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The fluctuations about the stable point in a delayed dynamical system are modeled as a delayed
random walk: i.e., a random walk in which the transition probability depends on the position of the
walker at a time 7 in the past and transitions in the direction of the stable point are more probable.
It is shown that, depending on the magnitude of the delay, the root mean square displacement

(X2(t)) versus time interval approaches a limiting value in either an oscillatory or nonoscillatory

fashion. This limiting value of 1/(X?2(t)) is a linear function of 7.

PACS number(s): 87.10.+e

Complex fluctuations are ubiquitous in nature. Dis-
entangling the relative role played by stochastic and de-
terministic processes in shaping the observed fluctuations
has been problematic particularly when time delays exist.
Recently emphasized examples include blood cell produc-
tion [1], optical bistability [2], electrical circuits [3], neu-
ral reflexes [4], and the control of chaos with delayed feed-
back [5]. A fundamental problem is that the concepts and
tools of statistical physics, e.g., random walk, Langevin’s,
and Fokker-Planck analysis, have not yet been adapted
for noisy dynamical systems possessing time delays. Con-
sequently, current investigations have been confined to
numerical simulations [4]. Here we introduce the con-
cept of a delayed random walk as a possible direction for
theoretically studying dynamical systems with both fluc-
tuations and delay. A delayed random walk is defined
as a random walk in which the transition probability de-
pends on the position of the walker at some time 7 in the
past.

First, we formulate a random walk approximation for
a stable dynamical system subjected to noisy pertur-
bations. We assume that the attractiveness of a sta-
ble point in a noisy dynamical system can be approx-
imated by a random walk in which movements in the
direction of the stable point are more probable. The po-
sition of the walker at time ¢ is X (¢). Identify the origin
of a one-dimensional random walk with the stable point
[X(0) = 0] and let the random walker take a step of unit
length in unit time. The probability P(¢) for the walker
to take a step at time ¢ to the right (positive direction)
is given by

P [X(t) > 0]
P(t)={ 05 [X(t)=0] (1)
1-p [X(¢) <0],

where 0 < p < 1. The origin is attractive when p <
0.5. By symmetry with respect to the origin the average
position is (X (t)) = 0.

As a consequence of p < 0.5, the root mean square
displacement 4/(X?2(t)) as a function of time interval ap-
proaches a limiting value (Fig. 1). This limiting behav-
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ior can be understood analytically. By using symmetry
arguments it is possible to show that the probability dis-
tribution of (1) when 7 = 0 can be obtained by solving
the following set of equations:

Po(t +1) = 2(1 - p) i (1),
Pyt +1) = 3 Polt) + (1~ p) Py(2), )
Px(t+1) =pPx_1(t) + (1 — p)Px+1(t) (2 <X),

where Px (t) is the probability to be at position X at time
t. We can solve this set of equations for the stationary
probability distributions P5 by using the trial function
P3 = ZX [6]. The solutions are given as [7]

POB = 200[), (3)

X
Py = 1<X 4
%= co(725) a=<x), (4)
where
1-2
0= g (5)
4p(1 - p)
With this solution, we can calculate 02(0) = o% (7 =
0) = lim; oo (X 2(2)) as [7]
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FIG. 1. Dynamics of 1/(X?2(t)) for various 7 with fixed p
(= 0.25).
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) 1 the random walk by assuming that P(t) depends on the
o*(0) = 5(1—_21')‘)5 (6) position of the walker at a time 7 in the past; hence
X (t) in (1) is replaced by X (¢ — 7). The probability
distribution when 7 > 0 can be obtained by solving the
Second, we introduce the effect of a time delay into set of equations

1
Px(t + 1) = pPX_1|X>0(t|t — T) + §PX—1|X=0(tlt — 7') + (1 — P)PX—1|X<0(t|t - 7') +pPX+1|X<0(tlt — T)

+%PX+1|X:0(tIt —7)+ (1 —p)Pxiyx>o(tlt—7) (0<X <7+2), (7)
Px(t+1) =pPx_1(t) + (1 —p)Px+1(t) (7 +2 < X), (8)

where, for example, the notation Px 1 x<o(t[t — 7) signifies the probability that the walker is positioned at X + 1
and X < 0 at times t and t — 7.

For arbitrary 7 this equation can be solved by a tedious consideration of the different cases. For example, when
7 =1 and 7 = 2 we obtain, respectively,

1 (7 — 24p + 32p® — 16p3)

o%(1) =
) 2(1 — 2p)? (3-14p) ’ ®)
o2(2) = 1 (25 — 94p + 96p? + 64p® — 160p* + 64p°) 10
2(1 — 2p)? (5 + 2p — 24p? + 16p3) ) (10)

. (a)
The values of o2 for 7 > 2 were obtained from numer- 2

ical simulations. Figure 2 shows for a given value of p,
o is approximately a linear function of 7. Moreover, the 40
constant slope m of the plot of o vs 7 is also approxi-
mately a linear function of p (data not shown). These ., 30
results together with (6) suggest that (mm 2)
1 20
o(t) ~(0.59 - 1.18p)7 + ——. 11
(1)~ ( oY )
Thus it is possible to estimate either 7 or p by measuring
o*(7). 0 2 4 6 8 10 12 14 16
The approach of /(XZ2(t)) to its limiting value o as
a function of 7 is shown in Fig. 1. For short 7 there s (sec)

is a nonoscillatory approach to o, whereas for longer 7

(b)
damped oscillations occur. The period T of these oscilla-

tions is approximately twice the delay. Oscillations with 40
27 < T < 47 can be observed in first-order differential
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5 FIG. 3. Comparison of two-point correlation function C(s)
for (a) human postural sway during quiet standing and (b) a
0 10 20 30 40 50 delayed random walk with p = 0.35 and 7 = 1. Experimental

data were supplied by and are published with permission of
C. Chow and J. Collins. In order to compare (b) with (a) we

FIG. 2. ox as a function of 7 for various p. (The error bars  estimated a unit step length as 1.2 mm and a unit time as
are to be the root mean square error of data points.) 320 msec.
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equations with delayed negative feedback |[8].

The only published experimental paradigm in which
the noisy fluctuations about a stable point in a delayed
dynamical system were measured is postural sway in qui-
etly standing adults [9]. In these experiments the in-
vestigators measured the center of pressure (COP) us-
ing a force platform. Stabiliogram-diffusion plots were
obtained by plotting the two-point correlation of COP,
C(s) = ([X(¢) — X(t — 3)]?), as a function of time inter-
val s. A variety of different trends in C(s) were observed
[Figs. 3(a) and 4(a)]. For subject A there is a smooth
approach [Fig. 3(a)] of C(s) to its limiting value, for sub-
ject B an oscillatory approach [Fig. 4(a)]. In both cases
there is excellent agreement with the random walk model
[Figs. 3(b) and 4(b)]. The delay can be estimated from
the data as 7 ~ 300 — 500 msec for subject A and ~ 400-
700 msec for subject B. These delays are consistent with
measured values of the time for a corrective movement
in response to a sway [10].

The identification of three scaling regions in
stabiliogram-diffusion plots for postural sway in many,
but not all, human subjects [Fig. 3(a)] lies at the ba-
sis of previous suggestions that sway can be modeled as
two distinct bounded correlated random walks [9]. Our
results suggest that the same phenomena can be quali-
tatively accounted for by a single delayed random walk.
It is possible that better quantitative agreement between
prediction and observation could be obtained by incor-
porating second-order effects [11] into the random walk,
e.g., allowing P(t) to depend on both position and direc-
tion of movement at some time in the past (i.e., a delayed
random walk with persistence).

The applications of statistical mechanical techniques
have traditionally been limited to the description of phe-
nomena in which time delays are thought to be of lit-
tle significance. Here we have shown that it is possible
to understand fluctuations in a stable delayed dynam-
ical system by modeling it as a delayed random walk.
Although this model is simple, it nonetheless provides
an explanation for a wide range of qualitatively different
stabiliogram-diffusion plots, all of which are observed ex-
perimentally. Moreover, a method for measuring either p
or 7 from experimental observations is obtained. These
observations provide a strong motivation for the devel-
opment of appropriate delayed random walk models for
the characterization of noisy delayed dynamical systems.
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FIG. 4. Comparison of two-point correlation function C(s)
for (a) human postural sway during quiet standing and (b) a
delayed random walk with p = 0.40 and 7 = 10. Experimental
data were supplied by and are published with permission of
C. Chow and J. Collins. Estimations of unit step length and
unit step time are 1.4 mm and 40 msec.
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