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Kinetic and thermodynamic definitions of the critical nucleus iu nucleation theory

Kazumi Nishioka
Department of Optical Science and Technology, Uniuersity of Tokushima, 2-1 Minamjiosanjima, Tokushima 770, Japan

{Received 1 September 1994; revised manuscript received 23 January 1995)

The relation between the sizes of the kinetically and the thermodynamically defined critical nucleus in
nucleation theory is studied by taking a single-component system as an example, where the former is the
size of a cluster for which the probabilities of decay and growth balance and the latter is the one for
which the reversible work of cluster formation takes the maximum value. Denoting the former as n&
and the latter as n *, n& is found to be smaller than n * when n is treated as a continuous variable. The
formula to relate n~ to n is derived, which shows that the difference between n* and nz is about 1% of
n * in a typical case of water nucleation from the vapor.

PACS number(s}: 64.60.gb, 82.60.Nh

In the thermodynamic treatment of nucleation, clusters
are characterized by the number of molecules In;"] con-
tained in the corresponding hypothetical clusters [1,2].
The critical nucleus is usually defined as a cluster for
which the reversible work W""([n;"] ) of cluster forma-
tion has a saddle point. For simplicity of the following
consideration, we take a single-component system as an
example and leave out the superscript h from n". Then
W""(n ) takes the maximum value for a critical nucleus,
which we call a thermodynamically defined critical nu-
cleus and denote as n *.

On the other hand, in visualizing the nucleation pro-
cess, it is useful to define a critical nucleus as the size for
which the probabilities of decay and growth balance. Let
us call it a kinetically defined critical nucleus and denote
it as nz. It appears that n ' and nz coincide, because a
cluster with the size n is, by definition, in equilibrium
with the surrounding mother phase; hence it is tempting
to consider the probabilities of its decay and growth bal-
ance. The present paper provides a careful study on this
point and it is shown that nE and n do not coincide.

Consider a single-component system in metastable
equilibrium, consisting of a parent phase and clusters of a
nucleating phase including those with the size nz and
larger. Note that the state of metastable equilibrium is
just a hypothetical one, because the number densities of
larger and larger clusters will increase in reality, and the
state of equilibrium cannot be achieved until coexistence
of the two macroscopic phases is reached. Hence, to
define the state of metastable equilibrium, we introduce a
hypothetical barrier which imposes on W"'(n ) the value
infinity for n ~n~ where n~ is chosen to be somewhat
larger than nz. It is supposed that n ~ is larger than n *

also.
Take a small portion of the system with volume V and

consider its behavior. The volume V is chosen to be so
small that no clusters exist in it most of the time, yet
large enough to allow thermodynamic consideration. If
we take numerous snapshot pictures of it, the probability
P(n ) to find a cluster with the size n in it relative to P(1)
[ -=1] with no clusters is given by

co(n)=P(n)/V for n+1 .

Hence, W""(n ) and co(n ) are related by

co(n)=exp[ —W"'"(n)/kT]/V, n%1 .

(4)

P(n ) -=P(n )/P(1) =exp[ —W""(n )/kT],
where k and T denote Boltzmann's constant and temper-
ature, respectively. For simplicity in presenting the
essential point of the present paper, let us assume that n
may be treated as a continuous variable. Since W""(n )
takes its maximum at n *, it follows that

P(n'+5n ) =P(n' 5n )— (2)

to the order of (5n ), i.e., neglecting O[(5n ) ]. It is im-
plicitly assumed above that the interaction among clus-
ters is negligible so that a system with volume V may be
treated as statistically independent from its surroundings.
In fact, the concept of the critical nucleus is meaningful
only when this assumption holds. Note also that P(n)
represents the probability of fluctuation in equilibrium
and the concept of the thermodynamic definition of the
critical nucleus is related to the state with the minimum
probability of Quctuation, i.e., for 5n )0,

P(n 5n ) &P—(n) for n & n',
P(n+5n)&P(n) for n &n' .

It may be worthwhile at this point to make a remark
on the meaning of 5n. Although n is treated as a con-
tinuous variable, physically it can change only by an in-
teger. In this sense 5n is an integer; hence (5n) is not
smaller than the absolute value of 6n. This difBculty can
be overcome by introducing a new variable which is
defined as n divided, for example, by n*. Then the abso-
lute value of 5n/n' is smaller than unity. However,
since explicit use of the new variable will result in
superQuous complexity, we keep using n as the variable
with this understanding in mind.

Recalling that V is chosen to be so small that P(n ) « 1

for n&1, the metastable equilibrium number density
co(n) of clusters with size n in the system is related to
P(n ) by
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Employing the "thermodynamic" reversible work
W„'i',"(n } for cluster formation, Eq. (5) is rewritten as
[3-5] K (n*)/K (n')=1+25n/(3n*) . (15)

to the order of 5n E. mploying Eq. (14) in Eq. (13), we get

co(n)=@„pc(1)exp[—W,'i,"(n)/kT), n&1, (6) Hellce,

Wg" (n ) =n [p~(T,p ) p]+—y 2+n'"(p~ p—), (7)

where c(1) denotes the monomer density, CLP the
Lothe-Pound factor [3—5], and W,'i',"(n ) is given by [1]

K+(n ) &K (n*),
which means that

nz &n* .

(16)

(17)
in which superscripts a and P denote a parent phase and
a nucleating phase, respectively, n the number of mole-
cules contained in the bulk P phase within the volume en-
closed by the surface of tension, p~ and p~(T, Ii ) the
chemical potential of a molecule in a cluster and that in
the bulk P phase under (T,p ), respectively, y the inter-
facial tension, A the area of the surface of tension, and
n'" the interfacial excess molecules. Equation (7) may be
approximated as [2]

W,'i',"(n ) =n[p~(T—,p ) p]+y*A—, (8)

K+(n) (K (n ) for n (n~, K+(nx )=K (nx.),
K+(n)&K (n) for n &nx,

(9)

where K+(n ) denotes the attachment rate of monomers
to a cluster with size n and K (n) the detachment rate
from a cluster. It is assumed that growth or decay of a
cluster results from attachment or detachment of a
monomer and that collision among clusters or fission of a
cluster may be neglected.

Let us turn to consideration of the relation between n *

and nz. In the metastable equilibrium state introduced
above, the following relation holds for any n due to the
principle of detailed balance:

where y* denotes the interfacial tension for a critical nu-
cleus. Since the n dependence of @Lp is negligible [3—5].
Wtb" (n) takes its maximum value at the size n' of the
thermodynamically defined critical nucleus.

The size nz of a kinetically defined critical nucleus
satisfies

Note that the inequality (17) follows from the fact that,
to the order of 5n, co(n'}=co(n' 5n) —but
K+(n * 5n—)WK+(n ). Though this effect may be small
as seen in Eq. (14), it is sufficient to result in an apprecia-
ble difference between n * and nz because the n depen-
dence of co(n ) is also weak around n'. It is essential to
note that Eq. (10) is the clue to find the relation between
the attachment and detachment rates, which is needed to
find nz. We should not rely on the false reasoning that
the attachment and detachment rates balance at n * due
to the equilibrium condition. The equilibrium condition
at n implies that appearances of clusters with the sizes
n'+5n and n* 5n are, to t—he order of (5n), equally
probable, but this does not imply that the transition prob-
abilities from n to n*+5n and n* —5n are equal, be-
cause many other interconnected quantities are involved
in determining the probability of appearance, as implied
in Eq. (10) together with Eq. (4).

To see the numerical significance of the difference be-
tween n* and nz, let us derive the formula which relates
nz to n'. Consider the identity

K+(n )/K (n )

=[K+(n 5n )IK—(n )][K+(n )/K+(n 5n )] (18)—

and rewrite the first factor in the right-hand side (RHS)
by using Eq. (10) to get

K+(n )/K (n )

=[co(n)Ico(n 5n )][K—+(n )IK+(n 5n )] .—(19)

co(n )K+(n ) =co(n+5n )K (n+5n ), It follows from Eq. (6) that
(10)

where 6n physically represents a monomer. It follows
from Eq. (10) that

co(n' 5n )K+—(n 5n ) =c—o(n')K (n *) .

Since co(n ) takes its minimum value at n ', it follows that

co(n *)=co(n 5n )—

co(n ) Ico(n 5n )—
=exp[ —[ Wg" (n ) —W', i',"(n 5n )]Ik—T], (20)

where the n dependence of 4Lp is neglected. Let us sup-
pose that n is close to n* and expand Wg" in Eq. (20)
into the Taylor series about n *. It follows that

exp[ —[ Wti',"(n ) —W,'i',"(n 5n )]/kTj—
to the order of 5n, i.e., neglecting O[(5n ) ]. Hence, we
get =1+[8 W7,"IBn ](n* n)5n IkT+—o(5n ), (21)

K+(n * 5n ) =K (n *—
) (13)

(14)

to the order of 5n Since K+.(n ) is considered to be pro-
portional to the interfacial area A (n) of a cluster, it fol-
lows that
K+ ( n 5n ) /K —( n ) = 2 ( n 5n ) /2 ( n ) =—1 —25n /( 3n )

where the differential coefFicient is to be evaluated at n *.
Employing Eq. (8), we get

[BW""/Bn )= —y (32vru /18)'~ (n ) (22)

where U denotes the molecular volume for the bulk of a
nucleating phase. Employing Eqs. (14), (20), and (21) in
Eq. (19), we get
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K+(n )/K (n )

=1+ I [8 W„'„'"/Bn ](n' —n)/kT+2/(3n )]5n

+o(5n) .

The size nz of the kinematically defined critical nucleus
is given by solving

where c, denotes the steady state concentration of clus-
ters attd Eq. (10) is employed. It follows from Eq. (27)
that

J, /[co(n )K+(n ) ]

=c, (n )/co(n ) c—,(n+1)/co(n+1) . (28)

[8 Wth" /Bn ](n n)/k—T+2/(3n ) =0,
and we get

nz n-——~ —2kT(n )'~ /[3@*(32~U /81)' ],

(24) Adding each side of Eq. (28) from n =1 to a size n

which is much larger than n* and employing the reason-
able approximations that c, ( 1 )/co( 1 ) —= 1 and

c, (n )/co(n ) =—0, we get

where Eq. (22) has been employed.
Substituting T=273 K, y* =72. 8 erg/cm, and

U = 3 X 10 cm in Eq. (25) as an example for water
droplet nucleation from the vapor, we get

nx =n —(n'—)' /3 . (26)

—c, (n + 1)/co(n + 1)], (27)

Taking n ' to be 125, we get nz = 123. Thus the
difference between n aud n~ is about l%%uo of n' for a
typical case of water nucleation from the vapor.

The consideration given so far presupposes a system to
be in metastable equilibrium. However, since we assume
that the interaction among clusters is negligible, K+(n)
aud K (n ) are determined only by the temperature, the
size of a cluster, and the state of the parent phase and
they do not depend on the actual concentration of clus-
ters in the system. Hence the results obtained above may
also be applied to nonequilibrium nucleation processes.

The kinetic definition represents more lucidly the role
of the critical nucleus in nucleation processes. However,
when we evaluate the steady state nucleation rate J„it is
the knowledge of n* and the values of W,'h" (n) and
K+(n ) for the sizes at and around n* that are required.
J, is given by

J, =c,(n )K+(n ) c,(n+—1)K (n+ 1)

=co(n )K+(n )[c,(n )/co(n )

J, = t +[co(n )K+(n )] (29)
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where g represents the summation from n = 1 to n —1,
in which the terms at and around n' dominate. When
nucleation occurs during a transient process, it is nz that
is relevant and the dN'erence between n* and nl may be-
come important. This problem is left for future investiga-
tion.

In conclusion, it is found that the size n& of a cluster
for which the probabilities of decay and growth balance
is not equal to the size n* for which the reversible work
of cluster formation takes the maximum value. nz is in
general smaller than n * when n is treated as a continuous
variable. The formula to relate n,z to n* is derived,
which shows that the diIterence between n* and nz is
about 1% of n * in a typical case of water nucleation from
the vapor.
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