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Conditions for synchronization in Josephson-junction arrays
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An effective perturbation theoretical method has been developed to study the dynamics of Josephson-
junction series arrays. It is shown that the inclusion of junction capacitances, which is often ignored, has
a significant impact on synchronization. Comparison of analytic with computational results over a wide

range of parameters shows excellent agreement.

PACS number(s): 05.45.+b

INTRODUCTION

Josephson junctions are known to produce very high
frequency oscillations and can be used to generate sub-
millimeter range radiation [1-3]. The difficulty is the
low power output of individual junctions. This could be
remedied by the use of many synchronized coupled junc-
tions. Figure 1 shows a sketch of N junctions in series,
fed by a constant dc current source and shunted by a load
of impedance Z. The junctions have an internal resis-
tance, as well as a capacitance.

In normalized units this circuit is described by

By + @i +sin(@e ) +Ip =1, (1)

where ¢, represents the phase difference of the wave
function across the kth junction, 8 corresponds to the ca-
pacitance of the junction, I; is the load current. Without
the load, the system can be visualized as a point particle
of mass B sliding down an incline of steepness I,
sinusoidally modulated, with air resistance represented
by @i

To arrive at the normalized units one rescales time
2eR;I t /fi—t, where R; is the Ohmic resistance of a
junction and I. is the critical current, the current
I1/I,—1, and B=2eR?I.C,/# with C, the junction ca-
pacitance.

The load current depends on the voltage across the ar-
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FIG. 1. Sketch of the circuit investigated. Constant current
feeds the system, the junctions form one-dimensional array with
resistive and capacitive characteristics, coupled to an im-
pedance Z.
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ray, proportional to 3,;¢;. For instance, for a load made
up of an inductance, capacitance, and resistance in series
one writes in normalized units

LI, +RI,+(1/C) [I,dt=(1/N)3¢; . @)
. J

These equations are clearly nonlinear and no analytic
solutions are available.

Recently several authors [4—9] analytically investigat-
ed a simplified version of these equations. The load ca-
pacitance has been ignored (8=0) and the coupling to
the load (I, ) has been assumed to be small, so perturba-
tion theory could be used. Under these conditions it was
shown that for a purely resistive load the equations are
integrable [7]. The present authors have shown [9] that if
a slight difference between the individual junction param-
eters is introduced, integrability fails and chaotic
behavior follows. Quite recently Wiesenfeld and Swift [8]
analytically studied the simplified equations of identical
junctions with B=0 in the weak coupling limit, and
found that the synchronous solutions are stable if the
load is predominantly inductive and unstable if it is capa-
citive. Similar results have been obtained earlier by Jain
et al. using a different approach [10]. The dividing line
is at resonance when the Josephson-junction frequency
equals the resonant frequency of the load (LC) 2.

Computed solutions of the equations show, however,
that the junction capacitance has a significant effect on
the stability of synchronized solutions, even for 8<<1.
Here a powerful perturbation theoretical method is
developed where (3, as well as the coupling strength, can
be arbitrarily large, and excellent agreement is found
with computer generated solutions.

CAPACITIVE LOAD COMPUTATION

First we rewrite Egs. (1) and (2), by dividing (1) by I,
and rescaling time It —t and I3—f3, to get
B¢k+¢k+b Sln(¢7k)+J=l N (3)
pd +pJ+ [Tdt=a3p; , @)
J

where J =1, /I, b=I"!, u;=LCI?, u,=RCI, a=IC/N.
For a purely capacitive load, u,=u,=0, and these equa-
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tions reduce to

Byt Tbsin(gp)+adp;=1. (5)
J

In order to study the linear stability of the synchronous
solutions, one can expand @, =@, +8¢;, where ¢,
satisfies the

Bipo+ @+ b sin(@y) +Nag,=1 (6)
equation, while for 8¢, one has

B8P + 8¢ +b cos(y)dpy +aXp;=0 . @)
j
Subtracting the kth from I/th equation gives [5]

B, +A; +b cos(@g)A =0, (8)

where A, ; =8¢, —8¢,. Linear stability implies that A, ;
asymptotically tends to zero. One solves Eq. (6) on the
computer, for given parameters 3, b, and Na, and the
computed function ¢, in Eq. (8) to determine the long
time behavior of A; ;. Since I > 1, the parameter b is al-
ways less than one (|I| <1 is in the hysteresis regime).

Figure 2 shows the B-Na curve constructed for
b=0.5, b=0.25, and b=0.1. Two important con-
clusions follow.

(i) The three curves practically coincide, and the
differences are within the width of the line.

(i) While for B=0 the synchronous state is always
linearly unstable as expected [8], for large coupling even
the addition of small junction capacitance can stabilize
the state. For example, when Na=10, 8>0.1 gives sta-
bility. When B> 1 stability persists for any value of the
coupling.

The first condition suggests an analytic method. Since
the solution is essentially independent of b, one can carry
out an analytic calculation based on a small b expansion.
Since b is the coefficient of the only nonlinear term, the
expansion can be reduced to the solution of set of linear
equations.
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FIG. 2. Computed dividing line between stable and unstable
regions in B-aN parameter space of capacitive loaded arrays.

A. A. CHERNIKOV AND G. SCHMIDT 52

CAPACITIVE LOAD ANALYSIS

To the lowest order in the expansion in b, Eq. (5) gives
@ =t+0,. The first order terms are

B+l +a 3@l +b sin(t +6,)=0, )
J

giving second order linear inhomogeneous equations,
with the oscillating solutions

@)= A, sin(¢)+ B, cos(?) , (10)
where coefficients are determined from
BAy+B,+a3 A;—bcosf, =0, (11)
J
Ak_BBk_azB]+b Sin0k=0 . (12)
J
Summation over all junctions gives
(B+Na)3 A;+3B;—bcosb; =0, (13)
J J J
—(B+Na)3B;+3 A4;+bYysing; =0, (14)
J j J

with the solution

S 4,=b[1+(B+Na)*]™! [(B+Na)2°0891‘25i“91] )
J ] g

(15)
3B;=b[1+(B+Na)]™! [(B+Na)2sin6j+200s0j] .
J J J

(16)
Substituting these expressions into Egs. (11) and (12)
gives

A =b(14+p*) " (—sinb; +Bcosb; )
+ba(1+8%) 7 [1+(B+aN)?] !
X [(1—BZ—BaN)Ecosej+(ZB+aN)25in6j] ,
J J

17
B;=b(1+p*) " cosb, +Bsinb;)

+ba(1+8%) " [1+(B+aN)?]!

X [(1—BZ—BaN)ZsinBj—(2B+aN)Ecost] .
J J

(18)
The second order expansion of Eq. (5) gives

Bp P+l +aS P +b cos(t+6,)pi'=0, (19
j

where ¢! is given by Egs. (10), (17), and (18). The driv-
ing term in Eq. (19) contains second harmonics, as well as
time independent terms. Synchronization, as well as
desynchronization, is due to long time behavior, com-
pared to the oscillation time scale. It is useful therefore
to consider the time averaged term
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(b cos(t 46, )@Y =(b /2)(Bycosb; — 4;sinby)
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—(b2/2)(1 48 +a(b2/2)(1+B) [1+(B+aN )] | (1= —BaN) Zsin(6;—6;)
J

So from Egs. (19) and (20)
@2~ — (b cos(t+6; )i )t
+(second harmonic terms) . (21)

One may think of the @, ’s as points moving on the unit
circle. To lowest order they move with unit phase veloci-
ty separated by angles 6, —0,. The first order solutions
of Eq. (10) add oscillatory motion, while to second order,
second harmonics of the oscillatory motion appear as
well as a change in the time average velocity. The first
term in Eq. (20) describes a slowing of all points to
1—(b2/2)(14+B%) " L. The other two terms arise from the
interaction of different points. Synchronization (or
desynchronization) is described by the first of these
terms. When S=0 the angle differences 0, —6, grow to-
ward a splay state. Past a threshold value of B the angle
differences contract until synchronization is achieved.
This threshold is given by the equation

1—B*—BaN=0 . (22)

This is an excellent fit to the curve in Fig. 2. Finally the
last term in Eq. (20) describes the increase of phase veloc-
ities of points as they approach each other to the syn-
chronous state, or the decrease of velocities as a splay
state is approached.

ANALYSIS OF THE SYSTEM WITH A RLC LOAD

A similar analysis can be carried out for the more gen-
eral case described by Egs. (3) and (4), and the details are
described in the Appendix. This results in the synchroni-
zation conditions from (A22),

(1—B*(1—p)—B2u,+aN) <0 . (23)

Various limiting cases follow. When the load is purely
capacitive u; =pu,=0 and Eq. (22) is recovered.
When =0, the synchronization condition is

1—u,;=1—LCI*<0 . (24)

In our units the condition obtained by Wiesenfeld and
Swift [8] is LC(I?—1)>1. For b<<1, I>>1 the two
conditions agree.

When p,=1, the system is in resonance and the syn-
chronous state is always stable for 8> 0. Finally, when
the driving current I is very large p;>>1, the condition
becomes approximately

(1—B*)LI+BR2R+1)>0, (25)
independent of C.

—(2B+aN)3cos(8;—6) | . (20
J

It is clear that similar calculations can be carried out
for an arbitrary load impedance Z (both for one-
dimensional and two-dimensional arrays), leading to
well-defined conditions for synchronization or desyn-
chronization. The growth rates of the instabilities lead-
ing to the final state are given by the coefficient of the
sin(6; — 6, ) term.
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APPENDIX: RLCLOAD
From Egs. (3) and (4),

By, +@ Tbsin(g ) +I=1,
pd +pd+ [Tdt=aZgp; .

j

Expanding in b,

Pe=t+0, +e+pP+ -,
J=J+J V4 g@4 ...

(A1)
(A2)

where @ ~J"~b". To the lowest order equations (3)
and (4),

B6,+6,+T=0, (A3)
T + T + ffdt=a29j (A4)
j
have a solution
6, =const J=0. (AS)
To the first order in b,
B+ @+ V= —bsin(t+6,) , (A6)
pd V+pd V4 [TVt —aF =0 . (A7)
j
To second order in b,
B+ +TP=—bg{lcos(t +6,;) , (A8)
d P+ pd P+ [TPdt—aF P =0 . (A9)
j
We find the solution of (A6) and (A7) in the form
@)= A;sin(t)+Bycos(t) , (A10)
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JV=C cos(t)—D sin(z) . (A11)

Substituting (A10) and (A11) into (A6) and (A7) lead to
the following linear system for coefficients:

BA,+B,+D=bcosb, , (A12)
—pBB,+C=—bsinb, , (A13)
a¥B;+(1—u)C—u,D=0, (A14)

J
(A15)

—a3 A4;+u,C+(1—p)D=0.
J

S A, =b({B+[(1—p P +p3] \aN(1—p))} >+
J

(B+[(1—p,)?

SB;=b({B+[(1—p, 2 +p3] 'aN(1—p,)}?
J

X [{B+[(l—-u1)2+y%]_la1\7(l—pl)}ZSin0j+{1+[(l—ul)z+,u%]_1aN,uz}zcosej]
J

Substituting (A 18) and (A19) into (A12) and (A13) gives
A, =b(1+pH)7!
X({BH[(1—p P +ui] laN(1—p)}2+{1

X (= [pa+BA—p ) {B+[(1—p ) +u3]~

([ +BA—p) {1+ [(1—p)*+p3] 'aNu,} +

B, =b(1+B%)  Ycosh) +Bsinb, ) +ba(1+5?)
X({B+[(1—p)*+p3] laN(1—py))

(= [po+B=p) {1+ (1 —p P+ 3] 'aNp,)

+(1—py = Bu) {1+ [(1—p )2 +p3] " 'aNu,)

— ([ +B—p)B+[(1—p ) +p3] !

laN(1—p)}+(1

(1= —Bu){B+[( 1’#1)2+ﬂ2]

+p3]!

—(1—p;—Buy){B+[(1—p 2 +u3]~

aN(1—py)}) 3 sinb;
j

Equations (A14) and (A 15) give

=[(1—p?+p3]™! [—a(l—m)ZBﬁaquA,-] ,
J J
(A16)
D=[(1—p)*+u3]! [a(l-—,ul)zAj-Fa,uzz}?,-] .
J J

(A17)

These two relations together with (A12) and (A13) after
summation lead to

(1+[(1—p P +p3] " 'aNp,}) !
+131'aN(1—p )} Fecosh, — {1+ [(1—p,)?+pd] 'aNp,} sinb; (A18)
J J
+{1+[(1—p)P+p3] laNp, ) ™!
(A19)

j

(Bcosf) —sind, ) +ba(1+8%) [(1—u,)?+u3] !
FA—p 3] eV} ™!

—p—Bu) {1+ [(1—py)* + 3] 'aNp,} )X cosb;
J

LaN(1—pu,)) )Esm0

(A20)

T =gy P Hu3] !
2 (14 [(1—p,)?

aNpy )™t

laN(1—pu,)} ) cosh;
j

(A21)

To the second order in b one averages over the fast time scale. The right-hand side of Eq. (A8) is

—{(b@{lcos(t+6,))=(b/2)( Aysinb; — B, cosO, )
=(b2/2)(1+B*)~

X({BH[(1—p ) +p3] laN(1—pu)}?

"4 a(b2/2)(1+B8) (1 —p 2 +u3] ™!

+{1+[(A=p P +p3] laNp, ) !

[(1—32)(1—ul)—B(2p2+aN)]Zsin(6k——Gj)

j
+[(1=B*)py+2B(1—p,)+aN S cos(6;, —6;)
j

(A22)
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