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We investigate the dielectric response of composite materials containing a quadratically nonlinear
component. The bulk effective second order nonlinearity coefBcients of a few simple microgeometries
are calculated, and found to diverge in the vicinity of a quasistatic resonance of the composite. It
is shown that second and third harmonic generation can be much enhanced in such composites,
compared to bulk samples of the nonlinear component. An induced cubic nonlinearity (ICN), which
also diverges near a resonance, is generated in the composite, even though none of its components
possess it intrinsically. This ICN may be much larger than the effective nonlinearity of a composite
with the same microgeometry and a cubic nonlinear component. Finally, such composites are shown
to exhibit optical bistability. Such bistability is shown to be theoretically possible far away from a
quasistatic resonance, even when all the components have real, positive dielectric constants. This
is in contrast to bistability in composites containing a cubic nonlinear component, in which at least
one metallic component and a close approach to a resonance are needed. However, tuning to the
vicinity of a resonance is still needed in order to obtain bistability at reasonable levels of the applied
field. Thresholds in the order of 10 W/cm are predicted for a particular layered rnicrogeometry
with three components.

PACS number(s): 42.70.Nq, 42.65.Pc, 78.66.Sq

I. INTRODUCTION

The optical properties of composite materials have
been the subject of numerous studies during the last two
decades [1]. In recent years there has been a growing in-
terest in the properties of nonlinear composites. Because
of their potential uses in optical devices, the most com-
monly considered materials are made of nonlinear parti-
cles embedded in a linear host [1—5]. The nonlinearities of
such materials may be strongly enhanced relative to bulk
samples of the same materials [5—8], and intrinsic bista-
bility may arise in them under certain conditions [9—17].
These effects are the results of a possibly great enhance-
ment of the electric field within the particles. This en-
hancement can be produced by an appropriate ratio of
the host-to-particle complex dielectric permittivity and
by a modification of the field inside a given particle by
neighboring particles. The quasistatic resonance (some-
times called the surface plasmon resonance) is an extreme
manifestation of this so-called local field effect.

The nonlinearity considered in previous studies is usu-
ally cubic and weak, i.e. , the dielectric function of the
nonlinear component is of the general form e (E)
e + y ~E[, where E is the local electric field, e is the
linear dielectric constant, y is the cubic nonlinear sus-
ceptibility, and y ~E[ (( e. This type of nonlinearity is
the leading weakly nonlinear term in the dielectric re-
sponse of materials that have inversion symmetry. The
electric Geld applied to such a system is usually assumed
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to be monochromatic. The nonlinear term in this case
depends only on the intensity of the local electric Geld
and not on the field vector itself. Therefore no higher
harmonics are generated and all the Gelds in the system
are of the same &equency as the applied field.

In this paper, we consider composite materials in which
the nonlinear component is not inversion symmetric. The
first nonlinear term in the dielectric function is then lin-
ear in the field e (E) = e+ dE, where d is the quadratic
nonlinear susceptibility. The explicit dependence on the
electric field vector gives rise to harmonic components
of the polarization in the nonlinear particles and to har-
monic local Gelds in the composite. These fields must
be taken into account when calculating the bulk effective
dielectric response of the composite.

We will examine the consequences of this effect in a few
simple microgeometries. We find that the bulk effective
quadratic nonlinearity of the composite can be much en-
hanced compared to that of the nonlinear component and
that the generation of harmonic Gelds can become much
stronger. This opens up the possibility of using such
a composite as the active material in improved second
harmonic generation devices. Intrinsic optical bistability
also appears in these coxnposites, but under conditions
that differ IIrom those previously found for composites of
cubic nonlinear components [9—17]. Of special interest is
the possibility of bistable behavior far &om a quasistatic
resonance and in composites with purely dielectric com-
ponents only. This possibility stands in contrast to cu-
bic nonlinear materials, where a necessary condition for
bistability is at least one component with a dielectric con-
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stant having a negative real part and a small imaginary
part.

The rest of the paper is organized as follows. In Sec. II
we develop the theory of second order nonlinearity in a
composite medium. We treat a composite made of spher-
ical nonlinear inclusions randomly dispersed in a linear
host and two examples of layered microgeometries. In
Sec. III we discuss the harmonic generation processes in
such composites. The bulk effective coefficients of both
second harmonic generation (SHG) and third harmonic
generation (THG) are calculated and shown to be en-
hanced in the vicinity of a quasistatic resonance. In Sec.
IV, we examine the bulk effective response at the funda-
mental &equency. We consider both the phenomenon of
induced cubic nonlinearity (ICN) and the electro-optic
efFect, which is the change in the dielectric coeKcient
of a material induced by the presence of a static elec-
tric field. It is shown that the induced cubic nonlinear-
ity may be much larger than in composites of the same
microgeometries having a nonlinear component with an
intrinsic cubic nonlinearity. In Sec. V we discuss the phe-
nomenon of intrinsic optical bistability. It is shown that,
although theoretically possible in purely dielectric sys-
tems, bistability is not practically achievable because of
the enormous electric Geld required. In the vicinity of a
resonance, however, we Gnd threshold Geld intensities of
the order of 104 W/cm for a layered three-component
microgeometry. Finally, a short discussion and conclu-
sions are given in Sec. VI.

Eo(t) = ) Eo „exp(—inst) (2.1)

where, in general, Eo ——ED . In most cases, we
will consider a monochromatic applied field of &equency
ur (all coefficients vanish except n = 1 or —1). The non-
linear component will generate local Gelds at all the har-
monic &equencies. Thus the interior field in component
a will be represented by

E (t) = ) E „exp(—inert). (2.2)

layered structure of parallel slabs. The nonlinear compo-
nent is assumed to have only lowest order nonlinearities,
i.e., those quadratic in the local electric Geld. We con-
sider the case in which the applied Geld is perpendicular
to the slabs. In this example both GeMs E and D are
then perpendicular to the slabs and are uniform in each
component. (The case where these fields are parallel to
the slabs is less interesting because the local electric field
is then uniform. ) Because the applied and interior fields
are therefore in the same direction, we need not carry
along the vector notation, and can denote the Gelds as
complex scalars (thus retaining information about rela-
tive phases).

The applied electric field can be represented by a
Fourier series in time

II. THE THEORY AND ITS APPLICATION
TO THREE SIMPLE MICROGEOMETRIES

The constitutive relation in component b is linear and
may be written

The study of nonlinear composites is dificult, because
the usual mathematical methods developed for linear
composites are inapplicable. The analysis is thus lim-
ited to dilute composites of spheroidal inclusions (which
may be multicoated with a nonlinear core) and to layered
composites, in which the Geld inside the nonlinear com-
ponent is uniform. In this section we will consider three
such examples. In all cases, we will assume that the
quasistatic limit is valid, i.e.,

V' x E = 0, where E' is the
local electric Geld. This assumption is generally adequate
provided that the grain sizes are all small in comparison
to both the wavelength of the electromagnetic field in
the surrounding medium, and the skin depth of the elec-
tromagnetic Gelds in the grains, so that electromagnetic
scattering and phase matching effects can be neglected.
These propagation effects need to be taken into account
in the usual way when analyzing the performance of op-
tical devices in which the active nonlinear element is a
composite material, but they need not be taken into ac-
count when calculating the bulk effective properties of
the composite material as such.

In component a, we have, in general,

Daimio) ~aimcal Ea)m@7

+ d (m+n) u, —nw Ea, (m+n) u Ea,—neo + ' '

(2 4)

where the omitted terms are of third and higher order
in E . The coeKcients d denote the second order
susceptibilities of material a.

The volume averaged, or externally applied, electric
field is in this case

(E) =E.= p.E.+ psEs, (2.5)

where p and pg are the volume &actions of the com-
ponents a and b, respectively, and E and Ep are the
local fields in the two components. The volume averaged
displacement Geld is

A. Parallel slabs znicrostructure

We begin by considering a system in which the nonlin-
ear component e (E) and the linear component eg form a

where we used the continuity condition on the normal
component of D. The local field E is determined by

(2.7)
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where Ep and E are time dependent fields. When (2.1)
and (2.2) are used to represent those fields each of the
frequency components of (2.7) can be considered sepa-
rately. This leads to an infinite sequence of nonlinear
equations among the Fourier expansion coefBcients. We
will assume a monochromatic applied field that has only
an u component. All the other fields, including DO, have
static and harmonic components in addition to the funda-
mental component. In order to simplify the discussion we
only include terms up to third order in the nonlinearity
coefBcients d and discard all terms of higher order. This
is a kind of perturbation expansion, valid if the nonlinear-
ity is not too strong. It does not rule out the possibility
of multiple solutions and bistable behavior.

Under these assumptions, at the fundamental &e-
quency u we have

(Pa&b, ~ + Pb&a, ~ + 2Pbdp, ~Ea,p) Ea, ru

+2Pbd2~ a,Ea 2a, Ea ~ = eb, ~EP,~. (2.8)

At the same time the zero frequency equation takes the
form

while that for the second harmonic 2u is

(Pa&b, 2w + Pb&a, 2m + 2Pbd0, 2mEa, p) Ea, 2w

+2pbd3, E 3 E' + pbd E = 0, (2.10)

and that for the third harmonic 3~ is

(Pa&b, sw + Pb&a, sm) Ea, sw + 2Pb 2w, tu 2am a, m

(2.11)

Since the contributions of higher harmonic components
of E (t) to these equations are of higher order in d, they
are neglected in this calculation.

Solving Eq. (2.11) for E 3 we get

2pbd2~) ~Ea)2~Ea)~
a) 34p

PaEb 3~ + Pb a)3~
(2.12)

Substituting this in (2.10) and solving for E 2 we find

2
(Pa~b, p + Pb&a, p) Ea,p + 2Pb[d~ cu IE

+d2-, -2- IE-,2-1'] = o (2.9)

Ea) 24)
pbd , E

4Pb ~2~, ~S~, —~ I &,~ I

PaEb, 2' + PbEa, 2' + ~Pb~0, 2~~a, O

(2.13)

Substituting this and the solution of (2.9) for E p in
(2.8), and keeping only terms up to third order in d, we
find

Obviously, any real, positive solution for t leads to a sin-
gle, generally complex, solution for E [see (2.14)]. The
function f(t), for three difFerent values of p is shown in
Fig. 1.

where

4pbdp d 2pbd d2~

PaEb, O + PbEa 0 PaEb, 2' + PbEa, 2m
(2.15)

If both sides of (2.14) are multiplied by their complex
conjugates, one obtains a cubic equation for IE I

in
which all coefBcients are real. This can be written in a
simplified form if we define

0.5—
, 93

I» eb, + pbbs. , I

(2.16)

Pa Cb, cy +Pb 6a, cv
Pi,e

Pa &b, ~+Pb &a, w

x

(2.17)

S'blXllsb, Eo, I'

lp-eb, - + pbbs-, - I

We thus get the simple cubic equation

f (t)—:t —2p, t + t = n.

(2.18)

(2.19)

I I I I I I ) I I I I I I

0,5 1.5

FIG. 1. The cubic function f (t) at different values of y, .
p = 1 (p = ~3/2) is the largest (smallest) value for which
bistability is possible. The threshold values of n in these
extremal cases are indicated.
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B. Low density of spherical inclusions

In this case we consider a random assemblage of non-
linear spheres e (E) einbedded in a linear host eb Again
the inclusions are assumed to have only lowest order non-
linearities, i.e. , those quadratic in the local electric field.
We assume that the spheres are not too densely packed,
so that, applying a uniform Geld Eo on the system, the
field locally applied to each sphere E, is also uniform,
and is equal to the Lorentz local Geld. This is the well-
known Clausius-Mossotti approximation, in which only
dipolar interactions among the inclusions are taken into
account. It is widely used for calculating the properties
of linear composites [1]. It can be extended to this non-
linear case because, even then, the Geld inside each spher-
ical inclusion is uniform when a uniform electric field is
applied to it. In this approximation the interior and ex-
terior electric fields are both uniform and are connected
by

The exterior field is

E..= E, + (P),
3Kb

(2.25)

where (P) is the volume averaged polarization of the
spherical inclusions. This polarization is given by the
volume &action of the spheres multiplied by their dipo-
lar moments

(P) = —ID- (t) —ebE- (t)].4' (2.26)

Substituting the diH'erent &equency components of E
into Eqs. (2.21)—(2.24) we find, at the fundainental fre-
quency

[(ea,~ —eb, ~ + 2dp~Ea, o) Pb + 3eb, ~] Ea,~

[&a,su + 2&b, sw] Ea, sar + 2d2ur ruEu, 2mEa, m 3&b,swEea, sw.

(2.24)

Da ~~ + 2Kb ~~ a ~~: 3Kb ~~Ee (2.20)
+2pbd2~ ~Ea 3~Eu ~ = 3eb ~EO ~) (2.27)

This follows &om the electrostatic boundary conditions
on D and E at the sphere surface [18]. In this case, even
when the applied field Eo(t) is monochromatic, the local
exterior field felt by a single sphere E, (t) will include
higher harmonics. This is taken into account when we
Fourier analyze Eq. (2.20). At the fundamental frequency
~ we have

[eu ~ + 2eb ~ + 2dP~Ea P] Eu ~ + 2d3~ ~Ea 3~Eu ~

= 3.b,.E...., (2.21)

at ~ = 0 we have

[&,0 + 2tb 0] E P + 2d up IEa ~I + 2d2~ 2~ IEu 2~I

= 3mb pE, ,p, (2.22)

atm=0

[(ea 0 2eb 0) pb + 3~b 0) Ea 0

+2pbd, ~ IEu ~I + 2pbd2~ 3~ IEu 2~I = 0, (2.28)

at 2u

[(&a,2~ eb, 2~ + 2dp 2~E p) pub + 3Kb, 2~] Eu, 2~

+2pbd3 E,3 E* + pbd E = 0, (2.29)

and at 3~

[(&a,34J eb 3(Ip) Pb + 3&b 34/] Ea,3@I

+2pbd2~ ~Ea 2~Ea ~ = 0. (2.30)

at 2u we have

[&u, 2w + 2eb, 2m + 2d0, 2ccrEa, o] Eai2(kp

+2d3w ~Ea,3wEa ur + der wEa ~ = 36b, 2wEe~, 2wy

and at 3u we have

(2.23)

Here the applied electric Geld is assumed to be uniform
and monochromatic with &equency u. ~ is assumed
small enough such that the quasistatic approximation
applies even at 3u. As in the previous example we have
discarded all terms of fourth order and higher in d.

These equations can be solved, in the same way as in
the previous example, to give

2Pbd2~ ~Ea,2~Ea,~
a,3' )

(eu 3~ —eb 3~) Pb + 3eb, sur
(2.31)

Ea) 24p
Pbd E2

(ea 2~ eb, 2~ + 2dp &~Ea 0) pb + 3eb, 3~ —~e"'
' ', '"l„,+3„'

(2.32)

and

2
(&u cu &b w) Pb + 3&b, cg PbX IEu, cu I Ea,~ 3eb ~EO ~i

(2.33)

where

4Pbdo, ~d ~ 2Pbd, d2~,

(ea p
—eb, p) pb + 3eb 0 (ea zu, —Eb2~) pb + 3'E'b 2~

(2.34)
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There is only one difference between Eqs. (2.31)—(2.34)
and their analogs in the previous example, Eqs. (2.12)—
(2.15): the denominators contain the expression for the
quasistatic resonance of the composite. This parameter
is microgeometry dependent: the factor p op+ @be in the
parallel slabs microgeometry changes to (e —ea) pq+ sob
in the case of dilute spheres. The vanishing of this de-
nominator at a specific &equency implies that the system
is exactly at the quasistatic resonance for that &equency.
The corresponding &equency component of the field in-
side the nonline r material is enhanced in the vicinity
of such a resona ce. These quasistatic resonances can
only be approach d if one of the components is a true
dielectric, with e t at is positive and approximately real,
while another has an e with a negative real part and
a small imaginary part in the relevant &equency range
(usually, this implies a metallic component). The exis-
tence of sharp resonances in the dielectric response of
composite materials is generally limited to periodic mi-
crogeometries and to dilute mixtures of identical inclu-
sions [1].

As in Sec. IIA, Eq. (2.33) can also be simplified by
multiplying both sides by their complex conjugates and
defining

FIG. 2. A three-component microgeometry of dielectric
and composite parallel slabs. The two-component layers con-
tain the nonlinear material e ~ (E) = e„~+ dE

Eo to be monochromatic of &equency ~, we get again
several equations for the different &equency components
of (2.39). The u component leads to

l(e..—e, )p, +se,.l'

(6a sag 6b, ~ )Pb +365
Pi,e

(~a,~ —~s,~)ps+3~a, ~
x

pt, Ixl lset, -Ep,-l'
l(e..—es.) pb+s. b I

(2.3S)

(2.s6)

(2.37)

[(1 —pd) &d, ur + pde. ,~ + 2pdf~l dp, w Ec,o] Ec,~

+2pd f„id2, E,2
E* = ed Ep (2.40)

where e, is the linear part of e, (E). This equation is sim-
ilar in form to (2.8): The only difFerence is in the location
of the quasistatic resonance, which is now determined by
(1 —pd) Ed +pde = 0. The zero frequency component
of (2.39) leads to

We then get again the simple cubic equation (2.19).
[(1 »d) ed, o +—pde. ,o] E.,o

C. Three-component parallel slabs microstructure +2» df-~ d-, -- IE.,-I'+ d2-, -2- IE.,2-1' = 0

Next we consider a composite made of parallel layers
of two kinds. One is made of a linear dielectric of dielec-
tric constant ~g, while the other is itself a two-component
composite of cylinders, perpendicular to the plane of the
layer, composed of another linear material e and a non-
linear dielectric e ~ (E) (see Fig. 2). The dielectric func-
tion of the composite layers is

(2.41)

while the 2~ component leads to

[(1 —pd) &d, 2m + pd (Fc 2w + 2fnldp 2~Ec p)] Ec 2~

+pd f„~[2d3~ ~E~ 3~E~ ~ + d„(gE,~ —0, (2.42)

e, (E) = f e + f„ie„((E) (2.38) and the su component leads to

[(1 pd) ed + pd&c (Ee)]Ec = &dEo~ (2.39)

where pg is the volume &action of the dielectric layers in
the composite and Eo is a uniform electric field applied
perpendicular to the layers. This relation is similar to
(2.7) and can be analyzed in the same way. Assuming

where f„~is the volume fraction of the nonlinear compo-
nent in the layer and f = 1 —f ~ is the volume fraction
of the linear component in that layer. The electric field
in the composite layers E is uniform and is given by

[(1 »d) ~d 3~+ pd—ec,s~] Ec,3~

+2pd f~(d2~ ~E, 2~E, ~ = 0. (2.43)

Solving as in the two previous subsections, we find

2pd f~~~2~, ~Ec,2~Ec,~
ci34p )(1 —

» d) ed, s + pd~. , s
(2.44)

which corresponds to (2.12) and (2.31) in the previous
examples. Substituting this in (2.42) we get
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E pdf rd, E.',
r a M pdfngdq~ ~dS~~ —~I+c~~II d j d, 2w + I d c,2~ + &I d Jnl~p, 2w~c, p (].—pd)&d s +pd& s

(2.45)

which corresponds to (2.13) and (2.32) in the previous ex-
amples. Substituting (2.41) and (2.45) in (2.40), keeping
only terms up to third order in d, we find

D and the cu component of E

(3.1)

2(1 Pd—) Cd~+ PdCc, ur PdX lEc~l Ec&u Cd ~EO,~&

(2.46)

where

4pdfardO, w~w, ur — 2pdfard~ ~d2

(1 Pd) Cd, O + PdCc, O (1 Pd) Cd, 2~ + PdCc, 2ur

(2.47)

pd Ixl IE.,- I'

l(1 —pd)«, +pdc. ..l' (2.48)

As in the previous examples, when both sides of (2.46)
are multiplied by their complex conjugates, one obtains
a cubic equation for lE l

in which all coefficients are
real, and which can be written in the simplified form of
(2.19) if we define

In the two-component parallel slabs microgeometry of
Sec. IIA, the volume averaged second harmonic (SH)
component of D is

DO~2~ = e~ 2~E~ 2~ + d~ ~E~ ~ + 2d34p ~E 3(~pECL 47

(3.2)

On substituting the zero order solution for E &om
(2.14), E 2 from (2.13), and E 2 from (2.12) we find

2

d( ) d l( b2
l l

b,

(PaCb, 2~ + PbCa, 2~ j JPaCb, w + PbCa, w j
(3.3)

We can use the same approach for the two other micro-
geometries discussed in Sec. II. For the dilute assemblage
of spheres of Sec. IIB we find

(1—Pd )ed +Pd e,Re

(&—Pd) ~d, ~+Pd~~, ~
x

pdlxll«, -Eo, I'

l(1 pd) cd, +—pdc. ,
l'

(2.49)

(2.50)

3Cb 2

E (Ca, 2m
—Cb, 2w) Pb + 3Cb 2m j

3Kb, ~x )( (Ca,~ —Cb, (u) Pb + 3Cb, w j (3.4)

while for the three-component layered microgeometry of
Sec. IIC we find

To summarize this section, we have shown that the
different &equency components of the local fields inside
a quadratically nonlinear composite subject to a uni-
form monochromatic external field can be calculated up
to third harmonic using a perturbation type calculation.
The main results of this calculation are that each of these
local field components is enhanced in the vicinity of a
quasistatic resonance of the composite at the appropri-
ate &equency and that the fundamental &equency com-
ponent of the local field is related to the applied field
by a simple cubic equation. These results are used in
the following sections to calculate the bulk effective opti-
cal response of such composites at the difFerent harmonic
&equencies.

III. GENERATION OF SECOND
AND THIRD HARMONICS

In this section we calculate the bulk effective suscepti-
bilities d(', for second harmonic generation and d . .
for third harmonic generation, in the composite microge-
ometries discussed above. The bulk efFective susceptibil-
ity d, may be defined, as is usual in composite media,
by relating the volume averages of the 2~ component of

~~;l = (1 —pd) f rd~, ( (1 Pd) Cd, 24I + PdCc, 24k j
d,~x

lk(l Pd) Cd, + PdC, j (3 5)

These results constitute an extension of the perturbation
method of Ref. [6] to the case where the applied field and
the induced polarization can have different &equencies.
Note that the only difference among the three results is in
the location of the microgeometry dependent quasistatic
resonances which appear in the denoxninators. The bulk
effective SH coeKcient d ', has a second order divergence
whenever the composite medium has a quasistatic reso-
nance at the fundamental &equency. In addition to this,
d also has a first order divergence at the 2u quasistatic
resonance of the composite medium. The two resonances
appear together because of the mixing between the SH
component and the fundamental &equency component of
the local field. This divergence is weaker than that of the
bulk efFective Kerr coeflicient (i.e., the third order non-
linearity coefficient) of coinposites with cubic nonlinear
components, where a fourth order divergence is obtained
l6].

As noted in Sec. II these quasistatic resonances can
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only be approached in periodic composites or in dilute
mixtures of identical inclusions where one of the compo-
nents is a dielectric, with real and positive e, while the
other has an e with a negative real part and a small imag-
inary part in the relevant frequency range [1]. Usually,
this will be a metal. Therefore metal-dielectric compos-
ites are the most likely composites in which to observe the
enhancement of d ', (and of other coefficients discussed
below) associated with such resonances.

The bulk effective THG coeKcient d, can be cal-
culated in a similar way. It is defined by

(3 6)

D0 3u ~a,3uEa, 3' + d2u, cuEa, 2uEa, cu. (3 7)

On substituting the appropriate expressions for E
E,2, and E 3, we find

d(c) papbd~ ~ d2~

PaEb~2ur + PbEa, 2w (PaEb 3w + Pbea, 3m )
( e

aeb, ~ + Pbea, ~ j (3.8)

The results for the two other cases we considered are

The volume averaged third harmonic (TH) component of
D in the two-component parallel slabs microgeometry is

IV. INDUCED CUBIC NONLINEARITY AND
THE ELECTRO-OPTIC EFFECT

,()E ~&() ~E, (4.1)

In all of the examples of Sec. II, the dielectric response
of the composite at the fundamental &equency u includes
a cubic nonlinear term. In the spherical inclusions micro-
geometry, this nonlinearity clearly appears in Eq. (2.33).
This expression has the same form as the equation de-
scribing a suspension of spherical inclusions with dielec-
tric function e (E) = e + yl ~E~ . The intrinsic cubic
nonlinearity coefFicient yl of the spheres in this example
would be equal to —y of Eq. (2.34). The same effect oc-
curs in the two-component and three-component parallel
slabs microgeometries, where the corresponding expres-
sions for the cubic nonlinearity coefficient —y are (2.15)
and (2.47), respectively. This cubic nonlinearity is not an
intrinsic property of any of the nonlinear components of
these composites. It results from the mixing of the u and
2~ components of the electric field in those components.
We will call this phenomenon induced cubic nonlinearity
(ICN).

To determine the effect of ICN on the bulk efFective
behavior of the composite at the fundamental &equency,
we relate the volume averaged ~ components of D and
E by

(e) papbdcu cu d2cu, cu

( ay247 bi 2(al ) Pb + bi2cal

3Kb 3
X

(, (E 2uar eb, 2w) Pb + 3eb~2tar )
r 3Kb ~ l

X
E (&a,~ eb, w) Pb + 3kb, w )

for the dilute assemblage of spheres, and

(3.9)

(e) a w Cb~~
E~ = Cb~ + 3PaEb~

(&a,u &b a ) Pb + 3&b,a
(4.2)

This is the well-known Clausius-Mossotti result for a lin-
ear composite. y~ ) is then

where e
' is the bulk efFective dielectric constant of the

composite and y~ ) is the bulk efFective cubic nonlinearity
coeKcient. Carrying out this calculation for the dilute
spheres case we find

(.) 2pd( —pd) f.') -; 2-;
(1 —pd) ~d, 2~ + pdec, 2~

(

l�3m

X
(1 pd) &d, 3~ + pd&c, sw )

(,) r 3
pap ( (&a,ar &b,~) Pb + 3&b, u 9

2
3Kb ~

X )
(&a a &b ~) pb + 3&b,a

(4.3)

l8)Capx
i( (1 —pd) ed, ~ + pd&c, ~)

(3.10)

for the three-component layered microgeometry. Again,
the only difFerences among these results are in the lo-
cations of the quasistatic resonances which appear as
denominators. They depend on the details of the mi-
crogeometry and vanish at the appropriate quasistatic
resonances. We can see that d, , has a third order
divergence at the fundamental &equency quasistatic res-
onance and two first order divergences at the 2~ and 3'
resonances. The mixing of the three different &equency
components of the local field gives rise to the appearance
of all the corresponding resonances. The divergences are
reflected in the amplitude of the TH signal which is en-
hanced in the vicinity of each of these resonances.

where y is given by (2.15). There is a fourth order diver-
gence of the effective ICN coeKcient at the quasistatic
resonance at &equency ~.

A different discussion of induced higher order nonlin-
earity in a composite medium has been given recently
[19]. However, besides being limited to a dilute com-
posite, that discussion also does not take into account
the &equency spectrum of E and D. It is therefore not
directly applicable to the case where the intrinsic nonlin-
earity of the components is quadratic in nature. Never-
theless, the enhancement factors, which appear in (4.3)
and become large in the vicinity of the appropriate qua-
sistatic resonance, are similar in form to those that were
found in Ref. [19].

I et us now consider composites in which one of the
components is metallic. When either component is
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2PbCL~ ~d2~ ~x=
(ea, 2cg

—eb, 2m) pb + 3eb, 2w
(4.4)

metallic, its zero &equency dielectric coefficient is infi-
nite, the static component of all the local Gelds vanishes,
and many of our expressions simplify. The ICN coeffi-
cients become

zero frequency equations (2.9), (2.28), and (2.41) is taken
to be nonzero. The volume averaged D field at the fun-
damental &equency will now have an additional term of
the form do' EopEp where do is the bulk effective
electro-optic coefficient of the composite. For the dilute
spheres microgeometry we obtain

in the dilute spheres microgeometry;

Pb ~, 2~ ~x=
Pa6b, 2w + PbCa, 2u

(4 5)

do' = 2p do,
(.) l3Kb0

( (ea, o —es, o) ps + 3es,o p

r 3&b,~ lx
4 (ea,~ —es, u ) ps + 3es,~ j (4.7)

in the two-component parallel slabs microgeometry; and

2pz f„id dg~, ~x=
(1 —pd) eg g~ + pge, g~

(4.6)

in the three-component layered microgeometry.
In all three cases, the coefficient g of the ICN has

two interesting general properties. First, it can be ei-
ther positive or negative, depending on the sign of the
denominator —i.e., on whether the system is above or be-
low its 2u resonance. By contrast, the cubic nonlinear
coefficients of pure materials and the bulk effective Kerr
coefficients of composites of such materials, are usually
positive. Secondly, the magnitude of y can be varied
by changing the volume fractions of the components. In
particular, y diverges in the vicinity of the quasistatic
resonance at the SH &equency. This causes a first or-
der divergence of y~ ~ at that resonance. By contrast,
the cubic nonlinear behavior in composites of the same
mi crogeometry but third order nonlinear components has
only a fourth order divergence at the fundamental &e-
quency resonance [6,7]. Because of this difFerence the
ICN may be as important as the intrinsic cubic nonlin-
earity in some materials. The ICN is maximized by the
closest possible approach to the resonance at the SH &e-
quency, and thus requires that the components' dielectric
constants at 2~, rather than u, have a minimal imaginary
part.

As an example, in the two-component parallel slabs
microgeometry we choose the nonlinear component to be
purely dielectric and its volume &action to be p = 0.1.
The linear component is chosen to be metallic with a real
part of the dielectric constant that satisfies the resonance
condition Re(p es g +ps' g ) = 0 and an imaginary part
equal to 0.2 (which is the minimal value in metals, ob-
tained for Ag in the optical range [20]). A typical value
for nonresonant second order susceptibility in pure mate-
rials is d = 5 x 10 s esu [21]. Substituting these values in
(4.5) we find y = 2.25 x 10 is esu. This result is approx-
imately two orders of magnitude larger than the typical
nonresonant third order susceptibility of pure materials
g = 3 x 10 esu [21]. It should also be noted that y~'l
will be negative in this case.

Finally, we use the same approach to obtain the bulk
effective electro-optic coefficient for the composites dis-
cussed in Sec. II. In this case, besides a monochromatic
Geld of &equency u, we assume that there is also a static
(zero frequency) field applied to the sample. The only
change in Sec. II is that now the right-hand side of the

Once again, we see the characteristic form of the en-
hancement factor [as in the expression (3.4) for d~', ],
which is expected on the basis of the perturbation the-
ory described in Ref. [6], and the second order divergence
near the surface plasmon resonance of the spherical inclu-
sions at the fundamental frequency. Similar results are
obtained for the two other microgeometries. The only
difference is again in the locations of the quasistatic res-
onances in the denominators.

V. INTRINSIC OPTICAL BISTABILITY

In Sec. II it was found that the u component of the
uniform electric field inside the nonlinear component, for
every microgeometry we considered, can be calculated
&om the simple cubic equation (2.19). Any real positive
solution of that equation leads to a possible solution for
that local Geld. The equation always has at least one
such solution. Bistability arises when it has (two) more
such solutions. In order for that to happen, p and n must
satisfy the following conditions:

p ) ) (5.1)

—-(8~ —9) ~- (4~ -3)'2 2 2

27
3

& n & ——(8p, —9) p+ (4p' —3)' . (5.2)27

In addition to these conditions, it should be noted that
the maximum possible value of p is 1. In that case, the
above calculated range of values of n becomes maximal,
0 & n & 4/27 = 0.148. This defines the range of the
applied Geld Eo in which there is more than one real
solution to Eq. (2.19), for the case where all the compo-
nents are purely dielectric (i.e. , all e s are real and positive
and consequently p = 1). The possibility of having bista-
bility in this geometry contrasts with the conditions for
intrinsic bistability in composites made of cubic nonlin-
ear components, where bistability cannot occur in purely
dielectric composites [1,9—17]. In the present case, as p
decreases, the limiting values of n approach each other,
the range of applied Gelds in which bistability can oc-
cur shrinks, until at p = ~3/2 it becomes a single value
corresponding to n = 3v 3/27 = 0.192, and bistability
is lost. These two extreme cases of f(t), as well as one
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4 I(...—eb. ) p, + 3...I

2pblxll3eb, I'
(5.3)

To get a minimal threshold we have to choose y as large
as possible. The largest values reported for the second.
order nonlinearity coeKcient in the literature are of the
order of d = 10 esu [for Te along the (1,1,1) axis] [22].

intermediate case, are shown in Fig. 1.
Figure 1 suggests that, in order for bistability to ap-

pear when p = 1, o; should be increased above its upper
limit value of 0.148, so that the solution for t is forced
into the upper branch of the curve. For other values of
o., the solution could stay on the lower branch while the
applied Geld, and hence o., is increased, thus avoiding
bistable behavior.

The threshold external Beld required for bistability is
determined by the microgeometry. For the spherical in-
clusions microgeometry, we Gnd &om the deBnition of o.
(2.37) that this threshold is given by

If the composite is purely dielectric then the numerator
of (5.3) and the denominator terms of y are of order 1
and the threshold Geld is Eo «7 4 x 10 esu. The in-
cident energy Aux required to prod. uce bistable behavior
is therefore

c 2 ii W
I&h ———Eo~ « = 1.8 x 104' CIIl

(5.4)

This extremely high value makes the observation of
bistable behavior in purely dielectric composites imprac-
tical. One expects that, as E increases monotonically
with the applied Beld. Eo, the volume averaged SH dis-
placement Geld Do 2 will also do so.

To force bistability, the right hand side of Eq. (5.3)
must be lowered to reasonable values. This can be done
by using nondielectric components, decreasing p, and ap-
proaching a quasistatic resonance. To achieve this, at
least one of the components must be metallic. In this
case y is given by the simplified expression (4.4) and the
threshold Beld is approximately

34 l(&a~2m b 2ur) P~b + b, 2url l(&a~re &b~cu) Pb + 3&b~url

2pbd d2 I3eb
(5.5)

The closer the composite to its resonance, the lower the
threshold Beld. This decrease is limited by the lower
limit of p and by the imaginary parts of the dielectric
constants of the components. We already discussed this
problem in Sec. IV. Here again we choose, as an ex-
ample, a purely dielectric nonlinear component and a
metallic linear component with a real part of the di-
electric constant that satisfies the resonance condition
Re[(e —eb ) pb + 3Kb~] = 0 and an imaginary part
equal to 0.2. Assuming d = 10 esu and a typical
value Ieb

I

= 2 in a very dilute mixture pb = 1, we find
Eo ~&

—10 esu. The threshold intensity is thus

near a resonance. The parallel slabs microgeometry is
such an example. The p = 1 threshold. field in this case
is given by

34 I» -, -+p-, -lip -,-+p
2p,'d , d2 , —

Choosing pb
——O.S and the values cited above for lab I, d,

and the imaginary part of eb, we find near the resonance
at the fundamental frequency Eo «10 esu. The
threshold intensity in this case is

W
Igh, =3x10

cm2 (5.6) I« = 3.5 x 10
W

CIIl
(5.8)

This value is three orders of magnitude lower than that
obtained for the purely dielectric case but it is still very
large. However, this threshold can be lowered. further by
using other microgeometries, in which the electric field
in the nonlinear component is more electively enhanced

which is three orders of magnitude less than in the spher-
ical inclusions microgeometry but is still rather large.

A better result can be obtained in the three-component
layered microgeometry where e is the metallic compo-
nent. The threshold Beld for such a composite is

34 l(1 —»~) e&,2-+ p&~c, 2 I l(1 pd) ed,-+plea, -l
2p~ f„,d„d2 (5.S)

Choosing, for example, pg = 0.1, f = O.l, Ieg I

= 2 and
the above values for d and the imaginary part of e
we find Eo ~& 200 esu, which gives for the threshold
intensity

4
I&h =5x10

cm2 (5.10)

The lower threshold here is a result of the great enhance-
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ment of the electric Geld in the composite layers near
the resonance. An advantage of this microgeometry over
two-component composites is that this enhancement is
achieved in the nonlinear component with a relatively
low concentration of metal. It is, in fact, equivalent to
using the metal as the nonlinear component in a two-
component composite but with a nonlinearity coefficient
several orders of magnitude larger than in ordinary met-
als. Using three components also allows greater Qexibility
in choosing the materials and the tuning conditions for
achieving resonance. We note also that the same kind
of result would have been obtained if the eg component
were chosen to be the same as e ~. This emphasizes the
point that it is the special microstructure which is largely
responsible for lowering the threshold.

VI. DISCUSSION AND CONCLUSIONS

We have presented results for the behavior of compos-
ite materials containing second order nonlinear compo-
nents. It was shown that such materials can have en-
hanced second order nonlinear susceptibilities. This en-
hancement is closely related to the existence of sharp
quasistatic resonances in the dielectric response of the
composite material and is similar in nature to that found
in previous studies for the third order nonlinear suscep-
tibilities. A major difference which appears in the case
discussed here is that higher harmonic fields are gener-
ated which have an important efFect upon the dielectric
response of the composite even at the fundamental fre-
quency. The response of the composite at the harmonic
frequencies may include a signiGcant enhancement of the
SHG and THG processes. Therefore such composites
might be a much better choice for use in SHG devices
than their pure nonlinear components. At the funda-
mental frequency, these Gelds give rise to an ICN with a
magnitude and sign that are both strongly microgeom-
etry dependent. The efFective coefEcient of this ICN is
also enhanced in the vicinity of a quasistatic resonance.
It may be larger than those of cubic nonlinear composites
with the same microgeometry.

As pointed out in the Introduction, the appearance of
optical bistability in metal-dielectric composites made of
cubic nonlinear components has been predicted and dis-
cussed in a number of previous articles. Here we demon-
strate this possibility in composites made of quadratic
nonlinear components. Such materials are interesting be-
cause optical bistability can occur in them even when all
the components are purely dielectric. It is no longer nec-

essary that the composite include a metallic component
and lie close to a quasistatic resonance, as with cubic non-
linear components. Nevertheless, it should be noted that
metal-dielectric composites with cubic nonlinear compo-
nents may well be more promising for achieving bistabil-
ity, since they require lower threshold Geld intensities. In
some such three-component cubic nonlinear composites
threshold intensities of only a few W/crn2 are needed
[15,17j, as compared to minimal values of the order of
104 W/cm2 in the examples described in this paper. Pos-
sibly other geometries not discussed here, such as suspen-
sions of metal spheres coated with a SHG material, may
prove to be still more promising.

We showed in this paper that the nonlinear bulk ef-
fective optical properties of composite materials may be
much stronger then those of their pure nonlinear com-
ponents. Such a composite may thus be a better mate-
rial for use in nonlinear optical devices. The quasistatic
calculation of these bulk effective properties is based on
the assumption that the characteristic scale of the mi-
croscopic inhomogeneities inside the composite is much
smaller than the wavelength of the local electric Gelds.
Incorporating such a composite as the active element in
an optical device would give rise to the usual propaga-
tion and phase matching effects which depend on the
macroscopic shape of the element and the anisotropy of
its structure. The quasistatic approximation does not ap-
ply to these macroscopic efFects and they thus should be
taken into account by the usual methods when analyzing
the performance of such a device.

The results presented in Secs. III—V show that the lay-
ered microgeometries are by far the best choices for fur-
ther study. This is due to the greater enhancement of
the electric Geld in the nonlinear component which they
can produce near a resonance. The enhancement ob-
tained in the dilute inclusions type of composite is much
smaller and thus causes smaller nonlinear effects. The
layered composites should also be easier to fabricate and
their anisotropic structure would be easier to match with
the anisotropic crystal structure of all real materials that
have a quadratic nonlinearity.
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