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We study the behavior of the first and second solution moments for linear stochastic differential delay
equations in the presence of additive or multiplicative white and colored noise. In the presence of addi-
tive noise (white or colored}, the stability domain of both moments is identical to that of the unperturbed
system. When these moments lose stability, there is a Hopf bifurcation and the first moment oscillates
with a period identical to the solution of the unperturbed equation, while the oscillation period of the
second moment is exactly one half the period of the unperturbed solution and the first moment. When
perturbations are of the parametric (or multiplicative) type and white noise is assumed, under the Ito
interpretation the first moment of the solution preserves properties of the solution of the deterministic
equation, while the behavior of the second moment depends on the amplitude of the stochastic perturba-
tion. The critical delay value at which the second moment loses stability and becomes oscillating is de-

rived, and it is less than the critical delay for the first moment. Under the Stratonovich interpretation,
quite different properties were observed for the moment equations, namely, various critical values of the
delay and period of oscillations. For the case of parametric colored noise perturbations, sufficient (p-
stability) conditions are derived which are independent of the value of delay, and it is shown that colored
noise has a stabilizing effect with respect to white noise.

PACS number(s): 02.50.Fz, 02.30.Ks, 02.50.Ey, 02.50.Wp

I. INTRODUCTION

The foundations of the mathematical theory of
differential equations with retarded arguments have been
extensively developed in [1—12], and functional
differential equations have been studied intensively in the
past two decades (see surveys in [11,13]), but in spite of
the efforts of many contributors this field is still in its in-
fancy. The areas of application of differential delay equa-
tions include the dynamics of laser systems [14,15], phy-
siological control systems [16—18], liquid crystals [19],
dynamical diseases [20—24], neural network models
[25—30], and agricultural economics [31,32].

Often in applied areas where delays are important,
deterministic differential delay equations are inadequate
to capture the essence of the real situation, and one must
instead frame models in terms of stochastic differential
equations, which take into account the perturbations
often present in the real world. These random perturba-
tions have the property that in numerical simulations
they can imply not only quantitative changes in the dy-
namics but also qualitative ones. However, in trying to
verify these results analytically, one often encounters seri-
ous difhculties due to the complexity of probabilistic
models. At the present time the theory of stochastic ordi-
nary differential equations has been fundamentally
shaped by the work of [33—46]. Unfortunately, in a com-
parative sense the solution behavior of stochastic
differential delay equations is in a relatively undeveloped
situation. Investigations in this direction can be found in
[12,13,47—56]. Results establishing the existence and

uniqueness of solutions to stochastic functional
differential equations appear in [13,48,52].

Further, these investigations have usually dealt with
linear stochastic differential delay equations, whereas in
the real world the equations modeling actual processes
are not only stochastic but also highly nonlinear. How-
ever, because of the paucity of available techniques for
dealing with nonlinear difFerential delay equations, not to
mention nonlinear stochastic differential delay equations,
a common and useful (often the only) strategy is to linear-
ize the system describing the process of interest about the
fixed points and then to examine the local stability of
these fixed points in response to small perturbations.
When external perturbations are important, this leads in
a natural way to the examination of the stability of linear
stochastic differential delay equations.

Thus, linear stochastic differential delay equations mir-
ror the local properties of mathematical models describ-
ing the behavior of real systems with delays in the pres-
ence of random perturbations. Further, this class of
equations represents a bridge between linear differential
delay equations and linear stochastic ordinary equations.

An interesting problem arising in applications is the in-
vestigation of the stability of the moments of the solu-
tions of these linear stochastic differential decay equa-
tions, which can be reduced to a study of the determinis-
tic linear differential delay equations. The purpose of this
paper is to derive moment equations for the solutions of
linear stochastic differential delay equations and to inves-
tigate the onset of oscillations in their first and second
moments. The results presented here generalize those in
[57].
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The paper is organized as follows. In Sec. II we brieAy
present the mathematical preliminaries needed for the
rest of the paper. Section III examines the effect of addi-
tive and multiplicative (or parametric) white noise on the
stability behavior of the first and second moments of
linear differential delay equations. We extend these re-
sults to the case of colored noise in Sec. IV. The paper
concludes with a brief discussion in Sec. V.

solution of the linear differential delay equation

y(t) =ay(t)+Py(t r—), (2.3)

with the initial condition y (8)=P(8), where r—~ 8~0,
approaches 0 as t ~ ao. The assumption that there exists
a solution of (2.3) of the form y (t)-e ' gives the charac-
teristic quasipolynomial for the eigenvalues of (2.3):

A, —a —Pe '=0 . (2.4)

II. MATHEMATICAL PRELIMINARIES

Let the probability space (Q, X,P) be given, and
w (t) HR' be a scalar Wiener process defined on 0 having
independent stationary Gaussian increments with
w(0)=0, E[w(t) —w(s)J =0, and E[w(t)w(s)]
=min(t, s). The symbol E denotes the mathematical ex-
pectation. The sample trajectories of w(t) are continu-
ous, nowhere differentiable, and have infinite variation on
any finite time interval. The upper limit of samples of a
Wiener process approaches + ~ with probability 1 for
t ~ ao, while the lower limit is —ao.

We denote by g(t) a stationary Gaussian white noise
process with E[g(t)] =0 and covariance function
E[g(t)g(s) ]=5(t —s), where 5 is the Dirac delta func-

tion. From the theory of stochastic differential equations
we understand that, formally, a white noise process g(t) is
the derivative of the Wiener process w (r) [41].A colored
noise process will be denoted by g(t) and described in
Sec. IV.

Our central interest is the oscillating properties of the
solution moments of the stochastic differential delay
equation driven by white noise g(t)

It is well known [9,11,58] that the necessary and sufficient
condition for Rek, (0, and thus for lim, „y(t)=0, is
given by

cos

Qp2 2
(2.5)

co = —P since',

cx = P cosco1

(2.6a)

(2.6b)

which is shown graphically in the (a,P) parameter space
in Fig. 1. Furthermore, when A, is pure imaginary, i.e.,
A, = in, it is known that there may be a Hopf bifurcation
in (2.3) corresponding to a pair of complex conjugate ei-
genvalues crossing the imaginary axis, separating the left-
and right-hand complex plane. This Hopf bifurcation
may be either subcritical or supercritical. Substituting
A, =ice into Eq. (2.4), we obtain the equation of the Hopf
bifurcation boundary in parametric form:

dx (t) =f (t,x, )dt +g (t,x, )g(t)dt, t ~0

or by colored noise q (defined in Sec. IV)

dx(t)=f(t, x, )dr+g(r, x, )ri(t)dt, t ~0,

(2. la)

(2.1b)

From Eqs. (2.6a) and (2.6b) it follows that the value of de-
lay ~, given by the expression

where x, = (tx+8), r~ 8 ~0, x (—t) ER'. The initial
condition for (2.1a) and (2.1b) is

x (8)=P(8), (2.2)

where P is an arbitrary continuous deterministic func-
tion. A stochastic process x (t) is called a solution of the
stochastic difFerential equation (2.1) when it satisfies, with
probability 1, the integral equation

x(t)=x(0)+ f f(s,x, )ds+ f g(s, x)d w(s),

where the second integral is a stochastic integral (under-
stood in either the Ito or Stratonovich sense; see the dis-
cussion in Sec. III [39,40].

Using both the Ito and Stratonovich calculus for sto-
chastic differentials and properties of stochastic integrals,
we derive the moment equations for the solutions of the
stochastic equations (2.1a) and (2.1b) and give necessary
and sufficient conditions for the stability of solutions.
For equations with stochastic perturbations given by
multiplicative colored noise, we have only been able to
prove sufficient conditions for exponential mean-square
stability (see Sec. IV B).

Our technique will usually involve asking when the

FICx. 1. Necessary and sufficient conditions for asymptotic
stability of the trivial solution of (2.3). The hatched region
denotes the region of parametric space in which the trivial solu-
tion of (2.3) is asymptotically stable. On the boundary defined
by (2.7) there is a periodic solution of (2.3) with the period given
by (2.9).
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CX
cos

Qp2 ~2
(2.7)

is the critical value at which the stability guaranteed by
(2.5) is lost and the solution will demonstrate oscillatory
behavior. From (2.6a) and (2.6b), it further follows that

co —+p tx (2.8)

Thus, Eq. (2.3) has a solution of the form y(t)=e' ',
where the angular frequency co is given by (2.8) if and
only if the parameters a, p, ~ satisfy (2.7). Because of the
connection co=2m/T between co and the period T of os-
cillations, when these oscillations occur they have period

2r7.

a
cos

277

&p' —a' (2.9)

III. MOMENT EQUATIONS WITH WHITE NOISE

A. Additive white noise

Consider the scalar linear stochastic differential delay
equation with additive white noise

dx (t)= [ax (t)+bx (t r)]dt +o—dw(t), t ~0, (3.1)

where w ( t } is the standard scalar Wiener process, r )0 is
a constant delay, and the initial function satisfies (2.2).
The solution x ( t }of (3.1) is given by

x(t)=x(0)+ f [ax (s)+bx(s —r)]ds+ f o. dw(s),
0 0

where the second integral is a stochastic integral. For
noise entering additively there is no difference between
the Ito and Stratonovich interpretation of stochastic in-
tegrals.

Let m (t) =Ex (t) denote the mathematical expectation
of the solution of (3.1). Then

Ex ( t) =Ex (0)+Ef [ax (s) +bx (s r) ]ds, (3.—2)
0

since EJoo dw (s)=0. We therefore obtain a differential
delay equation for m (t):

m (t) =am (t)+ bm (t —r), (3.3)

with the initial condition m (8)=Ex (8)=P(8) for—~~0~0. Thus, the expectation value of the solution
for the linear stochastic equation (3.1) satisfies the deter-
ministic equation without noise. From the preceding re-
marks in Sec. II, we therefore know that a necessary and
sufhcient condition for the stability of the first moment
m(t) of (3.3) is given by (2.5) if we identify a=a and
p=b Further, whe.n the parameters a, b, r satisfy (2.7),
then we know that a Hopf bifurcation in m (t) will take
place and the first moment will oscillate with a period
given by (2.9). Thus, in the mean, the solution of the
linear stochastic differential delay equation with additive
white noise behaves precisely hke the solution of the un-
perturbed deterministic equation (see Fig. 2).

FIG. 2. Necessary and sufhcient conditions for the stability
of (2.3) in the presence of white noise. The rightmost solid line
denotes the stability boundaries of the first and second moments
for additive white noise and the stability boundary for the first
moment in the presence of multiplicative white noise under the
Ito interpretation. The dashed line corresponds to the stability
boundary of the second moment with multiplicative white noise
in the Ito interpretation and the stability boundary for the first
moment in the Stratonovich interpretation. The dotted line
marks the stability region for the second moment, multiplicative
white noise (the Stratonovich interpretation).

The stability situation for the second moment of (3.1) is
identical to that for the first moment. To show this, we
derive the differential equation for Ex (t), using the Ito
differential rule:

d Ex (t) =2aEx (t)+2bE[x(t)x(t —r)]+cr
dt

(3.4)

Introducing the notation K(t, s) =E [x (t)x (s)], so that
K ( t, t) =E [x ( t)x (t) ] =Ex ( t), Eq. (3.4) becomes

K(t, t) =2aK(t, t)+2bK(t, t ~)+cr2, —(3.5)

whose steady-state solution K satisfies the equation
2aK *+2' *+o.2 =0, or

K=-
2(a +b) (3.6)

Defining a new variable Z(t, s)=K(t, s) —K*, so that Z
measures the deviation of K from K', Eq. (3.5) takes the
form

Z(t, t)=2aZ(t, t)+2bZ(t, t —r) . (3.7)

To examine the stability of (3.7), we take the same ap-

dx (t) =2x (t)[ax (t)+bx (t r)]dt—
+o dt+2ox(t)dw(t) .

Integrating from 0 to t, taking the mathematical expecta-
tion of both parts, using the properties of the stochastic
integral, and then finally differentiating with respect to t,
we obtain
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proach as for the first moment and examine the conse-
quences of the assumption that (3.7) has a solution of the
form

Z(t s) eAseA s (3.8)

so that Z(t, t)-e '. We wish to obtain conditions on A,

that will guarantee that (3.8) is indeed a solution. Again,
a necessary and sufficient condition is that A, be a solution
of the characteristic quasipolynomial

A, —a —be =0 . (3.9)

Using the material of Sec. II, we see that the second mo-
ment of (3.1) will be stable [lim, Ex (t)=IC ] if and
only if (2.5) is satisfied. Further, for r&r„ the second
moment oscillates about EC* with an exponentially in-
creasing amplitude. Finally, if (2.7) holds, there is again a
Hopf bifurcation and the second moment is oscillatory
(again about E*) with a 'period that is diferent from the
period of the first moment. More precisely, at the critical
delay r given by (2.7), the solution of (3.7) oscillates with
a period

~+C

cos '( —a /b) Qbl az
(3.10)

that is precisely one-half of the period of the oscillation of
the first moment when stability is lost. This result is, of
course, intuitively what one would expect.

Thus, we observe the same qualitative behavior for the
moments of orders 1 and 2 for the solutions of (3.1) with
additive white noise as for the deterministic undisturbed
equation. This means that perturbing with additive white
noise in a differential delay equation does not change the
stability behavior of the mean, while for the second mo-
ment it is only the period of oscillations and the center
that are changing. Therefore additive white noise does
not have any inhuence on the stability and oscillating
behavior of the solution of a linear differential delay
equation, as shown in Fig. 2.

B. Multiplicative (parametric) white noise

with parametric white noise, where ~ 0, and an initial
function is given by (2.2). The solution x(t) of (3.11)
satisfies, with probability 1, the integral equation

In this section we consider the stability properties of
the first and second solution moments of the stochastic
differential delay equation

dx (t) = [ax (t)+ bx (t r)]dt +ox—(t)dw (t), t ~ 0

(3.11)

g S Xg W Wq W
0

is defined as the limit of the midpoint approximation

gg ti —i&

(w;+w; i)
[w; —w, , ]

for all partitions p = t0 t, . & t„=t, where
w; =w, (w) as the maximum step size 5=max;(t;

t; —i)~0. In the Ito calculus, the integrand of the sto-
chastic integral is approximated by a left-hand limit, so
the integral is defined as the limit of

g g(t; i, w;, )[w; —w;, ] .
i=1

The main difference between the Ito and Stratonovich
calculus occurs in their corresponding chain rules and in
the calculation of stochastic integrals. For a stochastic
process x (t) interpreted by the Ito calculus, a special Ito
formula must be used to calculate a stochastic differential
of the complex function f(t,x (t)), while in the Stratono-
vich calculus the normal rules of classical calculus hold.
From a purely mathematical viewpoint both the Ito and
Stratonovich interpretations are correct, but in different
modeling contexts one may be more appropriate than the
other. Thus, for the modeler the central question is what
stochastic differential equation must be chosen in order
to describe accurately a given physically realizable pro-
cess of interest. It has been pointed out [41,59—64] that
the Stratonovich interpretation of a stochastic differential
equation is the appropriate one when white noise can be
considered as the limiting case of the colored noise actu-
ally existing in the system. This observation has been
confirmed experimentally [65]. On the one hand, this sit-
uation can arise in many of the biological, engineering,
and physical sciences. On the other hand, many systems
are discrete in either time or state or both. In these cases
the stochastic equation, obtained as a continuous time
limit of a discrete time problem, would be appropriately
interpreted according to Ito. Fortunately, as will become
clear later, there is a strong connection between the two,
and we are able to shift from one type of integral to the
other, thus exploiting the advantages of each.

l. Ito interpretation ofparametric white noise

First we examine the behavior of the first and second
moments of the solution x (t), assuming that the stochas-
tic integral in (3.12) is interpreted as an Ito stochastic in-
tegral. For the mathematical expectation m(t)=Ex(t)
of the solution, we have the differential delay equation

x (t) =x (0)+ J [ax (s)+bx (s —r)]ds
0

+ I ox(s)dw(s) .
0

(3.12)
with initial function

m (8)=P(8), —~~0+0;

m (t) =am (t)+bm (t —r)

The last integral in (3.12) is a stochastic integral, which
can be interpreted in either the Ito or Stratonovich sense.

R.emark I. In the Stratonovich calculus, as in the nor-
mal calculus, the stochastic integral

i.e., m (t) behaves as a solution of the deterministic delay
equation. When a, b, and r satisfy (2.5), the trivial solu-
tion m =0 is stable; and when they satisfy (2.7), the first
moment of the solution of (3.11) becomes unstable and
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Integrating from 0 to t, taking the mathematical expecta-
tion of both parts, using the properties of stochastic in-
tegral, and then differentiating with respect to t, we get

d Ex (t)=(2a+o )Ex (t)+2bEx(t)x(t —r) .
dt

(3.13)

Using the same procedure as in Sec. II A when we exam-
ined the stability of the second moment in the presence of
additive white noise, we see that (3.13) becomes

starts oscillating about 0 with period T given by (2.9), as
we have shown graphically in Fig. 2.

Considering the second moment Ex (t) of the solution
x (t) of (3.11),we obtain from Ito's rule

dx (t) =2x (t)[ax (t)+bx (t r)—]dt

+a x (t)dt+2crx (t)dw(t) .
2. Stratonovich interpretation ofparametric white noise

We now consider the Stratonovich interpretation of the
stochastic differential equation (3.11). Assuming that the
stochastic integral in (3.12) is a Stratonovich integral, and
using the connection between Ito and Stratonovich repre-
sentations [63], we can transform (3.11) into the corre-
sponding Ito stochastic differential equation:

dx (t)= o-2a+ x (t)+bx (t r) dt—+crx (t)dw (t),
2

moment (which coincides with the critical delay value for
the deterministic equation). Thus, there exists some in-
terval between r',~ and r, =r, when the first moment of
the solution is still stable while the second is oscillating
with unbounded increasing amplitude. This is clearly il-
lustrated in Fig. 2.

K(t, t) =(2a +a')K (t, t)+2bK (t, t r), —(3.14) (3.18)

1

v —(2a+cr ) 2be —' =0, (3.15)

with a corresponding characteristic quasipolynomial
As before, the differential equation for the first moment
m (t) =Ex (t) is given by

where v=2K, . Thus we conclude (see Fig. 2) that the sto-
chastic difFerential delay equation (3.11), with parametric
white noise, will have a stable second moment if and only
if m (8)=P(8), —~~8~0,

o 2

m(t) = a+ m (t)+bm (t —z),
2

(3.19)

cos
a+cr /2

b

+b (a+o —/2)
(3.16)

o 2
a+—

2
—be =0 .

so the characteristic quasipolynomial is

(3.20)

At ~=r',q there is a Hopf bifurcation, and the second mo-
ment Ex (t) of the solution of (3.11) loses its stability and
oscillates with a period

Consequently, the Ito stability condition is replaced by
the first moment Stratonovich stability condition:

a+a /2
cos

Tsq
')/b (a+cr /2)— (3.17)

Qb~ —(a+a /'2)
(3.21)

The oscillation period of the second moment when it be-
comes unstable, T', no longer bears a simple relationship
to the period of the first moment of its instability, as in
the case of additive white noise. However, it is easy to
show that T'q (T whenever

2

0«+(b /a)' —1;
2

and when the right-hand side of this inequality is violat-
ed, then T'q& T.

Comparing the behavior of the first and second mo-
ments of the solution x (t) of (3.11), we can easily see that
under the Ito interpretation the first moment Ex(t)
behaves like the solution of the deterministic equation,
which means that, in the mean, the solution of the
differential delay equation driven by parametric white
noise does not differ from the properties of the solution of
the undisturbed equation, while the behavior of the
second moment does depend on the amplitude o. of the
stochastic fluctuations. The critical value of the delay at
which oscillations of the second moment Ex (t) occur is
explicitly dependent on the noise intensity o. and obvi-
ously is less than the white noise critical delay for the first

When z=r, the mean value of the solution x (t) of (3.18)
begins to oscillate with a period

277

+b (a+cr /2)— (3.22)

In a similar fashion we find that constant amplitude oscil-
lations of the second moment Ex (t) of the solution of
(3.18) occur at a critical value of r given by

a +o.
cos

b

'(/b (a+o )—
with a period

Tsq 7T

')/b (a+o )—
(3.23)

(3.24)

Thus it is clear that the conditions for oscillation of the
moments under the Ito interpretation are entirely
equivalent to those of' Stratonovich if we replace the
coeKcient a by a +o. /2, or more explicitly
aI =as+ a /2, as illustrated in Fig. 2.

Remark 2. Clearly, the Ito and Stratonovich interpre-
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tations. lead to different predictions of the critical value of
the delay and period of oscillations, which is also ob-
served in stochastic differential equations [77]. The con-
nection between them is easily seen by setting ai and az
as the values of the parameter a under the Ito and Strato-
novich interpretations, respectively, and noting that one
can pass between the results by using the connection
ai =as+ a /2; this shift is evident in the stability regions
of Fig. 2. Different global properties of the stochastic
processes defined by the Ito and Stratonovich stochastic
equations have been discussed [41,61,64,65].

Ep(t) =0,
and the variance is given by

(4.9)

From (4.7) we have, in particular, Ert (t) =a/2.
Next, recall the properties of the integrated Ornstein-

Uhlenbeck process

p(t) =f g(s)ds, (4.8)
0

started at time t =0 at the origin p, (0)=0. For ri0 nor-
mally distributed N(O, a/2), the expectation of p is given
by

IV. MOMENT EQUATIONS FOR COLORED NOISE EIJ, (t)=t+ —(e '—1) .a (4.10)

dg t aq(t—)+a/(t), t &0, q(0)=g, , (4.1)

where a & 0 and g(t) is a scalar white noise process.
Recalling some properties of the Ornstein-Uhlenbeck

process g(t), we note that the stochastic differential equa-
tion

In Sec. III we studied the effect of Gaussian white
noise perturbations on the solution behavior of a linear
differential delay equation. However, Gaussian white
noise is an unattainable idealization of the real random
perturbations and is an inappropriate representation of
external noise when the effect of a nonzero correlation
time (colored noise) in the noise needs to be taken into ac-
count.

Colored noise is modeled by the Ornstein-Uhlenbeck
process rt(t) [41],which satisfies the Langevin equation

A. Additive colored noise

With these preliminary remarks, we now turn to a
study of the effect of additive colored noise on the stabili-
ty behavior of a linear differential delay equation. Con-
sider a stochastic process x (t) that satisfies the equation

dx (t)—[ax (t)+bx (t r)]dt +—

orat(t)dt,

t &0, (4.11)

where x (t) HI', with the deterministic initial function
x(8)=P(8), v&8(0—. Here q(t) is a colored noise
modeled by the Ornstein-Uhlenbeck process (4.2), and
~)0 is a constant delay.

To study the behavior of the moments of the solution
x (t) of the differential delay equation (4.11), we consider
a two-component stochastic process y(t)=(x(t), g(t)).
We introduce the notation

dpi(t) = ari(t)dt+a —dw (t), t & 0, g(0) =r10, (4.2) a o.

0 —a B= 0b 0
0 0 ' a

is linear in the narrow sense, is autonomous, and has a
unique solution [41]

q(t)=g0e '+a f e " 'dw(s), (4.3)

where w (t) is a Wiener process. Suppose that
Eg0(t) ( 00; then

so that we can rewrite the original equations (4.2) and
(4.11) as

dy (t) = [ Ay (t)dt +By (t r)]dt +c dw (t),—t & 0 .

(4.12)

Eg(t) =e 'Eg0 .

For the correlation function we have

(4.4)
By a solution of (4.12) we mean the stochastic process
y(t) defined by

y(t)=y(0)+ f [Ay(s)+By(s r)]dt+ f c dw(s)—,
0 0

(4.13)
where the last integral is a stochastic internal. To define
an initial function y (8)=(t't(8), —r(8(0 for (4.12), we
consider formally that q(8)=g0, where g0 is assumed to
be a normally distributed N (0,a/2) random variable.

Denoting the mathematical expectation of the solution
y(t) of (4.12) by m (t)=Ey(t), we obtain

(4.5)

In particular,

Ejg (t)]=e '
Ert() —+——(4.6)

E jg(t)7l(s)] =e —a(t+s~ E+2 —+—e alt sl——
2 2

E((fJ(t)7)(s)] =—e
2

(4.7)

Thus for an arbitrary g0, we have lim, e 'g0=0,
which means that at long times the distribution of g(t)
approaches a normal distribution, with a zero mean and a
variance a/2 for arbitrary constant g0. When g0 is nor-
mally distributed, X(O,a/2), then g(t) is a stationary
Gaussian process with Eg(t)=0 and exponentially de-
creasing correlation function

m(t)= Am (t)+Bm (t —~) . (4.14)

Thus in the presence of colored noise the stability proper-
ties of the first moment are identical to those in the pres-
ence of white noise, which in turn are identical to the un-
perturbed system. This is shown in Fig. 3 by the solid
line.

To examine the stability of the second moment of y (t)
in the presence of additive colored noise, we use Ito's rule
to give the stochastic differential of y (t)y r(t):



3372 MICHAEL C. MACKEY AND IRINA G. NECHAEVA 52

d E[y(t)y (t)I=E[dy(t)y (t)+y(t)dy (t)+cc

=EI [Ay(t)+By(t —r)]y (t)+y(t)[y (t)A +y (t r—)B ]+cc j

=E [ [ Ay (t)y (t)+y (t)y (t) A +By (t —r)y (t)+y (t)y (t r—)BT]+cc

Let R (t, s) =E Iy (t)y (s) I be the covariance matrix of
the process y (t), so that R (t, t) satisfies

dP (t, t) oa
di '

2
=(a a)P—(t, t)+ +bP(t r, t—), (4.17a)

R (t, t) = AR (t, t)+R (t, t) A +BR (t r, t)—
+R (t, t r)B —+cc

This can be rewritten as the system

(4.15)

dK(t, t) =2aK(t, t)+2crP(t, t)+2bK(t r, t) . —
dt

Solving (4.17b) for P (t, t), we obtain

(4.17b)

d Ex (t)=2aEx (t)+2oEx(t)g(t)
dt

+2bEx (t r)x (t)—, (4.16a)

P(t, t)== 1

20
dK(t, t) 2aK—(t, t) 2bK—(t —~, t)

dt

(4.18)

Ex (t)rl(t)=(a a)Ex (—t)g(t)+oErl (t)
dt

+bEx (t r)rl(t—),
so from (4.18) we have

(4.16b) p (t —&, t)

d
dt

Er12(t) = 2aErI (t)+—ct

Let us denote Ex (q)rl(t) =P(q, t), which gives

(4.16c) dK(t —r, t) —2aK(t r, t) 2—bK(t —2&, t)—
dt

(4.19)
Ex (t)rl(t) =P(t, t), Ex (t —r)rj(t) =P(t r, t)—,

and let K(t, s) =Ex (t)x (s), which gives

K(t, t)=Ex (t), K(t —r, t)=Ex(t —r)x(t) .

and

dP(t t) 1

dt 20.
d2K(t, t) dK(t, t)

dt

Solving (4.16c) with an initial condition Ego [remember

qo is a normally distributed N(O, a/2) random variable],
we obtain, after substitution of Erl (t) in (4.16b), &he p»r
of equations

—2bK (t r, t)dt—
Substituting (4.18) and (4.19) in (4.17a), we obtain

(4.20)

FIG. 3. Stability conditions for (2.3) in the presence of
colored noise. The solid line denotes the stability boundaries of
the Grst and second moments for additive colored noise. The
dashed line shows sufficient conditions for exponential stability
of the first moment for multiplicative colored noise. The dotted
line denotes the sufficient mean-square stability region for multi-
plicative colored noise.

FIG. 4. Necessary and sufficient conditions for the solutions
of (4.25) and (4.26) to satisfy ReA, ~ 0. The hatched region corre-
sponds to (4.25). The right solid line corresponds to the case of
(4.26).
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dP(t, t) a —a dK(t, t) —2aK t, t
dt so. dt

—2bK(t r—, t)

whose steady state satisfies

(4.21)

half of the period of the first moment oscillations when
stability is lost. Hence, the results of this section in con-
junction with those of Sec. III show that with respect to
additive noise, the stability and oscillation conditions for
the first and second moments of the solution are com-
pletely independent of the noise color, as illustrated in
Fig. 3.

0 CX 1

2 (a +b)(a +b —a)
Introducing the new variable

F(s, t) =K(s, t) K'—
(4.22)

in (4.21) and using (4.22), we get the equivalent relation

d'F(t, t) dF (t, t)
dt

=(a —a) ' 2aF(t, t) 2—bF (t r, t—)—dF(t, t)
dt

dF(t r, t)—+b —2aF(t —r, t)
dt

O=K' [
—2a 2b]—+ + I

—2a 2b—] .~a —a ou b

2o 2 2CT

Explicitly EC* is given by

B. Multiplicative colored noise

We now turn to a study of the stability properties of
the solution of a differential delay equation with paramet-
ric colored noise. Consider a stochastic process x (t) that
satisfies the differential equation

dx (t) =[a+o rj(t)]x (t)dt +bx (t r)dt, —t &0 (4 27)

where x (t) HR', the initial function x (8)=p(8),
—~~0&0 is deterministic, ~)0 is a constant delay, and
rt(t) is the Ornstein-Uhlenbeck process defined by (4.2).

For equations with stochastic perturbations given by
multiplicative colored noise, we have only been able to
derive sufficient conditions for exponential mean-square
stability and stability in the mean. Thus, we require the
notion of p stability for stochastic differential delay equa-
tions, which we introduce following [13].

Definition 4.1. The trivial solution x =0 of (4.29) is
called p stable if, for any E & 0, there exists 5(E) & 0 such
that for any imtial function P(8) the inequality

2bF(t —2—r, t) (4.23)
sup i/(8) ii'&5(a)—g( @&0

implies E [ ~x (t, P) ~~] (a for t & 0, and is exponentially p
stable if there exist positive constants c

&
and c2 such thatAgain we examine the consequences of the assumption

that the solution F (s, t) to (4.23) has the form
F(s, t)=e 'e ', so that F(t, t)—=e '. If this is the case,
then the quasipolynomial for (4.23) has the form

E [ ~x (t, P)~~] ~ c, sup ~P(8) ~~exp( c2t ), t &—0 .—v&8~0

If p = 1, we speak of stability in the mean; in the case
p =2 we talk about mean-square stability. Since
~EX~ E(XI stability in the mean implies stability of the
expectation value of the solution I ( t) =Ex ( t ). Mean-
square stability is equivalent to stability of the second
moment [41].

The method used in this section for the investigation of
stability and asymptotic properties is Liapunov's second
method [66]. This well-known method, proposed by
Liapunov for ordinary differential systems, is based on
the following idea. A positive definite function v(x) or
v (t,x) is selected, which plays the role of a generalized
distance from the origin (x =0) to a point x. If along
trajectories of the equation this function is nonincreasing
(dv/dt ~0), then the trivial solution x =0 is stable.

For differential delay equations, Liapunov's direct
method was extended in two ways. The first uses the
method of Liapunov-Krasovskii functionals [3,12], which
requires a functional defined on the trajectory segments
instead of a Liapunov function.

Another approach, initially proposed by Razumikhin
[67,68] to extend the Liapunov function method to deter-
ministic diB'erential delay equations, and clarified in [10],
is based on the following idea. If a solution of a
differential delay equation begins in a ball and is to leave
this ball at some time, T, then ~x ( T+8)

~
( ~x ( T)

~

for all

(A, —a be ')[2A, ——(a a) be ~']—=0 .— (4.24)

It follows from (4.24) that either

A, —a —be '=0 (4.25)

or

(4.26)2A, —(a a) be '—=0—
is satisfied. For stability considerations we are obviously
interested in knowing which of the relations (4.25) or
(4.26) must be taken in order to ensure that all the eigen-
values of (4.24) have negative real parts. The criteria for
the solutions A, of (4.25) and (4.26) to satisfy ReA, ~O are
well known [11]and presented graphically in Fig. 4. As
is obvious from Fig. 4, and which may easily be checked
analytically, the necessary and sufficient conditions for lo-
cal stability of F(t, t) =Ex (t) K' are equivalent to th—e
condition that eigenvalues of (4.24) have Rei, 0. This in
turn is analytically expressed in Eq. (2.5). Note, however,
from our assumption that F (t, t) =e ', that when (2.5) is
an equality, so that A, =in, then the predicted period of
oscillations in F(t, t) is given by T =m/+b a Going— .
back to the original variables, we conclude that
K(t, t)=Ex (t) will oscillate about some positive value
that depends on K given by (4.22), with a period that is
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8& [ —r, 0]. This method was also applied in [69—73] to
derive mean-square stability conditions for matrix sto-
chastic difFerential delay equations.

Using this idea we will obtain mean-square stability
conditions for stochastic delay differential equations with
multiplicative colored noise. We will consider the solu-
tion of the appropriate equation with a deterministic ini-
tial function (2.2) and assume that the solution is not
stable. By this we mean that there must exist some mo-
ment of time T )~ that is a first exit time of the solution
from the stability domain (the neighborhood of size e
about zero); i.e.,

T=i nf[t) r:lx(T)l =Ej .

From this it follows that, except for a subset of probabili-
ty zero, trajectories satisfy

lx(T —r)l & lx(T) =s,
so that

(4.28a)

(4.28b)

Calculating the difFerential of a Liapunov function
v (x ( T) ), where the Liapunov function is chosen to be
v = lxlp, we then derive conditions under which the as-
sumption that at time T the solution leaves the stability
domain leads to a contradiction. In this way we derive
sufficient conditions for stability in the mean and mean-
square stability for the solution of the stochastic
differential delay equation driven by colored noise.

We pick a Liapunov function v(x)= lxlP and use the
direct Liapunov method. Then for all time t

dlx (t)lp= [plx (t)lp[a +op(t)]+pblx (t)lp 'x (t r)]dt-
& [plx«)l'[a+on«)]+plbl lx«)l' 'lx« —r)lj« . (4.29)

Now assume that x (t) is not stable, which implies that
there is a time T such that (4.28a) and (4.28b) hold. From
(4.29) and (4.28a) we obtain at time T, which is assumed
to be the first exit time, that

d lx ( T) lP &p [a +o ri( T)+ l b l ]x ( T) lPd T .

Therefore

p(a+Ibl+ 2pcr )T
(p u /a)(e aT2

e ep

p(~+lbl+ —,'p~ » —(p ~ /2~)—+e

Consequently if the condition

p (a + lbl+ —,'po ) &0

(4.32)

(4.33)

z(t) Ez(t)+ &Ez (t)Ee' ' =e (4.30)

Applying (4.30) and using the properties of the integrated
Qrnstein-Uhlenbeck process p(t), yields

+1 2 2E 2T
(T)lp&

l
lp p«+l&l~&

Suppose that g0 is normally distributed. Then taking into
account the expressions (4.9) and (4.10) for the mean and
variance of (u(t), we obtain the estimation for Elx ( T) lp:

(a+ lbl+ —cr )T

(4.31)

Let us now consider two possibilities. In the first, the
first exit time T))0, so

lx(T)IP& lxol exp p(a+ lbl)T+p f oui(s)ds
0

For El x ( T) lp we have the estimate

Elx(T)l & lxol e '+ (' E exp po. f g(s)ds
0

Using (4.8), the last expression takes the form

Elx ( T) lp & lx pep(a +(b[ T E cpa@( T)

To continue the estimation, we use the following repre-
sentation for the Gaussian stochastic process z (t):

is satisfied, then the pth moment of the trivial solution is
exponentially stable in the sense of Definition 4.1, with—( cr /2a)c, =e 'p ', c2=p(a+ lbl+ 'po ), which contra-
dicts the assumption that there is a first exit time, i.e.,
(4.28a). Thus condition (4.33) is sufficient for the ex-
ponential p stability of the trivial solution of (4.27).

Alternately, if the first exit time is sufficiently small so
that the approximation e —1 = —aT holds, then from
(4.31),

Elx(T)lP& lxol e '+Ibl»

results, which implies that the solution x (t) of (4.27) is
exponentially p stable when a & —

l
b l.

Thus from (4.33) it follows (see Fig. 3) that sufficient
stability conditions for the first and second moments of
the trivial solution of (4.27) are, respectively,
a & —lbl —~o and a & —lbl cr If w—e co. mpare the es-
timation (4.31) to the white noise case by taking the limit
n~ ~, we have

Elx(»IP& lx, l"" '"

which implies exponential p stability for a & —lbl —per,
if the equation

dx (t) = [ax (t)+bx (t —r)]+crx (t)dw (t)

is interpreted in the Stratonovich sense.
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Finally we note that when the color of the noise is in-
creasing (aJ, ) the stability properties are changing from
the white noise stability region (a & —

~b~
—

—,'po ) to the
deterministic region (tt & —

~b~ ). Colored noise has a sta-
bilizing effect with respect to white noise, which can be
understood from (4.31). Namely,

g+ b+~ g2 TP~cJ+ Ibl+ 2po' )T ~p2~2y2a)(e aT i)

p(a + Ibl + 2po )T

which means that the relaxation of E~x(T)~~ to zero is
accelerated in the presence of colored noise as compared
to the white noise case.

V. CONCLUSIONS

We have investigated the effects of additive and multi-
plicative white and colored noise on the stability of the
trivial solution of a linear differential delay equation by
deriving equations for the first and second order moments
and examining the onset of oscillations. For stochastic or-
dinary differential equations, the Fokker-Planck analysis
for the evolution of densities can be applied to study solu-
tion stability and bifurcations [62,74—77]. However,
there is no analog to the Fokker-Planck equation for sto-
chastic equations with a retarded argument. Concerning
the inhuence of colored noise on the density behavior of
stochastic differential delay equations, some numerical re-
sults are known [27,28].

We have shown that in the presence of additive noise
(white or colored), the stability domain of both moments

is identical to that of the unperturbed system. When
these moments lose stability, there is a Hopf bifurcation
and the first moment oscillates with a period identical to
the solution of the unperturbed equation, while the oscil-
lation period of the second moment is exactly one-half
the period of the unperturbed solution and the first mo-
ment. When perturbations are of the parametric (or mul-
tiplicative) type and white noise is assumed, under the Ito
interpretation the first moment of the solution preserves
properties of the solution of the deterministic equation,
while the behavior of the second moment depends on the
amplitude of the stochastic perturbation. The critical de-
lay value at which the second moment loses stability and
becomes oscillating has been derived, and it is less than
the critical delay for the first moment. Under the Strato-
novich interpretation, quite different properties have been
observed for the moment equations.

For the case of parametric colored noise perturbations,
sufFicient p stability conditions have been derived that are
independent of the value of delay, and the stabilizing
effect of colored noise with respect to white noise has
been observed for both short-time and asymptotic
behavior of the solutions.

ACKNOWLEDGMENTS

We thank Professor L. Arnold (Bremen) for helpful
comments. This work was supported by grants from the
North Atlantic Treaty Organization (M.C.M), the Natu-
ral Science and Engineering Research Council of Canada
(M.C.M and I.G.N. ), and the Alexander von Humboldt
Stiftung (M.C.M.).

[1]A. D. Myshkis, Lineare Di+erentialgleichungen mit
nacheilenden A rgu ment (Deuscher Verlag der Wissen-
schaften, Berlin, 1955).

[2] R. Bellman and J. M. Danskin, Rand Corporation Report
No. R-256, 1954 (unpublished).

[3] N. N. Krasovskii, Stability of Motion (Stanford University
Press, Stanford, CA, 1963).

[4] R. Bellman and K. Cooke, Differential Difference Equa
tions (Academic, New York, 1963).

[5] R. D. Driver, in Nonlinear Differential Equations and
¹nlinear Mechanics, edited by J. P. LaSalle and S. Lefs-
chetz (Academic, New York, 1963), p. 474—484.

[6] R. D. Driver, Ordinary and Delay Differential Equations
(Springer-Verlag, Berlin, 1977).

[7] A. Halanay, Differential Equations, Stability, Oscillations,
Time Lags (Academic, New York, 1966).

[8] A. Halanay, Rev. Roum. Math. Pures Appl. 14, 1269
(1969).

[9] L. E. El'sgol'ts, Introduction to the Theory of Differential
York, 1966).

[10]J. K. Hale, Functional Differential Equations (Springer-
Verlag, New York, 1971).

[11]J. K. Hale, Theory of Functional Differential Equations
(Springer-Verlag, New York, 1977).

[12] L. E. El'sgol'ts and S. B. Norkin, Introduction to the
Theory and Application ofDifferential Equations with Deui
ating Argument (Academic, New York, 1973).

[13]V. B. Koltnanovskii and V. R. Nosov, Stability of Func
tional Differential Equations (Academic, New York, 1986).

[14] F. A. Hopf, D. L. Kaplan, H. M. Gibbs, and R. L.
Shoemaker, Phys. Rev. A 25, 2172 (1982).

[15]K. Ikeda and K. Matsumoto, Physics D 29, 223 (1987).
[16]L. Glass and M. C. Mackey, From Clocks to Chaos: The

Rhythms of Life (Princeton University Press, Princeton,
NJ, 1988).

[17]M. C. Mackey and J. G. Milton, Comm. Theor. Biol. 1,
299 (1989).

[18]J. G. Milton, U. an der Heiden, A. Longtin, and M. C.
Mackey, Biomed. Biochim. Acta 49, 697 (1990).

[19]H.-J. Zhang, J.-H. Dai, P.-Y. Wang, F.-L. Zhang, G. Xu,
and S.-P. Yang, in Directions in Chaos, edited by B.-L.
Hao (World Scienti6c, Singapore, 1988), pp. 46—89.

[20] M. C. Mackey and L. Glass, Science 197, 287 (1977).
[21] L. Glass and M. C. Mackey, Ann. N.Y. Acad. Sci. 316,

214 (1979).
[22] M. C. Mackey and U. an der Heiden, Funk. Biol. Med. 1,

156 (1982).
[23] M. C. Mackey and J. G. Milton, Ann. N.Y. Acad. Sci 504,

16 (1987).
[24] J. G. Milton and M. C. Mackey, J. R. Coll. Physicians

London 23, 236 (1989).
[25] A. Longtin and J.G. Milton, Math. Biosci. 90, 183 (1988).
[26] A. Longtin, J. G. Milton, J. E. Bos, and M. C. Mackey,

Phys. Rev. A 41, 6992 (1990).



3376 MICHAEL C. MACKEY AND IRINA G. NECHAEVA 52

[27] C. M. Marcus and R. M. Westervelt, Phys. Rev. A 39, 347
(1989).

[28] J. G. Milton, A. Longtin, A. Beuter, M. C. Mackey, and
L. Glass, J. Theor. Biol. 138, 129 (1989).

[29] C. M. Marcus and R. M. Westervelt, Phys. Rev. A 42,
2410 (1990).

[30] A. Longtin, Phys. Rev. A 44, 4801 (1991).
[31]J. Belair and M. C. Mackey, J Dyn. Diff. Eqns. 1, 299

(1989).
[32] M. C. Mackey, J. Econ. Theory 48, 497 (1989).
[33] K. Ito, Nagoya Med. J. 1, 35 (1950).
[34] K. Ito, Nagoya Med. J 3, 55 (1951).
[35] K. Ito, Mem. Am. Math. Soc. 4 (1951).
[36] K. Ito and M. Nisio, J. Math. Kyoto Univ. 4, 1 (1964).
[37] R. L. Stratonovich, SIAM Sci. Bull. 4, 362 (1966).
[38] H. J. Kushner, Stochastic Stability and Control (Academic,

New York, 1967).
[39] I. I Gihman and A. V. Skorohod, Stochastic Differential

Equations (Springer-Verlag, New York, 1972).
[40] R. Z. Hasminiskii, Stochastic Stability of Dt+erential

Equations (Sijthoff and Noorhoff, Alphen aan den Rijn,
Netherlands, 1968).

[41] I,. Arnold, Stochastic Differential Equations: Theory and
Applications (Wiley, New York, 1974).

[42] T. T. Soong, Random Differential Equations in Science and
Engineering (Academic, New York, 1973).

[43] A. Freidman, Stochastic Differential Equations and Appli
cations (Academic, New York, 1975), Vols. 1 and 2.

[44] K. Ikeda and S. Watanabe, Stochastic Differential Equa
tions and Dig@sion Processes (North-Holland, New York,
1981).

[45] L. Arnold and W. Kliemann, in Probabilistic Analysis and
Related Topics, edited by A. T. Bharucha-Reid (Academic,
New York, 1983), Vol. 3.

[46] T. C. Gard, Introduction to Stochastic Differential Equa
tions (Dekker, New York, 1988).

[47] G. Nazaroff, IEEE Trans. Autom. Control 672 (1973).
[48] S-.E-.A. Mohammed, Stochastic Functional Differential

Equations (Pitman, Boston, 1984).
[49] M. Scheutzow, Stochastic Processes Appl. 20, 323 (1985).
[50] U. Kuchler and B. Mensch, Stochastics Stochastic Rep.

40, 23 (1992).
[51]M. Scheutzow, Stationary and Periodic Stochastic

Differential Systems: A Study of Qualitative Changes with

Respect to the Noise Level and Asymptotics (Habilta-
tionsschrift, Universitat Kaiserslautern, Kaiserlautern,
Germany, 1988).

[52] E. F. Tsar'kov, Stochastic Disturbances of Functional
Differential Equations (Zinatne, Riga, 1989) (in Russian).

[53] S-.E-.A. Mohammed and M. K. R. Scheutzow, Stochastic
Rep. 29, 259 (1990).

[54] M. Scheutzow, in Stochastic Processes and their Applica
tions, edited by S. Albeverio (Kluwer Academic, Dor-
drecht, 1990).

[55] X. Mao, Stability of Stochastic Differential Equations with
Respect to Semimartingales (Longman Scientific & Techni-
cal, White Plains, NY, 1991).

[56] M. Scheutzow, Stochastic Anal. App. 11,97 (1993).
[57] M. C. Mackey and I. G. Nechaeva, J. Dyn. Diff. Eqns. 6,

395 (1994).
[58] N. D. Hayes, J. London Math. Soc. 25, 226 (1950).
[59] A. R. Bulsara, K. Lindenberg, V. Seshardi, K. E. Shuler,

and B.J. West, Physica A 97, 211 (1979).
[60] A. R. Bulsara, K. Lindenberg, V. Seshardi, K. E. Shuler,

and B.J. West, Physica A 97, 234 (1979).
[61]P. E. Kloeden and E. Platen, The 1Vumerical Solution of

Stochastic Differential Equations (Springer-Verlag, New
York, 1991).

[62] W. Horsthemke and R. Lefever, iVoise Induced Transi
tions: Theory and Applicaations in I'hysics, Chemistry, and
Biology (Springer-Verlag, Berlin, 1984).

[63] C. M. Gardiner, Handbook ofStochastic Methods for Phys
ics, Chemistry and the Natural Sciences (Springer-Verlag,
New York, 1985)~

[64] N G. van Kampen, J. Stat. Phys. 24, 175 (1981).
[65] J. Smythe, F. Moss, P. V. E. McClintock, and D. Clark-

son, Phys. Lett. A 97, 95 (1983).
[66] A. M. Liapunov, Probleme General de la Stabilite du

Mouvement, Annals of Mathematical Studies, No. 17
(Princeton University Press, Princeton, NJ, 1967).

[67] B.S. Razumikhin, Prikl. Mat. Mekh. 20(4), 500 (1956).
[68] B.S. Razumikhin, Avtom. Telemekh. 21, 740 (1960).
[69] I. G. Nechaeva and D. Ya. Khusainov, Uk. Mat. Zh. 42,

1338 (1990) [Uk. Math. J. 42, 1338 (1990)].
[70] I. G. Nechaeva and D. Ya. Khusainov, Differentsialnye

uravneniya 28, 405 (1992) [Diff. Eqns. 28, 338 (1992)].
[71]I. G. Nechaeva and D. Ya. Khusainov, Uk. Mat. Zh. 44,

1060 (1992) [Uk. Math. J. 44, 960 (1992)].
[72] I. G. Nechaeva and D. Ya. Khusainov, Sib. Mat. Zh. 33,

107 (1992) [Siberian Math. J. 33, 842 (1992)].
[73] A. S. Bychkov, A. P. Lobok, I. G. Nechaeva, and D. Ya

Khusainov, Kybernetika Sistemny Analiz 4, 38 (1992) [Cy-
bernet. Sys. Anal. 28, 520 (1992)].

[74] L. Arnold, W. Horsthemke, and R. Lefever, Z. Phys. B 29,
367 (1978).

[75] E. Knobloch and K.A. Wiesenfeld, J. Stat. Phys. 33, 611
(1983).

[76] A. Lasota and M C. Makey, Probabilistic Properties of
Deterministic Systems (Cambridge University Press, Cam-
bridge, 1985).

[77] M. C. Mackey, A. Longtin, and A. Lasota, J. Stat. Phys.
60, 735 (1990).


