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Intermittency, the second-order structure function, and the turbulent energy-dissipation rate
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In the context of an interpolation formula for a second-order structure function, Grossmann [Phys.
Rev. E 51, 6275 (1995)]considered various implications of the asymptotic behavior of the energy dissipa-
tion rate for inertial range intermittency. We reconsider the issue and show that the tendency of the
nondimensional dissipation rate to asymptotically approach a constant is consistent with finite intermit-
tency corrections. By extending Lohse's ideas [Phys. Rev. Lett. 73, 3223 (1994)] put forth in a noninter-
mittent setting, we compute for intermittent turbulence the Reynolds number dependence of the nondi-
mensional dissipation rate and show that the result compares favorably with experimental data.
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S,( )=(L& ))'"C,( /L) '. (2)

It must be emphasized that, while some legitimate con-
cerns do exist about the applicability of Eq. (2) over siz-
able scaling range at moderate Reynolds numbers, Eq. (2)

One of the interesting questions currently under inves-
tigation is the existence of inertial range intermittency in
high Reynolds number turbulence. This issue, once
thought to have been settled —at least experimentally
(see Refs. [1—3])—has resurfaced in various ways recent-
ly (see, for example, Ref. [4]); the latest work in that
direction is due to Grossmann [5]. In Ref. [5],
Grossmann related a parametrized form of the second-
order structure function to the asymptotic independence
of the energy dissipation rate on fluid viscosity and made
several interesting inferences (see below), although, in the
end, he left open the issue of intermittency itself. In this
paper we reexamine the issue much in the spirit of
Grossmann's work and conclude that the asymptotic ten-
dency to a constant of the nondimensional energy dissipa-
tion rate is consistent with finite intermittency correc-
tions for the scaling exponent of the second-order struc-
ture function.

Let u be the x component of the velocity Geld, v the ki-
nematic viscosity of the fiuid, (e) the time-averaged en-
ergy dissipation rate, g the Kolmogorov scale defined by
(v /(E) )', gz the second-order scaling exponent in the
regime r &)g, and r, the scale at which the crossover
occurs between the viscous and inertial ranges. For the
second-order structure function, a useful interpolation
formula [6—8,3], valid for both dissipative and inertial
ranges, is

&,(r) —= & [u (x + r) u(x)]')—
&.)q'

15v [1+( / )2]~ 4)~

As shown in Ref. [3], this expression fits the data well.
For r ))r, we shall use the usual ansatz [9] for the scal-
ing of S,(r),

forms the basis of much of what we know about three-
dimensional turbulence at high Reynolds numbers.

Generalizing ideas originally proposed by Lohse [10] in
a nonintermittent setting, Grossmann analyzed the rela-
tion between Eq. (1) and the expression for the energy
dissipation in the form

(e)L/u' =C(Ri ), (3)

where I. and u' are, respectively, the length and the ve-
locity scales characterizing the large scale motion and
C(R&) is, in general, a function of the microscale Rey-
nolds number Ri —= u'A, /v, based on the Taylor micros-
cale A, . For later convenience, we summarize
Grossmann's observations in the following set of mutual-
ly exclusive statements.

(Gl) If gz= —', and r, /g is independent of Ri, then

C(R&~ ac ) is independent of Ri.
(G2) If g2A —', and r, /ri is independent of Ri„, the

C(Ri ~ ao ) depends on Ri.
(G3) If $2%—', and r, /ri is Ri dependent (in an ap-

propriate way), then C (R i ~ ao ) is independent of R &.

Now, provided r, / li7s independent of R&, (Gl) states
that $2= —', is a suflicient condition for C(Ri —moo ) to be
independent of R i . On the other hand, according to (G2),
if C(Ri ~ ao ) does not depend on R&, then either $2= —',
or r, /ri depends on R&, or both. Based on these observa-
tions, Grossmann noted that the experimentally found
approach to a constant level of C(Ri ) is an argument in
favor of (2 being equal to —', . However, it is clear from
(G3) that the possibility exists that /zan —', , but that r, /rl
depends on R&. This alternative was noted by
Grossmann, who, however, did not favor it. Using the
same kind of analysis as that used in [5], we will show
that it is this last possibility that is favored by the
preponderance of experimental evidence.

We start by noting that when r =L, S2 =—( [u (x +r)
—u (x)]~)=2u'2, given that the velocity decorrelates at a
distance given by the integral scale, at least for isotropic
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This relation allows us to draw the first conclusion as fol-
lows.

(a) For large enough R & (such that the limit r ~L &&r,
can be considered) C(Rz) is independent of R) if and
only if C2 is R& independent.

There is empirical evidence to suggest that C(R & ) be-
comes asymptotically independent of Ri (see, for exam-
ple, Ref. [11]); in particular, if L is the velocity auto-
correlation length and u' is the root-mean-square velocity
fluctuation, according to Ref. [11],C (R z ~~ ) is almost
exactly unity for grid turbulence. [For sheared tur-
bulence, the constant C(Ri ~ ao ) seems to depend weak-
ly on nondimensional shear (see Ref. [12]), but that will
not be considered here. ] Therefore, according to Eq. (4),
C2 has to be a constant, independent of R &. This is con-
sistent with the direct experimental observation of the
constancy of the prefactor C2 with Ri. Reference [1]
puts the numerical value between 1.8 and 2.2 and a more
recent and extensive assessment [13] supports this con-
clusion.

%'e now use the constancy of C2 to find consequences
on r, /g and g2. For this purpose, we note that for
r »r„Eq. (1) asymptotically approaches

2 —
g

L,
g2

—2/3
r
L,

(5)

Comparing Eq. (5) with Eq. (2) we conclude (see also [5])
that

1 ~c
C2=

15

-
g

—2/32

and extract the following statement.

(b) If C2 is indeed independent of R)„, then only one of
the following two possibilities can be correct: (b') $2= —,

'
and r, /g is independent of Rz or (b") gz A —', and r, /q is

R& dependent in an appropriate way.

Note that both (b') and (b") contain separate statements
(about g2 and r, lil) that have to be met simultaneously.
To make further progress we first recall [7,3]
that the inertial-dissipative crossover scale r, is related to
the skewness of the velocity derivatives
S = —((Bu/()x ) ) / ((Bu/()x ) ) through the relation

(r, li7) =12V15(2—g~) —.1
(7)

Equation (7) can be obtained from Kolmogorov's struc-
ture equation [14]

turbulence. Therefore, from Eq. (2) with r =L and Eq.
(3) we obtain the important relation [10]

' 3/2
2C(Ri )=

C2 by expanding its left- and right-hand sides in powers of r
and matching the coefficients of r . If we use Eq. (1) to
represent the second-order structure function in Eq. (8),
the definition of S, as well as the result valid for isotropic
turbulence, namely, ((Bu/Bx) ) =(e)/(15v), we obtain
Eq. (7).

Now, most measurements indicate that the skewness of
the derivative has some dependence on the Reynolds
number (see, for example, Fig. 1 of Ref. [15]).The one ex-
ception appears in the recent measurements of Ref. [16],
but there are several unanswered questions about those
data. It appears therefore that the preponderance of data
supports an increasing trend of the skewness with respect
to Reynolds number. This dependence naturally imposes
an Rz dependence on the crossover ratio r, Ig. It follows
that (b') cannot be true, leaving (b") as the only possibili-
ty. Our conclusion, then, is that /zan —,, which implies the
validity of the inertial range intermittency picture.

It is possible to derive quantitative expressions for the
dependence of S and r, lg with R)„within the present
framework. Inserting Eq. (7) in Eq. (6) and using that
L/7)=C(R) )Ri /15 [which follows from Eq. (3) and
the definition of g], we obtain

4/3 ( 3 /2 )( ~2 2 /3 ) /( 2—
~2

15

12&'15(2—g2) 3(g2 —2/3)/(2 —g2)
Rg

(15C2)

(For gz=0. 7, the R & dependence of S is of the order 0.07,
comparable to the experimental value of about 0.12; see
Ref. [15].) This expression had already been found in
Ref. [3], following a similar derivation. Alternatively,
the same reasoning leads to the expression

(3/4)( +2/3)/(2 — )
1/(2 —

gg)

Yj

15 2 (3/2)(2/3 —g )/(2 —g )

(10)

For large enough Rz, Eq. (10) shows that r, /g exhibits a
simple scaling with R &, whose scaling exponent coincides
with the one found in Ref. [5] in the context of (G3) stat-
ed above.

This information can be used to obtain the R & depen-
dence of C(R& ) within the picture of inertial range inter-
mittency, thus extending previous work of Lohse [10]
carried out in a nonintermittent setting. Grossmann [5]
made similar calculations in the context of (Gl) and (G2)
(see Fig. 1 of Ref. [5]). Our derivation here corresponds
essentially to the case (G3), which Grossmann did not
consider. To this end, we observe that when r =L,
Sz(L) =2u' =2L (e) =2L (e) /[C(Rz)]; using Eq. (1)
and again the result L /g =C (R z )R z~ /15 ~, we arrive,
after some algebra, at an implicit equation [17]for C(R z )

( [u (x +r) u—(x)] )

= ——(e)r+6v ([u(x+r) u(—x)] ) (8)
4 a 2

5 Br
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FIG. 1. Normalized dissipation rate in grid turbulence exper-
iments as compiled in Ref. [11],where the various symbols have
been explained. The dotted line is due to Lohse [10],appropri-
ate to nonintermittent turbulence. The other two curves
representing the present work use different values of C&, with
the solid line corresponding to C& =1.8 and the dot-dashed line
to C& =2.2. These are the experimental bounds on C& according
to Ref. [1].

In the limit of R ~ ))1, C (R z } tends to the constant given
by Eq. (4). The numerical solution to Eq. (11) is plotted in
Fig. 1 for gz=0. 7. (The solution with g= —,

' is almost in-

distinguishable from that plotted. ) Because of the experi-
mental scatter in the values of C&, we have plotted the
solution to Eq. (11) corresponding to Cz = l. 8 (solid line)
and Cz=2. 2 (dashed line), which form the accepted
range of values according to Monin and Yaglom [1].
Also plotted in Fig. 1 are the experimental data (circles)
for grid turbulence (from Ref. [11]}and the expression
from Lohse's calculation (dotted line). The present ex-
pression yields a moderately better fit to the experimental
data.

In summary, within the framework given by the pa-
rametrization of the second-order structure function
given by Eq. (1},inertial range intermittency follows from
the asymptotic constancy of the energy dissipation rate
and the (weak) R& dependence of the crossover scale
r, /g. This Rz dependence of r, /g is supported by Eq.
(7), relating r, /ri and the skewness of the velocity deriva-
tive S, and by the experimental observation (as far as can
be said at present) that S depends (also weakly) on R&.
The experimental dependence of r, /g on R& can be used
to obtain an equation for the function C(R&) that agrees
reasonably well with the experimental data.

15 C

R~[C(Rq)] /
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