
PHYSICAL REVIEW E VOLUME 52, NUMBER 1 JULY 1995

Measurement trajectories of chaotic quantum systems
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We consider the behavior of a classically chaotic quantum system, the periodically driven pendu-
lum, under the inBuence of a continuous measurement of its angular momentum. Without measure-
ment the system shows dynamical localization, a quantum interference effect that suppresses the
classical chaotic diffusion in momentum space. The coupling of the system to a measuring device
destroys its coherence and thus leads to delocalization. This is studied on the level of individual
systems including the recording of the measurement results. For that purpose we analyze the ap-
propriate stochastic Schrodinger equation, from which a stochastic quantum map is derived as an
effective tool for numerical simulation of measurement trajectories. We show that a continuous
momentum measurement restores the diffusive behavior of the system in momentum space, but that
for sufBciently low accuracy of measurement the corresponding diffusion constant is smaller than
the classical one. This is reQected by an equal diffusive growth of the recorded measurement results.
Thus we find signatures of the classical chaos and of the dynamical localization both in the behavior
of the measured quantum system and in the corresponding signal of the measuring device.

PACS number(s): 05.45.+b, 06.30.Gv

I. INTRODUCTION

The problem of quantum chaos can be characterized
as the search for signatures of classical chaos in the be-
havior of the corresponding quantized systems [1]. Be-
cause of the correspondence principle they should appear
in the quasiclassical regime, where Planck's constant is
small compared to typical actions of the system. The
usual point of view in this context is to consider the iso-
lated quantum system, i.e., its eigenenergies and dynam-
ics. However, in physical reality it is diKcult to And such
systems: In the quasiclassical regime the coupling of the
system to a macroscopic environment becomes important
and this can alter the quantum dynamics of the system
qualitatively, especially in the case of classical chaos; it
then behaves, in some sense, more classically [2—5].

A special and, &om the experimental point of view,
important kind of a macroscopic environment is a mea-
suring device (henceforth called "meter"). Since classi-
cal chaos is studied by analyzing continuously observed
trajectories of the system [6], it is also natural to investi-
gate the dynamics of the continuously measured quantum
system and the received measurement results. This in-
volves the problem of quantum measurement [7,8], i.e. ,
the derivation of the irreversible "reduction of the wave-
function" from the unitary evolution of the total system
comprising the observed system (simply called "system"
in the following) and the meter. But it provides a concep-
tionally new approach to the "search for quantum chaos. "

Perhaps the most important physical effect in the
quantum dynamics of classically chaotic systems is "dy-
namical localization. " It is a variant of the Anderson
localization of electrons in disordered media [9,10] and
therefore based on destructive interference of waves in
random systems. But in dynamical localization the ran-
domness is not imposed externally, but produced dynam-

ically by a simple and completely deterministic dynami-
cal system. According to theory [ll] this effect should ap-
pear, under appropriate conditions, in periodically driven
chaotic quantum systems. After a certain time it sup-
presses the classically observed difFusive increase of the
action variable, which then shows quasiperiodic Buctua-
tions around a definite mean value of its variance. Dy-
namical localization has been discussed theoretically for
model systems such as the kicked rotor [12—14], atomic
[15] and molecular [16] models, Josephson junctions [17],
and quantum optical examples [18,19]. Furthermore,
there is experimental evidence that it occurs in hydrogen
atoms in Rydberg states driven by a strong microwave
field [20,21]. Very recently there have been attempts
to observe dynamical localization in atomic momentum
transfer by a modulated standing light wave [22]. The
latter is a quantum optical realization of a periodically
driven pendulum [18]. Another possible realization of
this system is provided by a current-driven Josephson
junction [17].

In the present paper we wish to study the effect of a
continuous measurement on dynamical localization. We
shall consider as a concrete and experimentally relevant
example a continuous angular momentum measurement
for the driven quantum pendulum and study its inHuence
on the dynamical localization of the system. Since the
localization effect rests entirely on quantum coherence,
which will be disturbed by the coupling to a meter, it
is expected that some mechanism of delocalization will
set in. Previous studies of the delocalization effect were
performed for the kicked rotor coupled to a macroscopic
environment [4] or to a meter [5], however, without any
attempt to correlate the delocalization with the received
signal of the meter. The main purpose in the present
paper is to study the mechanism of delocalization for
an individually measured driven pendulum including the
way in which delocalization is rejected in the recorded
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measurement results. This enables us to discern the sig-
natures of classical chaos, on the one hand, and of dy-
namical localization, on the other hand, in the behavior
of the measured quantum system and in the correspond-
ing signal of the meter.

In the following section we present the basic tool we
shall use, the description of continuously measured in-
dividual systems by a stochastic Schrodinger equation.
This tool was developed kom phenomenological theories
of the dynamical reduction of the wave function [23—27],
which recently could be deduced &om an idealized mi-
croscopic model of a Markovian meter [28—30]. For a
momentum measurement of periodically kicked systems
we derive a stochastic quantum map, which can be im-
plemented simply on a computer to simulate the (condi-
tional) evolution of the state vector of the measured sys-
tem (referring to a certain realization of the measurement
signal); we will call such a conditional quantum evolution
a "measurement trajectory of the system. " Furthermore,
we show how the measurement results are connected with
the system observables. Section III deals with the iso-
lated behavior of the periodically driven pendulum, i.e.,
with the conditions and quantitative description of its
classical chaos and the corresponding dynamical localiza-
tion. In Sec. IV we then analyze in detail the quantum
trajectories of the system under angular momentum mea-
surement and in Sec. V we summarize our conclusions.

a

dl&(t)) =
I

—-IIs —-A'
I
l&(t)}«+Al&(t))d&(t) (I)4

where ( is an effective classical Wiener process with
[d((t)] = (p/2)dt [28—30]. However, in this version the
probability measure one has to use for the process ( to
compute physical mean values is not just the Wiener
measure dP~ [(], but the measure

d&~h] = d&~ [t!](4(t)14(h)), (2)

where (P(t)1$(t)) is a functional of d((t') for t' ( t. The
equivalent stochastic Schrodinger equation for the nor-
malized state lg(t)) = 1&((t))/g(P(t)1$(t)) with a prob-
ability for its stochastic realization that is given by the
usual Wiener measure of the involved Wiener process has
the nonlinear form

dl@(t)) =
I

—-Hs —-[A —(A(h))]' I l@(t))dh
h 4

+IA —(A(h))] l@(t))dt!(t) (3)

where (A(t)) = (@(t)1Alg(t)) [28—30]. Each realization of
the Wiener process ( is connected with a measurement
trajectory of the system —represented by a correspond-
ing solution lg) of the above equation —and with a
realization of the recorded measurement results A. The
latter can be received &om the former via

II. MEASUREMENT TRAJECTORIES
OF INDIVIDUAL QUANTUM SYSTEMS

A(t)dh = (A(t))dh+ —d((t) (4)

In contrast to the classical case, the infIuence of mea-
surements cannot be neglected for quantum systems.
Rather the backaction of a measuring device has to cause
a stochastic and nonunitary change of the system state
vector, which is often called the "reduction of the wave-
function. " This requires an e8'ective classical behavior of
the meter and the deduction of such a classical meter
&om a microscopic quantum model is the task in the
quantum measurement problem [7,8].

[28—30]. Hence the parameter p, which is proportional to
the strength of the coupling between the system and the
meter, determines the measurement accuracy; the higher
the value of p the better the accordance between A and
(A). We will see below that an increase of p also results
in a stronger reduction of the wave function.

If one disregards (i.e. , averages over) the recorded mea-
surement results the system state is described by the sta-
tistical operator p(t):= lg(t))(@(t) 1, where the bar de-
notes the average with respect to the involved Wiener
process. It satisfies the master equation

A. Stochastic Schrodinger equation

Recently it has been shown [28—30] that the linear cou-
pling of the system to an idealized Markovian meter, con-
sisting of a Bose field in a state of quantum white noise
[31], leads to a stochastic Schrodinger equation for the
time evolutions of the individual system conditioned by
the received measurement results. It is the singular cou-
pling between the system and the Bose field that causes
a self-commutative evolution of the recorded meter ob-
servable [28) and thereby provides an effective classical
behavior of the meter, i.e. , a solution of the measurement
problem. The resulting stochastic Schrodinger equation
for a continuous measurement of the observable A of a
system with the Hamiltonian Hg can be written down
in essentially two ways. In its linear version it describes
the time evolution of an unnorrnalized state vector 1$(t))
and has in Ito form the structure

dp(t) i
dt h ' 4(h)] ——[» [» (')l].

B. Application to periodically kicked systems

In view of the computational efI'ort in analyzing chaotic
quantum dynamics it is advantageous to consider one-
dimensional periodically kicked systems, i.e., systems
with a Hamiltonian

2 OO

JI, = "—+ v(e, t) )
p and 8 are the (rescaled) dimensionless momentum and
position variables, respectively, and satisfy the canonical
commutation relation
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[p, o] = ik—, pIn) =knIn), AIn) = a(n)In), (12)

I@(&+1))= U-I@(j))
( ip' l /' i:=exp

I

———r
I
exp

I

&—(—0 j) I l@(j))k 2 ) (, k ' )
(8)

with the abbreviation f(j):=f (jw —e), e Q 0.
If now the meter described above is coupled to a sys-

tem observable A(p), which commutes with the momen-
tum p, the linear version of the stochastic Schrodinger
equation (1) can also be integrated over one kicking pe-
riod. Thereby (cf. the Appendix) one obtains a stochas-
tic quantum map for the corresponding normalized state
vector Ig) of the form

I@(j+1))= (—
) exp[—

2 (A —A(j + 1)) ]

&(A(& + 1))
»-14 (j))

Here o. :=p~ and

(j+1)v. —e

A(j + 1):=— A(t)dt, e ~ O (1O)
)T—6

is a random variable with the probability density

p(A(j+ 1)) = (@'(j+ 1) I

where k denotes the rescaled Planck constant. The
Schrodinger equation of the system can be integrated
over a time interval of one kicking period. This yields
the quantum map

we can express the probability density to measure a value

A(j) at the time j7 —e, e Q 0, as

n(~())) = f ~~ ~' '.(~(~))

p' n, n;j

-2
xexp —o. a n — j dn

with p'(n, n; j):=(nIp'(j)In) = I(nI@'(j))I'.

Thereby one gets the relations

A(j) = (A(j))'

A (j) = (A'(j))'+
2

(14)

» u) = (»'u))'+, .
It is useful to note that the total variance of A, (AA2) =
Tr(pA2) —[Tr(pA)], can be decomposed into one term
(A~A2) = (@IA2IQ) —(vPIAI@)2 describing the averaged
quantum mechanical A variance of the individual state

2
vectors and one term A, (A)2 = ((/)IAI@)2 —(gIAI@)
which gives the stochastic variance of the individual A
expectation values, i.e.,

for the connection between the statistics of the recorded
quantity A and the system observable A. [(A (j))' de-
notes the expectation value of A with respect to the
state Ig(j))'.] Their variances then are related by

x exp —n(A —A(j+ 1)) I@'(j+1)),

(ll)
(AA') = (A,A') + A. (A)'. (17)

where Iv)'(j + 1)):=U I@(j)). So the continuous A
recording acts like a repeated A measurement with fre-
quency 1/r. The corresponding results are given by the
time averages of the A signal with respect to the preced-
ing kicking period and their accuracy is described by the
parameter o..

Equation (9) shows that in the momentum represen-
tation (where A has diagonal form) the measurement
causes a multiplication of the wave function with a Gaus-
sian amplitude of width 1/2n, which leads to a reduction
of the wave function. For sufBciently low values of a,
quantum mechanical phase coherence is not destroyed
completely over one time step, so that quantum effects
in the system behavior should be detectable by the mea-
surement.

From (11) we can derive the statistics of the mea-
surement results upon averaging over all measurement

trajectories. A trajectory with given results A
(A(j'), 0 ( j' ( j$ has a difFerential probability mea-

sure dP A = Q., z dA(j')p(A(j')). In the momen-

turn representation with basis states In), where

III. DYNAMICAL LOCALIZATION
OF THE DRIVEN QUANTUM PENDULUM

A chaotic quantum system that is sufBciently simple to
allow for extensive numerical simulations but suKciently
complex to describe some real experiments is given by the
periodically driven quantum pendulum, the Hamiltonian
of which can be written in dimensionless form as

=p'IIs ———+ k cos(8 + A sin 2vrt)
2

(18)

[17,18,29]. Besides k (potential strength) and A (driving
amplitude), the above mentioned rescaled Planck con-
stant * is a third parameter of this quantum system.

In [17] and [18] we have discussed the behavior of the
driven pendulum in the context of two physical realiza-
tions: the current-driven Josephson junction and atoms
in a modulated standing light wave, respectively. The lat-
ter has been taken up in a recent experiment by Raizen
and co-workers [22]. In the following we briefly review



S2 MEASUREMENT TRAJECTORIES OF CHAOTIC QUANTUM SYSTEMS 343

the analysis of the isolated driven pendulum dynamics.
The basic phenomenon describing the classical behav-

ior of the system [32] is the crossing of the nonlinear
4

resonance at which 0 = p = —2mAcos2vrt. Phase space
points in the interval ~p~ 2aA experience two crossings
per period T = 1 and outside each crossing the pendulum
is effectively free. [We will always assume that the width
of the resonance (4~k) is much smaller than the range
of its oscillations (4vrA). Otherwise one only will come
to a rather narrow chaotic separatrix layer; the quan-
tum dynamics in a chaotic separatrix layer were studied
in [33].] Fourier transformation of (18) with respect to
time yields a multiplet of stationary primary resonances
at p = 2am, m E X, with widths 4/k J (A) (J are
the Bessel functions), which can be neglected for ~m~ ) A.
Chirikov's resonance overlap criterion then leads to the
condition

restrict our following analysis of the chaotic pendulum
to the more accessible regime of fast crossing.

The quantum dynamics of the periodically driven pen-
dulum is determined by its Floquet states ~v), i.e. , the
eigenstates of the time-evolution operator over one driv-
ing period Uq, which satisfy Uq~v) = e ' "~v). From the
similarity of the above described chaotic behavior of the
driven pendulum with that of the chaotic kicked rotor,
which can be mapped onto a one-dimensional Anderson
model [11,13], one can conjecture that in the chaotic re-
gion, all Floquet states are exponentially localized due
to destructive quantum mechanical interferences of tran-

K:= k &Kc =1
vrA

for global chaos in the region (p~
& 2vrA [32].

If the rate of displacement of the moving resonance
(4vr A) is much larger than the rate of change of the
pendulum frequency (k), we speak of the case of fast
crossing. The result of the crossing is then in a erst
approximation the same as that for a linear oscillator:
the momentum p experiences a change by an amount
of 8'p = k/(/2mA) sin(8 + Asin2vrt + m/4), where the
sign is determined by the direction in which the reso-
nance is passed [32]. Under the condition of global chaos
the sequence of arguments of the sinus in the above ex-
pression is approximately random and distributed uni-
formly over the interval [0, 2vr). Thus the chaotic system
spreads diÃusively over the momentum region ~p~

& 2mA,
which is restricted by the Kol'mogorov-Arnol'd-Moser
(KAM) tori beyond. Figure 1(a) displays a correspond-
ing phase space plot numerically generated by the stro-
boscopic map of the canonical variables (0,p) after each
time period T = 1. The difFusion constant is given by

0. '

—2vrh
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\
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I

I
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bp k

T/2 2m A
(20)

PJ

K 1500

(The bar denotes the average with respect to the ran-
dom resonant phases 0.) This increase in the momen-
tum variance due to the kicklike resonance crossings is
shown in Fig. 1(b), where we see reasonable agreement
of the numerical simulation with the theory. After a time
t, 4m2A /D an ensemble of pendulums with initial mo-
mentum p(0) = 0 will reach a uniform distribution in
the interval p E [

—2mA, 2mA], i.e. , stationary root mean

square fluctuations Ap2 —4n A /3.
In the case of a slow crossing resonance, where

4' A/k (( 1, the chaotic diffusion constant cannot be
derived in such a simple manner as above and is given
by a more complex expression [32]. Furthermore, system
points that lie initially within the separatrix of the reso-
nance can follow the motion of the resonance; they build
up a stable island oscillating in the chaotic sea. This
type of motion is called phase locking [29,32]. We will

1000

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

FIG. 1. Chaotic diffusion of the driven pendulum with
k = 594 and A = 85. (a) Phase space plot of the strobo-
scopic map of the canonical variables (g, p) after each time
period T = 1. (b) Momentum variance [for initially sharp
momentum p(0) = 0] as a function of time. The solid curve
shows results of a numerical simulation of the classical system,
the dashed curve those of the quantized system with* = 9.93
(see below), and the other dashed line follows the theoretically
expected increase with the diffusion constant (20).
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where / is the wave fe function localization length. So the
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' ' e.s e
'

v„(quasienergies) is discrete.
n iiutial state Ig(0)) = In = 0&, which is a su

a ou oquet states, spreads by classi-

it develops into an
ca i

'
D — . en if tca i usion for a time t —21. T'

p o an exponentially localized distribution
n exp( —InI/lD) with a dynamical localization

portional to the driving am litud Amp i u e as opposed to their
c assica' increase proportional to A h'a o, w ic can be found if

q. irst attempts to observe this efFect of dynamical
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b
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y aizen and co-workers who lo rea ize t e driven pen-
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eu a e s an ing light wave 22 .
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of dynamical localization. To t er
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IV. DELOCALIZATION BY MEASUREMENT
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The eKect of d
rests on

dynamical localization de b d
quantum coherence. Thus th

d
' esci e a ove

tioions of the system state due to th
us e inco erent transi-

t ~

ue o e action of a measurin
device discussed in Sec. II should ls ou ead to a delocalization.

10 II I I I I I I I

—100

FIG. 2. DDynamical localization of the d
dulum with

o e driven quantum pen-
wi parameter values as in Fi . 1. a

momentum uantu
ig. . (a) Variance of the

um quantum number versus time. ~b~ Lo a
the time-averaged d'ge n istribution. The dash

n = vr ~'k of the classical chaotic "
exponential f ll 6ia a o with the rate 2/lD

ao ic domain and the

A. Analytical estimates
for the measured ensemble dynamics

l
To get an anal ticaly

'
picture of the mechanism of de-

ocalization for a conontinuous measurement of the an u-
lar momentum we use th

o e angu-

tion and consider the ch
e resu ts of the reced'

si er e c aotic driven pendulum in the



MEASUREMENT TRAJECTORIES OF CHAOTIC QUANTUM SYSTEMS 345

fast crossing regime as a kicked rotor with kicking period
T = 1 and kicking strength K = k//7rA. The borders of
the chaotic region, i.e. , the KAM tori at lpl

+ 2aA, can
be viewed as acting like reflecting walls.

The measurement causes incoherent transitions be-
tween the Floquet states of the isolated system. The
mean transition rate I' deFines a coherence decay time
t = 1/I' as the mean lifetime of a Floquet state. If t,
is smaller than tD, the time for establishing the local-
ized behavior, the quantum coherences do not survive
long enough and remain practically ineffective. There-
fore, in this case of "strong coupling, " the classical dif-
fusive spread in momentum space with the classical dif-
fusion constant D, ~ .= D/k lD is also found for the
quantum system. In the case of "weak coupling, " where
t ) t~, the n variance can increase for t ) tD on the
time scale t by an amount of D,~t~ l~. Hence we have
a delocalization with a reduced (relative to the classical
motion) difFusion constant

(23)

Here the dynamical localization is reflected by the tran-
sition D,~

-+ D~„„q ( D, I for t ) tD.
In order to calculate Dq„„t we have to determine the

Floquet transition rate I' for weak coupling between sys-
tem and meter. For that purpose one can consider the
nonselective (averaged over all measurement trajectories)
time evolution of the measured system in first-order per-
turbation theory with respect to the coupling p [4]. It
follows from the master equation (5) with measured ob-
servable A = n. If we use the approximation of the
driven pendulum by the kicked rotor described above,
the master equation in the n representation can be inte-
grated over one kicking period (with time cuts imme-
diately before the kicks), yielding a stroboscopic map
p(n', m', j+1) = Q„G(n', m'In, m) p(n, m;j ) with
a propagator

G(n', m'In, m)

= exp ——n' —m' Uq n', n Uz m, m' . 24

G(v', p'lv, p) = e*~"" " b„„b„„

n' —m' 2

4 n' m'= —oo

& (v'ln') (n'I v}{p lm') (m'I p'} I. (25)

The decay rate of a Floquet state I v), I'

Up to first order in the coupling constant o. = pT
the propagator takes the form G(n', m'In, m)

Uq(n', n)U& (m, m') 1 —(n/4)(n' —m') . For an esti-
Inate of the Floquet transition rate one has to change to
the Floquet representation, where this first-order form
can be written as

[1 —G(v, vlv, v)] /T, therefore is given by

I' = —(vlAn Iv}.
2

(26)

But the n variance of the exponentially localized Floquet
states amounts to l = lD/4 (cf. Sec. III), so that I' =
1/t, = plD/8. Inserting this result into the expression in
(23) leads to a quantum diffusion constant

8 (2vrA)4k
(27)

for the case of weak coupling, where t, ) to, i.e., where
the coupling constant o. satisfies the relation

8
0! QA

lD
(28)

Due to the existence of the borders of the chaotic region
of the classical phase space at Inl An, h '. = 2vrA/k,
the quantum diffusion will terminate after a time t,
t~ + (An2h —l~2)/Dq„„t with a stationary n variance

4~'A'
ch (29)

A measurement of other observables instead of A = n
may imply Floquet decay rates that are not equal for all
Floquet states. Then also other delocalization schemes
(like a superdifFusive transient behavior) can be found

[5,29].

B. Analysis via measurement trajectories

For an understanding of the mechanism of the quan-
tum diffusion on the level of measurement trajectories
of individual systems, we have to analyze the statis-
tics in the n space by solving the appropriate stochas-
tic Schrodinger equation. The widths of the individual
stochastic wave functions, i.e. , their quantum mechanical
n variance (A~n2} and the stochastic variance of the n ex-

pectation values A, (n)2, are of particular interest: The
sum of these quantities results in the total n variance
(An2) [cf. (17)], which is expected to increase linearly in
time for t & t„as we have seen above. In the following
we are only concerned with the transient motion in the
region Inl ( An, h, where (An~} ( (An2)

I et us again approximate the action of the resonance
crossings by b-function-like kicks at times t = j E 2Z.

According to the discussion in Sec. III, in the classically
chaotic case, for times t ( tD, they lead to a diffusive
spread of the wave function in the n representation with
D,~ = LD. Hence, for 0 & t & tD, due to each kick,
(A~n2} increases by an amount of 4 D,~T l~. The
expectation value (n) and the stochastic variance A„(n)
experience no direct influence of the kicks. So the total n
variance (An2) = (A~n2}+A, (n}2 also grows by b = lz&.

As was discussed above, at t ) t~ quantum interferences
can cause a reduction of the n dift'usion constant and
(A~n2} and (An2) merely increase by h —D~ T per
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kick. Therefore the kicks then produce jumps in (A~n2)
and (b,n2) of the form

(a,n2) ~ (A,n') + 8„, (An') ~ (An') + 8„,

with

DquantT = 8 lD &

D iT lD)
o. (o.,
o. &o, (3o)

Away from the resonance crossings the system dynamic
is weLL approximated by that of a free rotor under the
infIuence of a continuous n measurement. For this case
the corresponding stochastic Schrodinger equation of the
nonlinear type (3) has the form

{n(j+1))= ( (j))
(~ '0+1)) =(~ '0))+~-

(&, '( + )) = (&, '( ))+~-
2n {A~n2(j)& + 8„

1+ 2a (Eqn2{j)) + h

a.(n(j + 1))
2 = Z. (n(j)) 2

-2
2n (b,~n2(j)& + 8„

+
1+ 2n (A,n'(j)& + b„

with

(35)

(36)

(37j

(38)

d14'& =
I

—~ —n ——(n —(n&) 114)«+ (n —(n))1@&d(
f .k

r2 4

Dquant T 8 l

DclT lD y

a(o.,
n&n (39)

Using Ito calculus one can derive f'rom (31) the stochastic
differential equations for the erst two moments of the
quantum number of the angular momentum, outside the
kicks,

d(n) = 0, d(An2) = 0. {33)

The mean of the quantum mechanical n variance of the
individual wave functions and the variance of their n ex-
pectation values satisfy the difFerential equations

d{A n') = —2p(A n')'dt,
dA, (n) 2 = 2p(b. qn2) 2dt. (34)

For a system that initially is in an n eigenstate in the
classically chaotic domain we can set the third cumu-
lant (rs) in front of the Ito increment in the last equa-
tion of (32) approximately to zero. This is justified be-
cause, according to (9), the integration of the stochastic
Schrodinger equation (31) results in a multiplication of
the n distribution 1{nIQ)1 with a Gaussian distribution
and the diffusive action of the kicks can be represented by
a convolution of the n distribution with a Gaussian func-
tion. Thus 1{nIQ)1 keeps a nearly Gaussian form with
vanishing higher cumulants {r,m ) 2). In (34) one

2can therefore replace {D~n2)2 by {E~n2& and thereby
obtain a closed system of difFerential equations. The in-
tegration of these equations and those in (33) over one
kicking period T = 1 and the consideration of the jumps
(30) due to a kick then yield the following stroboscopic
maps (with time cuts immediately before the kicks):

d(n) = 2(A~n )d(,
d(n ) = 2 ((n ) —2(n )(n) + (n) ) d(,

d{A,n') = —2q(~, n')'dt
+2 ((n ) —3(n ) (n) + 2(n) ) d(.

Since the Ito increment d( is statistically independent of
the preceding process and has a vanishing mean, we get
outside the kicks

for t ) tD. Equations (35) and (36) express the quan-
tum difFusion in the n space on the basis of quantities
referring to the ensemble of all measurement trajecto-
ries. With the help of Eqs. (37) and (38) we can now
look at the mechanism of the quantum difFusion on the
level of individual measurement trajectories. First, the
iteration of (37) leads to a stable fixed point at

(&~n') = ~M = —"
I

1+M 2 ( g ) (4o)

lM describes the point of equilibrium between the two
competing processes that deterxnine the width of the
wave function of the single system in the n representa-
tion: the increase of the width by the action of the kicks
due to the underlying classical chaos and its reduction
by the measurement. With (39) one can see that the re-
duction of the wave function indeed results in a width lM
that is smaller than lo, the value for the isolated system.
Second, if the system has reached the fixed point for the
width of its wave function, the stochastic variance of its
erst n moment grows linearly like

~.{n(j+ 1))2 = ~.{n{j))2+8„. (41)

So the quantum diffusion is carried by the motion of the
n expectation values alone, while the width of each wave
packet is fixed at the constant value l~. We therefore
obtain the physical picture of individual wave packets
with a reduced width /~, which move diffusively through
the n space.

In the case of strong coupling lM becomes rather small
and one obtains an effectively classical (chaotic) behavior
with a difFusion constant D,i lD. For weak coupling the
measurement induced reduction of the width of the wave
packets is less strong and the diffusion constant Dq„nt
is lowered compared to D,i by the inHuence of quantum
interferences (i.e. , a trace of the dynamical localization).

The reduction of the wave function, i.e., the quantity
l~, is hidden to an observer. However the quantum dif-
fusion is reflected in the recorded measurement results.
For 6, which describes the time average of the n measure-
ment signal over the period w' = T/2, we get, according
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to (15) and (16),

n(&) = (n(&)) Ah'(j) = (An'(j))'+ (42)

C. Numerical simulations

with n' = pv' = a/2. For the recorded n values one
therefore also obtains a diffusive increase with the same
diffusion constant as for the diffusive increase of n. The
n variance in addition contains a superimposed constant
contribution (1/2n') due to the inaccuracy of the mea-
surement.

stochastic quantum map of the form (9)—(11) with time
cuts at periodic intervals v' = T/2 = 1/2. The conser-
vative part of the dynamic (originating from the unmea-
sured system) was implemented again with the help of
the time discretization described in Sec. III.

Figure 3(a) displays the mean over 100 measurement
trajectories of the n variance of the wave function as a
function of time. It con6rms the theoretically expected
stationary value of /M 7. The deviation between the
numerical result and the analytical result (40) is of the
order of b lD and may be attributed to the assumption
in (40) that the (chaotic) spread of the wave function
takes place by b-function-kicks with a period of T = 1,

Figures 3—5 show the results of numerical simulations
of the n Ineasured chaotic quantum pendulum. They
are based on measurement trajectories generated by a
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FIG. 3. Statistics in n space for the driven quantum pendu-
lum with system parameters as in Fig. 1 and coupling to an n
measurement with n' = 0.02 (average of NT = 100 measure-
ment trajectories). (a) Variance of the momentum quantum
number relative to the wave functions of individual measure-
ment trajectories as a function of time. (b) Logarithm of the
n distribution at time t = 500.

FIG. 4. Quantum diffusion of the driven pendulum with

k, A, and k values as in Fig. 1. (a) Variance of the momen-
tum quantum number relative to the statistical operator of
the nonselective dynamics of the system. (b) Variance of the
measurement results versus time. In the initially (on a coarse
time scale) steeper curves it is n' = 0.02 and the size of the
ensemble of measurement trajectories is NT ——100; in the
shallower ones it is o.' = 2 x 10 and Nr = 200 [there we
have displayed An2 (t) —1000j.
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while in reality it happens due to the resonance crossings,
twice per period T. Figure 3(b) shows the stationary
distribution of the quantum number n over the classically
chaotic region !n[ ( An, l, = 54, which may be roughly
approximated by an equidistribution.

The initially (on a coarse time scale) steeper curves
in Fig. 4 represent the time evolutions of the variances
in n and. 6, for this case of strong coupling. The nearly
classical difFusion results in stationary values, which are
in good agreement with the theoretical estimates of
(Anz), = An, „/3 = 960 and An, = (An ) +1/(2n') =
985, respectively. In the other example in Fig. 4 the
parameter n' (i.e. , the measurement accuracy) was re-
duced by a factor 100. Thus it belongs to the case of

weak coupling. It shows for t & tD 7 the expected
slower quantum diffusion with a diffusion constant that
is of the order of magnitude of the rough theoretical esti-
mate Dq„„t (a/8)l~ ——0.1. The lower accuracy of the
measurement results is also reflected by larger statistical
fluctuations in Fig. 4(b).

The scaling of the quantum diffusion constant with the
dimensionless Planck constant k is displayed in Fig. 5.
The numerical values agree with the theoretically ex-
pected ones at least in order of magnitude. The latter
are proportional to 1/k and amount for the three exam-
ples shown from bottom to top to D~„„q 0.1,1.0,4.3,
respectively.

V. CONCLUSIONS
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FIG. 5. Quantum difFusion of the driven pendulum with
k and A values as in Fig. 1 and n' = 2 x 10 . (a) Vari-
ance of the momentum quantum number. (b) Variance of the
recorded measurement results as a function of time (average
over NT = 200 measurement trajectories); from bottom to
top k takes the values k = 9.93, 7.45, 6.21 [in the upper curve
An2(t) is raised by 1000, in the lower curve it is lowered by
10001.

In this work we have analyzed the behavior of individ-
ual chaotic quantum systems, namely, periodically driven
pendula, under the influence of continuous measurements
in time. Modeling the measuring device by a white quan-
tum noise, which couples linearly to the system with a
frequency-independent coupling constant, we have de-
rived a Markovian quantum measurement process gov-
erned by a stochastic Schrodinger equation for the con-
ditional time evolution of the state vector. For the special
case of an angular momentum measurement of periodi-
cally kicked systems we have obtained from this an equiv-
alent stochastic quantum map, which is very useful for
numerical simulations of the measurement trajectories of
chaotic quantum systems.

The isolated periodically driven pendulum was already
studied in [17,18] in the context of physical realizations
by current-driven Josephson junctions and atoms in a
modulated standing light wave. In the regime of fast
resonance crossing the effect of dynamical localization
was there shown to occur. We have reviewed this work
briefly in Sec. III.

A not necessarily perfect measurement of the angu-
lar momentum (or its quantum number n) produces a
stochastic backaction on the state vector of the system
and thereby causes at least a partial destruction of its
quantum coherences. The latter are essential for a quan-
tum interference effect such as dynamical localization
to occur. Therfore repeated measurements of this kind
lead to a delocalization of the classically chaotic quan-
tum pendulum in the n space. In a theoretical analysis
of this delocalization on the level of individual system
states we have obtained the following picture: The sin-
gle wave functions are reduced in their width in the n
representation to a certain value that denotes the equi-
librium between chaotic spreading and measurement in-
duced shrinking. But their n expectation values then
move diffusively until they fill more or less homoge-
neously the classically chaotic phase space region. There-
fore one observes a transient linear increase of the total
variance of n and of the recorded measurement results n.

For strong coupling between system and meter, i.e., for
high measurement accuracy, the width in n of the indi-
vidual wave functions becomes rather small and the dif-
fusion takes place with the same diffusion constant; as in
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the classically chaotic case. A sufBciently strong coupling
of the momentum observable to the meter would even de-
stroy the correlations of the angular variable, which are
always present in the classically regular case, and hence
induce a diffusion in the n space even in the absence of
classical chaos [5]. For weak coupling, however, the quan-
tum diffusion only occurs in the classically chaotic case
and may therefore serve as a signature of the underlying
classical chaos. On the other hand, there remain, in this
case, remnants of the quantum coherences, which reduce
the quantum diffusion constant relative to the classical
one. This can be interpreted as a trace of the dynamical
localization of the isolated quantum system.

The rather rough analytical estimates are in agreement
with the results of our numerical simulations, at least in
order of magnitude. In particular we have shown that
with decreasing rescaled Planck constant k the measured
chaotic quantum system passes over to the classical dif-
fusive behavior quite rapidly.

The mechanism of the delocalization depends on the
system observable that couples to the meter. For a mea-
surement of n, m & 1, for example, the effective cou-
pling constant increases with the quantum number of the
exited n states. In the case of weak coupling, this leads
to a transient superdiffusive behavior, which is followed
by a difFusion with the classical difFusion constant [5,29].

The most promising possibility to see the delocaliza-
tion of the quantum chaotic pendulum experimentally is
given by the recent quantum optical realization [22], if
one takes into account the coupling of the atoms to the
electromagnetic environment and turns on the probabil-
ity of spontaneous emissions by bringing the electromag-
netic field suKciently close to resonance with the atoms.
Recent computer simulations of such cases [35,36] show a
quantum diffusion similar to that discussed in the present
work.

yielding the linear stochastic quantum map

&[~~(j+ 1)]'&

p~ ( b,((j+1))
2 ( pw )
ip'l ( i

x exp
I

———v
I
exp

I

——V(8, j) I lg(j)},k 2 ) q k

where Z((j + 1):=$(j + 1) —$(j). [Here we have used
the abbreviation f(j):=f(j w —e), e Q 0.] In this linear
form the stochastic variables A((j + 1) are statistically
independent and obey the Gaussian probability distribu-
tion

p~(&((j+ 1)) = ( a((j+I)')
gvrpx ( pT )

However, in order to get the proper statistical weight of
the normalized physical state vector Ig} = IP}/g(fig}
one has to use for A((j + 1) the distribution

p(&&(j+ 1)) = . p~(&&(J + 1))(&(j+ 1)I&(J + 1)}

(cf. Sec. II). Prom this we obtain the probability dis-
tribution of the quantities A(j + 1):=A((j + I)/(p7')
denoting the time average of the meter signal A(t) over
one kicking period v. ,

p(&(j+ 1)) = p(&&(j+ 1))

with o. :=pw. Putting together the above results one gets
the nonlinear stochastic quantum map for the normalized
state vector Ig},
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APPENDIX

In this appendix w'e wish to derive the stochastic quan-
tum map (9)—(11) for periodically kicked systems Rom
the stochastic Schrodinger equation (1). For that pur-
pose it is useful to write (1) in the Stratonovich form

I4(j+1)) = (—) exp[ ——(A —A(j + 1)) ]

p(&(J + 1))
&I@'(j+1))

(-) exp[ —-(A —&(j+ 1)) ]

p(&(j + 1))
p2 i

x exp
I

———w exp ——V(0, j) I Ig(j)}k 2 p k

dl&(t)} =
I

——~s ——A'
I
l&(t)}«+Al&(t)} «(t)k 2

where the Stratonovich product of two stochastic pro-
cesses X and dY is de6ned as X - dY:= XdY+ 2dXdY.
If now IIs is the Hamiltonian (6) of a w-periodically
kicked system and A = A(p) an observable commut-
ing with the momentum, one can integrate the above
Stratonovich equation (as in the ordinary calculus) over
one kicking period f'rom jw —e to (j + 1)v —e, e Q 0,

with

p(&(j+ 1)) = (@'(j+ 1)
I

which we used in Sec. II.

x exp[ —n(A —A(j+ 1)) ]
~I@'(J +I))



350 M. SCHLAUTMANN AND R. GRAHAM 52

[1] F. Haake, Quantum Signatures of Chaos (Springer,
Berlin, 1991); M.C. Gutzwiller, Chaos in Classical and
Quantum Mechanics (Springer, New York, 1990); L.E.
Reichl, The Transition to Chaos in Conservative Clas-
sical Systems: Quantum Manifestations (Springer, New
Y'ork, 1992).

[2] E. Ott, T.M. Antonsen, Jr. , and J.D. Hanson, Phys. Rev.
Lett. 53, 2187 (1984).

[3] R. Grobe and F. Haake, Z. Phys. B 68, 503 (1987).
[4] T. Dittrich and R. Graham, Europhys. Lett. 4, 263

(1987); 7, 287 (1988);Ann. Phys. (N.Y.) 200, 363 (1990).
[5] T. Dittrich and R. Graham, Phys. Rev. A 42, 4647

(1990); in Quantum Chaos Quan—tum Measurement,
edited by P. Cvitanovic, I.C. Percival, and A. Wirzba
(Kluwer, Dordrecht, 1992).

[6] A.J. Lichtenberg and M.A. Liebermann, Regular and
Stochastic Motion (Springer, New York, 1983).

[7] J.A. Wheeler and W.H. Zurek, Quantum Theory and
Measurement (Princeton University Press, Princeton,
1983).

[8] P. Busch, P.J. Lahti, and P. Mittelstaedt, The Quantum
Theory of Measurement (Springer, Berlin, 1991).

[9] P.W. Anderson, Phys. Rev. 109, 1492 (1958).
[10] P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57,

287 (1985).
[11] S. Fishman, in Quantum Chaos, Proceedings of the In-

ternational School of Physics "Enrico Fermi, " Course
CXIX, edited by G. Casati, I. Guarneri, and U. Smi-
lansky (North-Holland, Amsterdam, 1993).

[12] G. Casati, B.V. Chirikov, F.M. Izrailev, and J. Ford, in
Stochastic Behavior in Classical and Quantum Hamilto
nian Systems, edited by G. Casati and 3. Ford, Lecture
Notes in Physics Vol. 93 (Springer, Berlin, 1979).

[13] S. Fishman, D.R. Grempel, and R.E. Prange, Phys. Rev.
Lett. 49, 509 (1982); D.R. Grempel, R.E. Prange, and S.
Fishman, Phys. Rev. A 29, 1639 (1984).

[14] B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky,
Sov. Sci. Rev. C 2, 209 (1981);Physica D 33, 77 (1988).

[15] G. Casati, B.V. Chirikov, D.L. Shepelyansky, and I.
Guarneri, Phys. Rep. 154, 77 (1987).

[16] R. Graham and M. Hohnerbach, Phys. Rev. A 45, 5078
(1992).

[17] R. Graham, M. Schlautmann, and D.L. Shepelyansky,
Phys. Rev. Lett. 67, 255 (1991).

[18] R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev.
A 45, R19 (1992).

[19] J.R. Kuklinski, Phys. Rev. Lett. 64, 2507 (1990).
[20] E.J. Galvez, B E . Sa. uer, L. Moorman, P.M. Koch, and

D. Richards, Phys. Rev. Lett. 61, 2011 (1988).
[21] J.E. Bayfield, G. Casati, I. Guarneri, and D.W. Sokol,

Phys. Rev. Lett. 63, 364 (1989).
[22] F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams,

and M.G. Raizen, Phys. Rev. Lett. 73, 2974 (1994);
J.C. Robinson, F.L. Moore, C. Bharucha, Q. Niu, R.
Jahnke, G.A. Georgakis, Bala Sundaram, and M.G.
Raizen (unpublished); P.J. Bardroff, I. Bialynicki-Birula,
D.S. Krahmer, G. Kurizki, E. Mayr, P. Stifter, and W.P.
Schleich (unpublished).

[23] P. Pearle, Phys. Rev. A 39, 2277 (1989).
[24] N. Gisin, Helv. Phys. Acta 62, 363 (1989); N. Gisin and

I.C. Percival, J. Phys. A 25, 5677 (1992).
[25] L. Diosi, Phys. Lett. A 129, 419 (1988).
[26] H.J. Carmichael, An Open Systems Approach to Quan-

tum Optics (Springer, Berlin, 1993).
[27] H.M. Wiseman and G.J. Milburn, Phys. Rev. A 47, 642

(1993); 47, 1652 (1993).
[28] V.P. Belavkin, J. Math. Phys. 31, 2930 (1990); V.P.

Belavkin and P. Staszewski, Phys. Rev. A 45, 1347
(1992).

[29] M. Schlautrnann, thesis, Universitat GH Essen, 1994 (un-
published) .

[30] P. Goetsch and R. Graham, Phys. Rev. A 50, 5242
(1994); 51, 3391(E) (1995).

[31] C.W. Gardiner, Quantum ¹ise(Springer, Berlin, 1991).
[32] B.V. Chirikov and D.L. Shepelyansky, Zh. Tekh. Fiz. 52,

238 (1982) [Sov. Phys. Tech. Phys. 27, 156 (1982)].
[33] N. Bubner and R. Graham, Phys. Rev. A 43, 1783 (1991).
[34] D.L. Shepelyansky, Physica D 28, 103 (1987).
[35] S. Dyrting and G.J. Milburn (unpublished).
[36] R. Graham and S. Miyazaki (unpublished).


