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Response of plasma electrons to a spatially embedded electric field impulse
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An efBcient method for solving the one-dimensional inhomogeneous Boltzmann equation has
been developed. This method is used to investigate in a helium plasma the response of the electron
velocity distribution function (EVDF) and of relevant macroscopic quantities to the impact of a
spatially embedded disturbance in the electric Seld. Both elastic and conservative inelast&c collisions
of electrons with gas atoms are taken into account. The EVDF and macroscopic quantities show
unexpectedly large spatial relaxation lengths in electron acceleration direction and large deviations
from those obtained in the local 6eld approximation.

PACS number(s): 51.50.+v, 52.25.Dg, 52.80.—s
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The spatially resolved theoretical treatment of the elec-
tron kinetics in weakly ionized, nonequilibrium plasmas
is of fundamental interest for the understanding of var-
ious phenomena occurring in inhomogeneous plasma re-
gions as well as for the modeling of real plasma devices.
Inhomogeneous plasma regions occur, e.g. , (i) in front
of discharge electrodes, (ii) in the interface between the
plasma and its enclosing wall, and (iii) in plasmas due
to the presence of grids, constrictions, or probes leading
to spatial disturbances or to standing and moving stria-
tions. Concerning the kinetics in electrode regions, which
are characterized by large electric Gelds with remarkable
change in coordinate space, many studies (e.g. , [1,2]) have
already been performed in the past. However, with re-
spect to the other problems (ii) and (iii) until now only
some efforts [3,4] and [5—7], with more or less success,
have been made to discover and to understand the elec-
tron kinetics and the global plasma behavior in spatially
structured plasmas. This study concerns the electron ki-
netics relevant to the problems (iii). In the following an
efBcient method for solving the one-dimensional Boltz-
mann equation is brieQy represented. This method is
applicable to a variety of electric field courses. As a Grst
example it is used to study the response of the electrons
to Geld impulses embedded between homogeneous states
of the electric Geld.

KINETIC EQUATION
AND MACROSCOPIC BALANCES

The starting point is the spatially inhomogeneous sta-
tionary Boltzmann equation

v. V f — E.V„--f =C'(—f)+) C& (f) (1)
A:

for the velocity distribution f (v, r) of the electrons
(charge —eo, mass m), which includes the action of a
space dependent electric field E = E(z)e, and the col-
lision integrals of elastic (C' ) and various conservative
inelastic (Ct, ) collision processes. The electron veloc-
ity distribution function (EVDF) is approxiinated by the
first two terms of its expansion in Legendre polynomials

where fo and fi denote the isotropic and anisotropic part
of the EVDF. If introducing (2) into (1) and substituting
the electron velocity v by the kinetic energy U =

2 v,
the following partial differential equation system for the
functions f~ (U, z) = 2vr(2/m) s~2 fi (v(U), z), j = 0, 1 is
obtained:

|9 0 0—(Ufi) —«E(z) (Ufi) +

+).+~(U)fo = ).+~(U+UP)f. (U+ UP z)

8 0
fo —eoE—(z) fo+ H(U)f, = 0.

|9z t9U

—j,(z) = 0
dz ' (4)

and the energy balance

with the current density

The coefficients C(U) = 6(m/M)U N—Q"(U), 5'i, (U) =
3UNQP(U), and H(U) = NQ" (U) + P& NQ&" (U) are
determined by the atomic data of the collision processes
and by the density N and mass M of the gas atoms. Q"
is the transport cross section of elastic collisions and QP
the total cross section of the kth inelastic collision process
with the energy loss U& assuming isotropic scattering in
the latter.

In order to understand the macroscopic electron be-
havior as well as to check the accuracy of the numerical
solutions of the kinetic equatioii system (3), the consis-
tent macroscopic balances are of particular importance.
Appropriate averaging of the first equation of (3) over
the energy space yields the particle balance
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j, = —Q2/m Ufi (U, z)dU,
3 0

the energy current density

1 OO

j„(z) = —Q2/m U fi(U, z)dU,
3 0

the energy gain &om the electric field

(U')( ) = —j. oE( )

the energy loss by elastic collisions

(U')(z) = 2—Q2/m U NQ"(U) fp(U, z)dU,
0

and the energy loss by inelastic collisions

0

System (3) can be simplified by substituting the to-
tal energy s' = U + W(z) for the kinetic energy U,
where the potential energy is introduced according to
W(z) = —

fp E(z)dz( ep—) .When using the deffni-

tions fz (e', z) = f~ (U(s, z), z), j = 0, 1, where U(s, z) =
e' —W(z), and when eliminating the anisotropic distri-
bution fi the parabolic partial differential equation in
standard form

8 t' [s —W(z)] 8 -) 8—fp ~
+ —(C[s —W(z)] fp) + ) Eg [s —W(z)] fp ——) Ey [s —W(z) + Ui ]fp(s + U&, z) (7)

Bz (H[s —W(z)] Bz ) Bs

for fp is finally obtained. The additional difference terms
fp(s+ U&, z) on the right-hand side describe the inscat-
tering of electrons at the energy e which have undergone
inelastic collisions at the higher energy e + U& . The
anisotropic distribution is determined by the solution fp
of (7) according to the relation

1 t9

ik
E'

U

A—:--

A: fp(~, z = 0) = f"(U(r, z = 0)).
C: fp(F. =U +W(z), z) =0

NUMERICAL SOLUTION METHOD

The transformation &om kinetic to total energy
changes the solution region. Figure 1 illustrates its non-

I

rectangular shape limited by the vertical line A and the
curves B and C which depend on the course of the elec-
tric Geld. If choosing negative values for the electric
ffeld E(z) in the entire space range, the curves B and.
C monotonously decrease with z and the electrons are
accelerated towards higher z values. According to the
parabolic nature of (7), the evolution direction of its so-
lution is the total energy s. Equation (7) can be solved
as an initial boundary value problem. If the field distur-
bance region is suKciently far &om the position z = 0,
the boundary value at z = 0 is determined by the solu-
tion of the homogeneous Boltzmann equation. On curve
B the spatial derivative of fp should be zero. This is
equivalent to the condition that the anisotropic distribu-
tion vanishes at zero kinetic energy. On curve C, i.e. ,
at a sufficiently high kinetic energy U, fp is assumed
to be negligible. To solve the parabolic problem a dis-
cretization of (7) has been performed on an equidistant
grid in z and a nonequidistant grid in e using a modi-
fied Crank-Nicholson technique. The resultant discrete
equation system is resolved &om higher to lower total
energies. Choosing this direction, the inscattering terms
fp(s + U&, z) of the isotropic distribution at a certain
e position can be directly obtained &om the distribution
function already calculated at higher total energies.

RESULTS

B: , fp(~ = W(z)—,z') = 0

E
10 —————--

case B

N

0
0 10

case A

20
z (cm)

FIG. 1. Solution region in transformed variables, initial
boundary values, and the two considered electric field courses
A and B.

The solution method outlined above is used to inves-
tigate in a helium plasma the response of the electrons
to the two diferent electric Geld pulses A and B dis-
played in Fig. 1. The normalization of system (8) by the
gas pressure p at 0 C is possible and would lead to the
normalized quantities E/p and zp. However, in the fol-
lowing, all results are represented for a gas pressure of
1 torr using the natural quantities E and z. The data
of the transport cross section Q~ have been taken from
[8,9]. Four inelastic collision processes are considered us-
ing the cross sections from [10,11] for excitation and the
ionization cross sections from [12]. The latter process has
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FIG. 2. The isotropic distribution normalized on the elec-
tron density n(z = 0) as a function of the kinetic energy and
space coordinate.

been dealt with as an excitation process.
The spatial evolution of the isotropic distribution

fo(U, z) in the upstream and downstream area close to
the Geld inhomogeneity region is shown in Fig. 2 for cases
A and B starting from the homogeneous state at z = 0.
The spatial borders of the Geld disturbance are marked
by thick lines. Particularly in case B the isotropic distri-
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FIG. 4. Normalized energy balance terms X(z)/(U~)(0),
where X = dj„/dz, (U~), (U') and P„(UP).

bution is in the right-hand part of Fig. 2, still far &om its
establishment in the homogeneous state. A quite difFer-
ent response of the isotropic distribution can be observed
in both cases. Contrary to the aperiodic establishment
with increasing z in case A, a distinct periodic structure
is excited in case B. This periodic behavior is mainly
caused by the interplay of Geld acceleration and backscat-
tering in inelastic collisions, which is more pronounced
in case B. The period length is approximately given by
A U "/(eoE), where U " corresponds to the lowest en-

ergy losses U& of the inelastic collision processes and E
is the undisturbed electric field strength.

Figure 3 compares the isotropic distribution deter-
mined &om the inhomogeneous Boltzmann equation with
that calculated by the local Geld approximation. The lat-
ter is obtained by solving the homogeneous Boltzmann
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FIG. 3. The solution of the inhomogeneous Boltzmann
equation in comparison with the local field approximation as a
function of the space coordinate for di8'erent kinetic energies.
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FIG. 5. Normalized macroscopic quantities X(z)/X (0),
where X = n, , (U), and j
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equation for those electric field values E(z) which are as-
sumed in the course of the Beld through the Beld distur-
bance region and by normalizing the distribution function
on the constant current density according to (4). Large
deviations of the isotropic distribution in local Beld ap-
proximation kom the strict solution become obvious in-
side the Geld inhomogeneity region and in the further
establishment region at higher z values. Notice that a
slight spatial dependence of the strict solution occurs
even in the upstream direction at lower energies. In both
cases the acceleration of electron groups can be observed. .
Whereas in case 8 further electron groups are generated
by repeated backscattering and acceleration, in case A
the more pronounced impact of elastic collisions rapidly
suppresses the generation of further distinct groups.

Figure 4 represents the various terms of the energy bal-
ance (5) for both cases. Because of the constant current
density (4) the course of the energy gain directly reflects
that of the electric Geld. In case A the energy loss outside
the Beld inhomogeneity is mainly caused by elastic col-
lisions whereas in case B the loss by inelastic collisions
dominates in these regions. Mainly this change of the
dominant loss channel leads to a quite difFerent energetic
relaxation behavior. While in case A the homogeneous
state is nearly reached at 20 cm, the distinct periodic
structure in case B is still present at this position and

the final establishment requires about 50 cm. The large
contribution of the derivative term to the energy balance
(5) underlines once more the strong violation of the local
Beld approximation under these conditions.

Figure 5 shows the space dependence of the density
n(z) = jo U ~ fo(U, z)dU, the mean energy density
(U)(z) = Jo U ~ fo(U, z)dU, and the energy current
density (6) of electrons. A relaxation behavior similar to
that found for the isotropic distribution and for the vari-
ous contributions to the energy balance can be observed
&om the spatial course of these macroscopic quantities.

CONCLU SION

A powerful method for solving the inhomogeneous
Boltzmann equation has been developed. This method is
used to study the response of electron kinetic quantities
in a helium plasma to spatially embedded Beld impulses.
Long living periodic structures are excited in the case of
dominant energy loss by inelastic collisions in the down-
stream region. Unexpectedly large deviations &om the
local Beld approximation have been found in the spatial
relaxation process.
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