, the
X space, and the Y space.
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FIG. 12. Plot of the Lorenz attractor with € sets of typical
sizes in fractions of the standard deviation of the data is shown.
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FIG. 19. Points on the Lorenz attractor for which determin-
ism statistics were calculated. The point size is representative of
the ¢ set size used which was 0.0719. Points 16 and 32 are
reached by traversing several circulations of the attractor.



