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Bistable kinetic model driven by correlated noises: Unified colored-noise approximation
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A Fokker-Planck equation for a general one-dimensional non-Markovian system driven by correlated
Gaussian noises is derived by means of an extended unified colored-noise approximation. The general
stationary probability distribution (SPD) is obtained. The SPD contains three important limits: the un-

correlated noise limit, the white noise limit, and the usual uncorrelated white noise limit. The following
important physical aspects have been revealed by virtue of the above-mentioned SPD. (1) In contrast to
the well known case of uncorrelated white noises where the parameter of additive noise cannot enter the
extremal equation of SPD, now the additive noise parameter does enter the extremal equation as a non-
Markovian effect even if the system is driven by uncorrelated noises. (2) When the correlation between
the noises does exist, the SPD contains information caused by both correlation and color of the noises.
The general results obtained in this Brief Report are applied to a bistable kinetic model. We find for the
steady state of the model that in the case of correlated noises, the symmetry of SPD under the reflection
of the state variable x with respect to the origin is destroyed. However in the case of non-Markovian
processes driven by uncorrelated noises, the above symmetry is preserved.

PACS number(s): 05.40.+j, 42.50.Lc

I. INTRODUCTION

Recently, Fulinski and Telejko have investigated the
bistable system driven by correlated additive and multi-
plicative white noises [1]. They have shown that the
presence of correlation between the noises changes the
dynamics of the system. The authors of Ref. [1] pointed
out correctly that the transition between unimodal and
bimodal stationary distribution is strongly influenced by
the correlation between the noises. However, the statisti-
cal properties for the systems driven by correlated addi-
tive and multiplicative noises have still not been investi-
gated because the method given in Ref. [1] cannot pro-
vide a correct foundation to study the effects of correla-
tion of the noises quantitatively [2]. Singh showed that
the correlation between the quantum noises for a homo-
geneously broadened two-mode ring laser at line center
gives a nonzero contribution of the order no

' [3];here no
denotes the mean number of photons in the laser cavity
at threshold. In our opinion the effects of the correlation
of quantum noises between the laser modes may be of in-
terest for the problem of laser physics. More recently,
Zhu investigated theoretically the statistical fluctuations
of a single-mode laser with correlations between additive
and multiplicative with noise terms. The mean, variance,
and skewness of the steady-state laser intensity are calcu-
lated by Zhu [4] through a one-dimensional laser equa-
tion [5].

In our previous works [2,6], the bistable systems driven
by correlated white noises have been studied. In this

'Mailing address.

Brief Report, we extend the unified colored-noise approx-
imation [7,8] (UCNA) [7] to such non-Markovian systems
in which the noises are correlative. The general Langevin
equation (I.E) and Fokker-Planck equation (FPE) are de-
rived under the extended UCNA in Sec. II. In Sec. III,
the general theory is applied to the bistable kinetic model
with correlated additive and multiplicative noises. In
Sec. IV, the efFects of r (the noise correlation time) and X
(the strength of correlation between the noises) on the
statistical properties of the bistable kinetic model are dis-
cussed.

II. GENERAL THEORY

with 5-correlated Gaussian white noises I'(t) and I &(t),

(I",(t) ) = (1(t)) =O,

(I (t)l (t')) =2D5(t —t'), (3)

( I (t)l (t') ) =2a5(t t')—
(1,(t)l (t')) =(r(t)r, (t )) =2gv'Da5(t —t') . (4)

It has been shown that the above two-dimensional Mar-
kovian processes (1)—(4) are stochastically equivalent to
one-dimensional non-Markovian process described by (1)
with Gaussian colored noise (the 0-U noise) e(t) [8]

We consider the following set of stochastic differential
equations:

x =h (x)+g, (x )E(t)+gz(x)l (t),
1 1i = ——e+ —I,(t)
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and (3) and (4); here I,(t) is defined by (2)—(4). Below we
will treat the problem by extending the UCNA to obtain
a one-dimensional Markovian approximation.

Applying the extended UCNA to the case of correlated
noises, we obtain from (1)—(5) the following one-
dimensional Markovian process (7):

The proof of the stochastic equivalence of (6) and (8) is
analogous to the Appendix of Ref. [6].

It must be pointed out that the results of (8) is the LE
in which the correlation between the noises has been con-
sidered. This LE is the extension of the case of uncorre-
lated noises. When A, =O, the case of uncorrelated noises,
Eqs. (8) is simplified to Eq. (20) of Ref. 7(b).

Now we can obtain the FPE corresponding to Eqs. (8).
For convenience, we rewrite (8) as

x = + [g, (x)l,(t)+g (x)I'(t)], (6)
h(x) 1

x =h (x)+g(x )I (t),
with

(10)

where

g', (x)
C(r, x ) =1—r h'(x) — h(x)

g, (x)

h(x)= h (x)
C r, x

g(x)= g (x)
C(r, x) [Dg f (x)+2k, Dag, (x)g2(x)C r, x

x = + g(x)I (t),h(x) 1

g(x) = [Dg &
(x)+2k v'Dag &(x)g2(x)+ag2(x) ]ii

(8a)

(8b)

in which I (t) is Gaussian white noise with zero mean and

In (7) and in the following equations the prime denotes
the differentiation with respect to x.

To get the FPE from (6) and (7), we start from the sto-
chastic equivalent Stratonovich stochastic differential
equation

The FPE reads

+ag2(x)]'

aP(x, t)
at

with

A (x)=h(x)+g(x)g'(x},
B(x)=g (x) .

a 82
A(x)P(x, t)+ B(x)P(x,t),

BX Bx

(12)

(13)

(14)

(15)

( I (t)l'(t') ) =2&(t —t')
Combining Eqs. (11) and (12), and (14) and (15), we get
the expressions of drift function,

h(x) 1A(x)= + [Dg, (x)g', (x)+A&Da(g, (x)gz(x)+g2(x)g', (x))+agz(x)gz(x)]C r, x [C(r,x )]2

C'(r, x }
[Dg, (x)+2k V'Dag, (x)g2(x)+agz(x)],2

[C(r,x )]
and diffusion function,

B(x)= [Dg &
(x)+2k +Dag, (x)gz(x)+agz(x) ] .

1

[C(r,x )]
Equations (8) and (13), with (16) and (17), are the main results of this paper.

The stationary probability distribution (SPD) P, (x) can be obtained from [9]

(16)

(17)

r

1 A(x)
P, (x)=N exp ~ J dx (18)

and (16) and (17) by integration,

C(r, x) h (x)C(r, x )P, x=N , ex
2

dX
[Dg f(x}+2A+Dag&(x)g2(x)+agz(x)]'i Dg &(x)+2Av'Dag, (x)gz(x)+agz(x)

and the extremal equation of P, (x ) may be written directly from

A(x)=B'(x) or h(x) —g(x)g'(x)=0 .

That is,

h(x)[C(r, x)] —C(r, x )[Dg, (x)g', (x)+A&Da(g&(x)g2(x)+g2(x)g&(x))+agz(x)g2(x)]

+C'(r, x )[Dg f(x)+2A&Dag, (x)g2(x)+agz(x)]=0 .

(19)

(20)

(21)
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1

[D (x)+agz(x)]'~

h(x)
dXexp, x . (22)

h the general results (19)lt is of interest p
~

tant special cases: (i)
to oint out t at eg

and (21) contain e
b uncorrelated noises

e following impor ta
ian rocess driven y uncthe non-Markovian p

=0 ' (2) the Markovian pk
'

process driven by
'

es v=0 and A,AO) (this case had been in-

tht h tkinterest to mention
d (21), th to

t re 1 d namics system drive
=0 in Eqs. (19) and

'
enth results of the usua ynreduce to t e re

by uncorre ate1 d Gaussian white noise,

aE=—A,
D

a+2(1 2r)k(2A 1)
1/2

a—4rA, (1—4A, )(2A, —1

~ 1/2
2a

D2

a—4rA, (2A, —1)

- 1/2
2a

D2 (26f)

the extremal equation 21) of SPD be-A.t the same time, e e
comes

3 22' —1)x +6' &Dax—4r x +4m(r —1)x +(4r+
and

h(x) —[Dg, (x)g', (x)+ag2(x)gz x =0 .

III. APPLICATION TO THE
BISTABLE KINETIC MODEL

(23)

+(1+4' D)x ——A, Da=Da=O.

IV. CONCLUSION

A. General results

(27)

x =x x+xe(t)—+1 (t (24)

and I (t) are the same as in q.in E . (1).here the noises e(t) an inw e
's a s ecial case o

)=1. H
x ' — d the result (19) for

(x)=x, g2(x =
x,=1+2~x, an(7) reduces to C(r, x,—

es to 10]SPD reduc [

P, (x)=N(1+2' x)[D +2k,&Dax+ a]

red-noise theory of correlated noises
h b' bl kne-dimensional system, e

lt' 1' ti oises simu-m driven by additive and mu ip
'

me the dimensionless formtaneously, and assume t e im

with (16) and (17) and its steady-state
r 1 f this Brief Report.
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1s and they contain a grea e
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E . (23); now due to
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an be seen from q.
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ff t 'f thequation as as a non-Markovian effect even
'

driven by uncorrelated noises.

Xexp f(x)+

where

Dx+A, +Da
Xtan z»z (25) P„(x)

1g 4E

OKA, (1,

3D 4D

(26a)

(26b)
I': 1.0--

~ ~

a=D=0.1

a
A =2(1—2r)A,

1/2
a+ 8&A,
D

1/2 —(2A, —1), (26c)
D

a8= —(1—2r)+2r(1 —4A, )
D

22 4a+ 8&A, —16~A.C = —2(1—2r)A, +
D D

a+ +(1 2r) r(
1

1 —4A, )
2D 2D

(26d)

(26e)

e=D=0.9
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FIG. 2. The SPD of the bistable kinetic model for ~=0 and
a =8 =0.5 are fixed. X=0.O, 0.5, and 0.9, respectively.

FIG. 3. The SPD of the bitable kinetic model for ~=1 and

a =D =0.5 are fixed. A, =O.O, 0.5, and 0.9, respectively.

B. Conclusion for the bistable kinetic model

Equations (25) and (27) are also main results of this pa-
per. In the bistable kinetic model, we see from (25)—(27)
that, in the presence of correlation between the noises,
the symmetry of SPD under the reAection of state vari-
able x with respect to the origin is destroyed. However,
the color of the noise itself does not affect the above sym-
metry. This may be seen clearly from the figures. In the
case of an uncorrelated non-Markovian system, i.e., A, =O
and r&0, the above symmetry is preserved, as shown by
Fig. 1. When the noises are correlative, the above sym-
metry is destroyed, as shown in Fig. 2 for the white noise
case and in Fig. 3 for the colored-noise case.

Comparing the curves in Figs. 2 and 3 for A, =O (i.e.,
the case of uncorrelated noises), we see that the noisy
color causes the peak of SPD to become narrow and grow
in height. At the same time, the minimum of SPD drops
in height. When we compare the curves in Figs. 2 and 3
for A, =0.5 (or A, =0.9), i.e., the case of correlated noises,
we find an evident difference between the following cases:
case (i), A, =0.5 and r=O; case (ii), A, =0.5 and r= l. The
combination of correlation and color of the noises [case
(ii)] causes the SPD to become narrow and the peak to
grow in height; at the same time, it causes the transition
from the unimodal to the bimodal structure of the SPD.

It must be pointed out that Eq. (25) is valid only in the
range 0~ 1, & 1. For A, = 1, instead of (25) we obtain from
Eq. (19) the following corresponding result by integration

[10]:

P (x)=~(1+2.x')[~ix+~~] (

E 1
Xexp f(x)

D Dx+ a

—Xf(x)= A —+B +4r
D 2D D

' 1/2
a

2——1
D

1/2
x

2
x

3D 4D

a8 = —1 —2w —1+3—
D

1

2D
a a a

1 —3—+w 3 —5—
D D~ D

' I/2
a a

1+2m — ——1
D D
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