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Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates
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Unstable periodic orbits (UPOs) of an experimental chaotic pendulum were stabilized using a semi-

continuous control method (SCC), applying control actions several times per cycle. One advantage of
this method, compared to a one-map-based control method such as the Ott-Grebogi-Yorke method
[Phys. Rev. Lett. 64, 1196 (1990)], is the applicability to systems with relatively large unstable eigenval-

ues and/or high noise levels. Compared to a continuous type of feedback control as was proposed by Py-
ragas [Phys. Lett. A 170, 421 (1992)], the advantage is that the controller settings can be measured from
experimental data. Because the control method uses delay coordinates, only one variable has to be mea-

sured. This paper describes an SCC method using delay coordinates, the extraction of UPOs from time

series, how the effect of the control parameter can be measured, the effect on the control in case of an er-
ror in the estimate of the UPO, and how this error can be reduced to obtain more stable control.

PACS number(s): 05.45.+b

I. INTRODUCTION

The extreme sensitivity to small perturbations is a
well-known characteristic of chaotic systems. Since 1990,
in literature, much attention has been paid to the idea of
exploiting this sensitivity as an advantage in controlling
the dynamics of chaotic systems. As a consequence, only
small control actions would be necessary to drive the sys-
tem into one of its required states. In the important pa-
per on this topic, Ott, Grebogi, and Yorke (OGY) [1]
proposed such a method. In the attractor, many so-
called unstable periodic orbits (UPOs) are located. If the
system were to be located exactly on a UPO, it would
remain there forever. However, because of the chaotic
nature, a small deviation will grow exponentially in time
so that the system eventually leaves its periodic orbit.
The OGY control method is essentially based on feed-
back control that stabilizes the system on a UPO. Be-
cause each UPO has its own system performance, one
would like to stabilize only that UPO with a system per-
formance that is better than that of the uncontrolled sys-
tern. The advantage is that only very small control ac-
tions are required for the stabilization. This may be very
attractive, especially from a practical point of view: gen-
erally, small control actions are physically easy to make
and do not demand much energy. So this method would
allow improvement to the performance of an existing sys-
tem, without making physical modifications. The OGY
control method is of a discrete type; a control action is
made only once per periodic orbit.

Application of the discrete OGY control method to
simple experimental systems has resulted in some
successes; see the review article by Shinbrot et al. [2] for
some examples and Starret and Tagg [3] for a type of
chaotic pendulum. For chaotic systems with very unsta-
ble periodic orbits (viz. , large Lyapunov exponents) or
with a high level of noise, a continuous type of control
would be more appropriate. This means that if there is a

deviation from the UPO, control action should be taken
immediately so that the deviation has no opportunity to
grow. A continuous control method to stabilize UPOs
was proposed by Pyragas [4], which can work even if the
UPO is unknown; see also Kittel, Parisi, and Pyragas [5].
For instance, laser systems were successfully stabilized by
this method [6]. Somewhere between the discrete control
method and the continuous control method, one can
think of a "semicontinuous control" method (SCC),
which applies control actions not continuously but
several times a period. In literature two of these control
types are reported, the "local control method" by
Hiibinger et al. [7] and the "minimal expected deviation"
(MED) method by Reyl et al. [8]. Advantages of this
type of control compared to continuous control are that
(i) the feedback control parameters can be different for
different places on an UPO and that (ii) it is possible to
"measure" the feedback control parameters, which is
difficult for a continuous controller.

In this paper, it is discussed how a chaotic driven
damped pendulum with large unstable eigenvalues (about
ten) was successfully controlled using a SCC method.
This work can be seen as an extension to the control of a
different pendulum by Hiibinger et al. [7]. The major
difference is the use of delay coordinates, with the advan-
tage that now the method is also applicable to systems in
which only one system variable can be measured. In this
case, the angular velocity cannot be measured accurately.
Because the mathematical description of the pendulum
was unknown, all feedback constants had to be extracted
from experimental data; for this a different approach was
used. Section II describes the theory of the extended
SCC method and how experimental data was gathered to
finally control the pendulum's dynamics, and attention is
paid to the behavior of the controlled system.

II. THEORY

The SCC method is based on measuring transition
maps of the system. The transition maps relate the sys-
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tern state in one surface of section to the system state in
the next section. A Poincare map is a special case of such
a transition map, where the mapping is one complete cy-
cle ahead. As the pendulum has three degrees of free-
dom, its transition maps have two; see Fig. 1. For con-
venience, the method will be explained for two-
dimensional maps, although it could be extended to sys-
tems with a higher dimension. Consider a two-
dimensional surface of section on which the system state
can be represented by a delay vector Z at time t =t" (su-
perscript n is the discrete time index) containing two ele-
ments of the continuous time variable 8(t). There is a de-
lay time TD between the first and second element,

trol action has to be taken into account,

Z"+'=F(Z",5p",5p" ') . (3)

Stabilization of an UPO corresponds to stabilizing the
so-called fixed points Z~ these points are the intersection
points of the UPO with the control sections. Now sup-
pose that a number of X control sections per cycle is used
for stabilizing an UPO; in that case, there are X fixed
points Z,', . . . ,Z~, the discrete time n can be counted as
n modulo N. Linearization of Eq. (3) around the fixed
point and using deviation variables 5Z"=Z"—Z", results
1n

5Z"+'= A"5Z"+B"5p "+B"5p" (4)

Z"+ =F(Z",5p",5p" ', . . . , 5p" ") . (2)

The reconstructed system state Z"+' not only depends
on 5p", but also on all previous values of 5p, viz. ,
5p" ', . . . , 5p" ", that inQuence the system during the
time interval t" TD ~ t ~ t"—(with r as the largest possi-
ble integer such that 5p" "lies still in this interval). In
practice, one likes to choose the total time delay TD
shorter than the time between the piercings of the sec-

jtions Z" and Z"+ . In that case only one previous con-

If the system was not perturbed, there would be a map
Z"+'=F(Z"), from one intersection point Z" on the
control section to the next Z"+', with I' a fixed but un-
known function. Suppose there is an externally adjust-
able control parameter p that can be varied around a
value p such that ~p

—~ ~

= ~5p ~ (5p,„ in order to
inAuence the system. If Z would contain the real system
state (so not represented by delay coordinates), then the
map would be of the form Z"+'=F(Z",5p"). In the
case of delay coordinates, it was shown by Dressier and
Nitsche [9] that the map becomes of the extended form

where A"=D-„F(Z",5p",5p" ') is a 2X2 Jacobian
matrix, and Bo=D „F(Z,5p",5p" ') and Bi

(Z, 5p",5p" ') are two-dimensional c~l~m~n 1

vectors. These 3 times N partial derivatives are evaluated
at the N unperturbed fixed points (Z~, . . . ,Z~ for
5p =0). Equation (4) predicts where the system will be
on the next section. At time n, the prediction one step
ahead consists of two parts: one part
( A"5Z"+B",5p" ') is a result of history and cannot be
changed anymore, the other part (Bo5p") can still be
changed by controlling 5p". Figure 2 shows the graphi-
cal representation; if at time n no perturbation is applied,
the system will arrive at the point Z" '(5p"=0). By
controlling 5p", the system can be directed to any loca-
tion on the line through Z" '(5p"=0) with direction Bo.
This is where one has to choose a control criterion. One
could, for instance, choose 5p" such that the distance to
the fixed point becomes minimal (minimal expected devi-
ation method, [8]). However, this will not always result
in a stable control because it is very possible that the
point with the minimal expected deviation lies near the
unstable manifold of the Poincare map, so that the
system's trajectory will tend to leave the UPO immediate-
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FIG. 1. The state space of the pendulum contains the angular
velocity co (rad/s), the angle 0 (rad), and the phase of the driving
torque P between 0 and 2'. A point of intersection between an
UPO and the surface of section is called a 6xed point (FP 0, 1, 2,
3). The periodic orbit has the same angular velocity and angle
at phase /=0 and $=2vr (FPO=FP3). For delay coordinates,
the angular velocity is replaced by a previous value of the angle.
Two surfaces of section are shown, and a transition map exists
Z =I'(Z ), from a point on section 1 to a point on section 2.

~n+1FIG. 2. Transition map of the system state Z near fixed~n+1
point Z~; lines s and u indicate the stable and unstable mani-
folds, respectively. If the system is on a stable or unstable mani-
fold, it is attracted or repulsed, respectively, in the direction of
that manifold. If at time n no control action is made, the system~n+1
will come in state Z (5p"=0), and this point can be shifted
in the direction determined by Bo by modifying 5p . Minimiz-
ing the expected deviation (construction with perpendicular
dashed line) may not lead to stability if the target point is too
close to the unstable manifold.
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ly after the deviation was minimal only at time n + 1.
So it is necessary to consider the stabilizing and desta-

bilizing directions near the fixed point. Hiibinger et al.
[7] used the singular value decomposition

$ n 5p n j' ~n + 1

bn 5 n
~

n+1

n
Q11

n
Q21

n I n
a1Z

5zq
a2Z 12

5pn
—1

o.", 0
A"=U"X"(V") =[u ) u 2] „[v", v~], (5)0 oz

to calculate how a unit circle around the fixed point is
transformed into an ellipsoid by the linear operation
A"5Z"; see Fig. 3. A control formula could be derived
by demanding that the projection on the maximum
stretching direction reduces (with about 15%; see
Hiibinger et al. [10]) for each control section. This
reduction in their case could only be 15%%uo to avoid singu-
larity in the control formula that resulted from the large
number of maps used (64). We use a smaller number of
control sections to make the measuring of the partial
derivatives of Eq. (4) easier (see also next paragraph), so
no singularity will occur and a different control formula
can be derived in which no extra parameter, like the
shrinking percentage, has to be chosen.

The two unit axes (v, and v2) correspond to the long
and short axis (o,u, and o zu2 ) on the ellipsoid. Now the
control target becomes to adjust 5p" such that on the
map at time n + 1 the direction vz is obtained, resulting
in a maximal shrinkin on map n+2; see Fig. 3. So we
demand 5Z"+'= lv2+, with l the length of the maximal
shrinking direction ( v2 has been normalized), or

A"5Z"+B05p "+B",5p" '=lvz+' . (6)

For higher dimensional systems, one could demand that
the projection on the maximal expanding direction be-
comes zero. Equation (6) can be written as two equations
for 5p" and l (lowercase symbols indicate elements of vec-
tor or matrix):

which gives

5p n=

with

—1

y
(a" —Ra"

0, 1 02

5z",

X 5z,n

5p n —1

+12 R+22 bl 1 Rb12)

n+1
R= n+1

~2, 2

So what basically remains is a simple kind of proportion-
al feedback control of the form 5p"=K"[(5Z") 5p" ]
This form looks very much the same as the original OQY
control formula, except that it is extended with an extra
term 5p" ' because of the use of delay coordinates, and
that the constant feedback matrices K" are computed in a
different way. Therefore, this SCC method also requires
an almost equally short computation time per section.

III. EXPERIMENTAI SETUP

The pendulum used (see Fig. 4) is a type EM-50 chaotic
pendulum produced by the Daedalon Corporation
(Salem, MA, USA). The pendulum arm itself is connect-
ed to an axis with an optical encoder wheel and a ring
magnet attached to it. Four electromagnetic drive coils
act as a motor that generates a torque acting on the ring
magnet. So the system has three degrees of freedom: an-
gle 0, angular velocity co, and driving phase P. The opti-
cal encoder wheel contains a large number of small slots

6Z"
n+1

&67' (6p"= 0)

—IV

l

Angle
reading ~

I

I

I

I~ Driving

, signal

486 PC

(torqUej ~ Control

I
= Dl IangleI

Driving electronics

FIG. 3. Three successive maps of the system indicating the
principle of the control formula. The dot at the center of the
maps indicates its fixed point. At time n, the system can be~n+1
steered to any point on the dashed line through 6Z (6p"=0)
with direction 80. Now as a control criterion, the choice is
made to steer to axis v& that corresponds with the maximal
shrinking axis cr2uz at the next transition map at time n +2.

FIG. 4. Schematic setup of the pendulum. The pendulum
arm can rotate around an axis. The angle of the pendulum 8 is
measured, from which the control algorithm can calculate the
required control actions 5p. These are added to a sinusoidal
wave and form the total applied driving signal (torque).
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that can optically be detected so that the angle of the
pendulum can be measured with a resolution of 4000 po-
sitions (=2m. rad). An 80486-based computer with a
digital-to-analog (DA) converter generates a sinusoidal
voltage that is transformed to a sinusoidal torque by the
pendulum's electronics and driving mechanism. The fre-
quency of this voltage is f=0.85 Hz. If the penduluin is
at rest (no torque acting on it), it does not hang straight
downwards with gravity but an angle of about 10'. This
is caused by the fact that the four electromagnetic coils
repulse the pendulum for certain positions (up, down,
left, right). This causes that determination of a model
(description by a differential equation) for the pendulum
together with its parameters, is quite a complex task. For
controlling the pendulum however, no di6'erential equa-
tion is needed because UPOs and controller constants can
be extracted from time series.
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IV. SEARCH FOR PERIODIC ORBITS

Because the pendulum is periodically forced, a simple
stroboscopic Poincare map can be constructed by sam-
pling the angle at a constant value of the driving phase
P ($=2irft mod2rr). Figure 5 shows an example of a
Poincare map with the angle at phase /=2m. plotted
against that at phase /=7/4~. In order to locate fixed
points for all points on this Poincare map, it has to be
checked whether the next point on the map is close to the
previous one. The criterion for this was taken as
~Z"+ —Z"

~
(0.05X2m. These pairs of close returning

points (CRPs) indicate the possible presence of a fixed
point nearby. Figure 6 shows these CRPs that are more
or less grouped, each group belonging to a di6'erent fixed
point. The task is now to calculate the exact position of a
fixed point from these CRPs. It could be tried to (least
square) fit these points to a linear relation, as mentioned
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0
0(/=7/4ir)

FICx. 5. Poincare map with 45000 points of the pendulum
with the angle 8 (rad) at phase P =2n plotted against the de-
layed angle 8 (rad) at phase / =7/4n

FIG. 6. Poincare map showing CRPs. Every point on this
figure has a successor at a distance smaller than 0.05X2m rad.
The points are located in groups that belong to different Axed

points. The groups are not spread uniformly, but the points are
located along stabilizing directions.

by Shinbrot et al. [2]:

Z"+ =MZ "+C, (10)

and, especially if noise is present, one would like to use
many CRPs to fit M and C. Then the location of the
fixed point will be obtained by setting Z" + =Z"=Z„
so that Z~ =(1—M) C. This method was initially tried
but the error of the fit proved to be much larger than the
experimental error of the pendulum's angle reading (=1
position out of 4000). This is caused by the severe non-
linear dynamics that makes linear model predictions that
are one complete cycle ahead hardly possible. Obtaining
a good fit becomes even more complicated when the
points are not uniformly spread around a fixed point, but
are directed along a stable direction, while their succes-
sors are directed along an unstable direction, which is
what seems to be the case in Fig. 6. Perhaps if CRPs
with much shorter distances than 0.05 X 2m rad are
selected to fit Eq. (10), the linear model could still be
used. The frequency at which these points occur on the
map is very low, which means that a very long time series
has to be measured to get enough CRPs. Even for this
pendulum with its low-dimensional attractor, this could
mean that a time series of more than a day has to be mea-
sured to get a small number of CRPs (say, ten per group
belonging to a fixed point).

Fortunately, the solution to this problem is quite sim-
ple. Instead of fitting just one linear relation that pre-
dicts one complete cycle ahead, many of these linear pre-
dictions were fitted to trajectories belonging to the CRPs,
each only predicting a nearby map ahead. The sampling
frequency was set to 32 samples per driving cycle and for
a number of N=32 sections, the following linear model
was fitted to the data:
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gn+1 gn n n n
m11 m12 m 23

1200

gn Mn gn —1 M" 1 0 0
0 0 1

(12)

and n =0, 1,2, . . . , 31. Note that the choice of the num-
ber of X=32 sections is not so important; another num-
ber of the same order of magnitude would give the same
results. Obviously, the angles on map 0 should be identi-
cal to those on map N,
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FIG. 7. Two UPOs that were stabilized. In both graphs 32
(fixed) points are plotted. UPO (a) corresponds to one rotation
per driving cycle, while UPO (b) corresponds to three rotations
in the other direction.

By setting g =g and g '=g ', the

fixedpoint�on

ma

0 will be obtained, from which all other fixed points can
be computed. Comparison with Eq. (10) would suggest
that application of Eq. (12) is no improvement, since it
has the same form. But the one-step-ahead Jacobians can
now be fitted to trajectories that do not follow the period-
ic orbit close for a complete cycle. So these may now also
contain information of the unstable directions. Another
improvement is that the obtained description of the UPO
is smooth, meaning that from section to section the
description agrees with the experimental (fitted) data.
This means that although there could be an error be-
tween the estimate of the UPO and the real UPO, it is
very close to trajectories that can actually occur in the
system, so no large control actions are expected to be re-
quired. Figure 7 shows two UPOs (a) and (b), calculated
as described above. UPO (a) corresponds with one com-
plete rotation per driving period and UPO (b) with three
rotations in the other direction.

A periodic orbit could be determined more accurately
if the models could adequately predict further into future.
A linear model like the one described above will only be

X

0 0.02
I I

0.04 0.06 0.08
Distance l(2rL)

I

0.1

FIG. 8. Number of CRPs found from a time series of 45000
cycles, as a function of the distance between two successive
points. For a distance iZ —Z i &0.025X2m, only 33 CRPs
are found to belong to several fixed points. So per fixed point,
only a very small number of CRPs remains. Increasing the dis-
tance results in much more CRPs, but also in nonlinearity.

valid for a long term prediction when it is restricted to a
very small region around the fixed points. In that situa-
tion, the probability of finding CRPs becomes very small
for this pendulum, and in general for higher dimensional
systems this will even be worse. So one could think of us-
ing a nonlinear prediction model, like a neural net, which
is valid in a larger region around the fixed point with the
advantage that (much) more data can be included in case
of the same time series. This will be at the cost of more
model parameters that are necessary, but it could still be
advantageous because the number of CRPs found in-
creases quickly with the maximum allowed distance be-
tween the pairs; see Fig. 8.

V. FIT OF THE PREDICTING LINEAR MODELS

Once the periodic orbit has been extracted from time
series as it is described above, the number of control sec-
tions and the delay time TD must be chosen to fit the pre-
dicting linear models of Eq. (4). The choice was made to
measure the Jacobians A" from the unperturbed system
using the same time series from which the periodic orbits
were estimated. In principle, one would like to use a
large number of control sections to get an almost con-
tinuous control. However, if the time between two con-
trol sections is short, a perturbation that is applied for es-
timating the effect of the control parameter 8 will hardly
get time to inQuence the system enough to be measurable.
Therefore B cannot be estimated from Eq. (4) directly. A
number of eight sections appeared to be su%ciently small
to obtain a measurable effect of the control parameter.
The delay time TD was taken as 25% of the time between
two sections. It could be up to nearly 100% of this time
without another control parameter term (5p" ) being
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required. If this time would go to nearly zero, it would
correspond to measuring the angular velocity, however,
with a large experimental error due to sampling. The
largest estimated error of the Jacobian A" was about five
times the accuracy of the angle reading; it meant that the
linearization was not really adequate, but sufficient for
control purposes.

The next step was to estimate all Bo and 8& from a
time series with a perturbed control parameter. A time
series with a constant perturbation (5p"=C, all n) could
not be used because in that case 6p"=5p" '=C, so Bo
and B

&
cannot be distinguished from each other. There-

fore, the time series had to be measured with a changing
control parameter. A simple choice was made to switch
on the control parameter for even control sections
(5p'"'"=C) and oQfor odd sections (5p' =0). All con-
trol sections of this time series were searched for points
close to the fixed point of the selected UPO. In order to
get points in a linear region, only points with a very small
distance (less than 0.02m. rad) from the fixed points were
selected. A time series with 45000 points resulted in
about 10 to 20 points per UPO for each section. Using
the estimated Jacobians A", the elements of Bz"" and
8& were estimated from Eq. (4). The other half of all
vectors 8 (Bo"'" and 8', ) were calculated in the same
way from another time series recorded with 5p'"'"=0
and 5p' =C. The constant perturbation C was 10% of
the amplitude of the torque applied. Lower values result-
ed in an effect of the control parameter that was too small
(and a large error in 8 ), and at larger values the system
did not come sufficiently close to the periodic orbit
anymore. As expected, the effect of the previous control
action (8& ) was smaller than that of the present control
action (Bo), typically 60% smaller.

In this way, the effect of the control parameter of the
UPO of Fig. 7(a) was determined. After a short transient
time in which the system needed to come close to a fixed
point, the control algorithm could stabilize this UPO.
Figure 9 shows an example of this, while Fig. 10 shows a
typical, corresponding control signal superimposed on
the permanent sinusoid torque. It was found that the
control became less sensitive to sudden large external per-
turbations (viz. , moving the pendulum apparatus) if the
control parameter was given its maximal allowable value
5p '" when stabilization was almost lost. For example, if
the maximal allowable value of 5p was chosen between
—10 and 10% of the amplitude of the driving torque,
then if the control algorithm Eq. (8) would calculate a
control parameter 5p = —15%, it would be set to
5p = —

10%%uo.

For the UPO of Fig. 7(b) the approach described above
failed because the perturbed system never carne
sufficiently close to some of the fixed points of the UPO.
This was probably due to a change in position of the at-
tractor in state space caused by the perturbations. To
overcome this problem, the effect of the control parame-
ter was measured in another way. The system was not
perturbed until it came close to a fixed point. Then the
control parameter was given a constant value between
two control sections (10% of the driving amplitude).
Once there were enough (say 20) measurements collected
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FIG. 9. After starting an experiment, it takes more than 40
sec before the system comes close to a fixed point after which
UPO (a) can be stabilized.

around a fixed point on one of the sections, no further
perturbations were made when the system came close to
it. This was done because these perturbations could
cause the system's trajectory to leave the region near the
UPO, before the fixed point on the next section could be
approached. In this way, enough data was obtained to
calculate the effect of the control parameter, and the
UPO was stabilized as well. The major difference with
perturbing the system every control section to measure
the effect of the control parameter, is that in this way, lo-
cations of fixed points have to be determined first. This
means that for every UPO to stabilize, a new time series
for that UPO should be measured.

0.5

-0.5 I

0.2
I

0.4 0.6
time (s)

I

0.8 1.2

FIG. 10. Typical example of the continuously applied
sinusoid torque with a control signal superimposed on it. Note
that the use of N =8 surfaces of section for control, corresponds
to the eight jumps in the sine of this graph.
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VI. SYSTEMATIC DEVIATION FROM UPO
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Stabilization of the periodic orbit of Fig. 7(b) showed a
remarkable result. One would expect that once the sys-
tem comes close to a fixed point, the control algorithm
needs a short transient time in which the UPO becomes
stabilized. After this time, the trajectory should be al-
most exactly on the periodic orbit and the control actions
needed should be almost zero, only due to some small er-
rors in the pendulum's angle reading (noise) and the
linearization of the models. However, as Fig. 11 shows,
the control value for some control sections did not have a
zero mean, but a systematic nonzero control value. In
general this is an undesired phenomenon, because an at-
tractive property of controlling a chaotic system is that
only small, i.e., low energy demanding, control actions
should be adequate. It was originally thought that the
systematic offset of the control parameter was caused by
the nonlinearity of the pendulum. As a result there was a
bad fit of the linear models, so there were significant er-
rors in the fixed points estimates. When controlling the
UPO the control algorithm would try to steer the system
towards locations in state space that were not the fixed
points. This would require a nonzero mean control pa-
rarneter to stabilize the approximate periodic orbit. Al-
though later on it was found that there was an experimen-
ta/ reason for the error in the estimated fixed points, at
that time it was thought that the nonlinearity was the
cause. It was tried to fit the linear models to data closer
to the UPO than before, using a time series obtained from
the controlled UPO. All data of this time series was lo-
cated near the UPO, in contrast to a time series of the un-
controlled pendulum where data of this quality only
occurs one or two times an hour. A relation similar to
Eq. (4) was fitted directly to data of the controlled pendu-
lum, but now an intercept was also taken into account, as

it appeared to be an essential term for a proper predic-
tion:

5Z" = A"5Z"+C"+B05p "+Bi5p" (13)

Now a new estimate of the fixed points was obtained, cal-
culated similar as before by using that the control section
at time n =0 is identical to that at time n =Ã =8,

58(t")
58(t"—TD)

with

+,n=N

58(t")
=P 58(t" TD—)

+,n=0

(14)

AN —1 CN —1

0 0 1

A"-'
0 0 1

C'
0 0 1

VII. CONCLUDING REMARKS

The calculation of what was thought to be a better
description of the fixed points, showed that all fixed
points were shifted nearly 2 . This is a result of the ini-
tialization of the angle at 0—=0, at the start of an experi-
ment when the pendulum is at rest. The pendulum de-
vice has only a small base and stands on a soft, shock ab-
sorbing layer, so it is possible that the metal base is not
always in the same horizontal position. After the pendu-
lum device was brought to a fixed position, the control
parameter obtained a zero mean again during control. So
the assumption that the linear models had a large error
because of severe nonlinearity was not correct.

However, although for the pendulum the problem of
the shifted UPO was very easy to solve by fixing the posi-
tion of the apparatus, the approach described above
could also be used for the control of chaotic systems that
are not completely stationary. If the position of the UPO
in state space changes slowly compared to the time scale
of the controlled orbit (drift), this will be refiected in the
controlled behavior. From this, linear models can be
fitted and a shift in position can be calculated so that the
control algorithm can still stabilize the same UPO, but
now on its changed position, so that still only smail con-
trol actions are needed. On doing this, one should keep
in mind that the data obtained from a controlled UPO is
not spread uniformly around the UPO in state space, but
only in a narrow region near the UPO. See, for example,
Fig. 11(b), where no points are located in the controlled
system for negative values of 5p. To avoid the dangers of
extrapolation, one could add some noise to the control
parameter such that the UPO is still stabilized, but the
trajectory moves in a wider region around it, so that the
linear models will be valid in a wider region.

FIG. 11. Applied control signal 6p in percentage of ampli-
tude of sinusoid torque, for stabilizing UPO (b). (a) when the
UPO becomes stabilized after 250 sec the control parameter has
zero mean for one section, but another section (b) shows a sys-
tematic offset.

Periodic orbits of the chaotic pendulum can be stabi-
lized by using a semicontinuous control (SCC) method.
In contrast to control based on one section, such as the
original OGY method, it does not fail for the pendulum
with its large unstable eigenvalue (around ten). The sys-
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tern state can be represented by delay coordinates with
the advantage that only one system variable has to be
measured. Although the use of delay coordinates causes
that a previous control parameter 5p" ' must be taken
into account, this turns out to be no problem for actually
controlling the pendulum.

The UPOs of the pendulum could be estimated by
fitting local linear inodels (Jacobians) with the advantage
that (i) information from unstable directions is used and
(ii) less data is needed compared to fitting a linear predic-
tor one complete cycle ahead. It is important that this
position of an UPO is estimated accurately because a de-
viation from the true UPO can result in systematic
nonzero mean control actions. In case of an application,
this is undesired in general, because the smaller the con-
trol actions, the easier they are to make.

Measuring the effect of the control parameter, viz. , es-
timating Bo and B"„is more difBcult than fitting the Jaco-
bians. Taking a simple time series with the control pa-
rameter being switched on and off when two control sec-
tions are crossed, may lead to estimates of Bo and B &, for
n =1, . . . , 2V, good enough to stabilize the UPO. Howev-
er, this frequent applying of a control action to measure
its effect, may be the reason that the system does not
come close to some UPO's fixed points anymore. In that
case, Bo and B", cannot be fitted to trajectories close to
the UPO. In that case one could try to perturb the sys-
tem more randomly, hoping that all positions of the un-
perturbed attractor are still visited. We used a different
approach that successfully gave the effect of the control
parameter: perturbing the system only when it comes

close to a fixed point.
Once a periodic orbit has been stabilized, the measured

time series contains useful information of the system's
behavior near the UPO. This is in contrast to the uncon-
trolled system that visits the region around an UPO at a
much lower frequency. This information can be used to
recalculate the position of all fixed points, which can be
advantageous when a system changes slowly in time
(drift) or when the fixed points were calculated from a
short time series with a high noise level. In both situa-
tions, the control will become more stable, and systematic
nonzero mean control actions will reduce towards zero
mean.

In a future work, we will try to extend a SCC method
to higher dimensional systems. The final aim of the work
is to experimentally control the chaotic hydrodynamics
of the gas-solids fiuidized bed reactor [11] to enhance
chemical conversion and selectivity.
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