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Stochastic resonance in a mean-field model of cooperative behavior
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We study the long-time response of a stochastic system formed by very many interacting sub-
systems coupled by a mean-field interaction and subject to a time periodic external field. In the
absence of a driving field, the system shows an order-disorder phase transition and its time evolu-
tion is well described by a Fokker-Planck equation which is nonlinear in the probability density. We
carry out an analysis of the dynamics in the case of a weak driving field by means of a perturbation
analysis (linear response theory). The response of the system is then given in terms of a generalized
susceptibility. Its evaluation shows that the phenomenon of stochastic resonance, typical of driven
bistable systems, is greatly enhanced by the dynamical feedback induced by mean-field coupling.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

The subject of amplification of an external signal by
the concerted action of the system dynamics and noise
has been lately an active field of research [1]. In particu-
lar, a great deal of work has been devoted to the analysis
of the response of a system characterized by a single de-
gree of freedom, x, whose time evolution is governed by
the Langevin equation (in dimensionless form),

#(t) =z — 23 + Acos Qt + 7(t), (1)

where A cosQt represents the effect of the external sig-
nal and 7n(t) is a Gaussian noise with zero average and
{(n(t)n(s)) = 2Dé(t — s). The corresponding linear
Fokker-Planck equation (LFPE) for the probability den-
sity P(z,t) is

apP 1o} 8P
Bt = a{(—m+m3—Acosﬂt)P}+D~a—w?. (2)
The dynamics is that of a driven Brownian particle mov-
ing in a symmetric bistable potential in the limit of very
large damping. The analysis of the problem can be car-
ried out by making use of two important theorems: the
H theorem, which ensures the existence of a uniquely
determined long-time distribution function Py (z,t) and
the Floquet theorem, which guarantees that Po(z,t) is
periodic in time with the same period as the external
force. In the limit of weak driving amplitudes and for
driving frequencies smaller than the intrawell relaxation
frequency, the phenomenon of stochastic resonance (SR)
exists, so that the response of the system, measured by
its long-time noise average, shows oscillations with am-
plitudes which can be much larger than the external am-
plitude and with a phase which is shifted with respect to
that of the driving field. The nonmonotonic behaviors of
the phase shift and the amplitude of the response with
respect to the noise strength reflect the coherent use of
the noise power by the system.

In the present work, we are interested in exploring the
stochastic amplification of a sinusoidal signal in a model
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whose probability distribution obeys a nonlinear Fokker-
Planck equation (NLFPE). The nonlinearity is brought
about by the fact that the overall system consists of very
many subunits with mean-field interactions among them
[2]. The model will be presented in Sec. II. In the ab-
sence of external forcing, it can be shown that the sys-
tem reaches equilibrium for long times, but the form of
the equilibrium distribution function depends on the val-
ues of the parameters. Furthermore, in some regions of
the parameter space, there are more than one station-
ary distribution and the system goes to one or the other
depending upon its initial preparation. This bifurcation
of the probability density is a consequence of the mean-
field coupling and it is absent in the typical bistable LFP
models described by Eq. (2).

When the mean-field model is acted upon by a weak
time periodic force, it is possible to analyze its long-time
behavior by means of perturbation theory around each
of the stationary solutions, as shown in Sec. III. The re-
sponse of the system is given in terms of a generalized
susceptibility which can be constructed from the suscep-
tibility of the model when the dynamical feedback due
to the mean-field coupling is neglected. In Sec. IV, we
calculate the generalized susceptibility. It shows a non-
monotonic behavior with the noise strength, pointing out
that a resonant amplification of the input signal is fea-
sible. The degree of amplification is larger than the one
obtained with linear FP models. The results of the per-
turbation analysis are corroborated by the numerical so-
lution of the Langevin equation, which is also carried out
in Sec. IV.

II. THE MEAN-FIELD MODEL

Let us consider a set of IV interacting subsystems, each
one of them characterized by a single degree of freedom
z; (¢ =1,2,...,N), whose dynamics is governed by the
Langevin equations

N
g
o= . — 3 E . ) + n;
Ty = Ty ZT; N j:I(mJ $") Yo (t)’ (3)
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where 7;(t) is a Gaussian white noise with zero average
and (n;(t)n;(s)) = 2Dé;;6(t — s), and ¥ is a param-
eter measuring the strength of the mean-field interac-
tion between subsystems. This model was introduced
by Kometani and Shimizu [3] to study the dynamics of
muscle contraction. Later on, Desai and Zwanzig [2] and
Dawson [4] gave a more complete statistical mechanical
description of the model relating it to the Weiss-Ising
model. They showed that, in the limit N — oo, all the
subsystems have an identical evolution given by the non-
linear stochastic equation

&(t) = (1= 9)z(t) — 23(t) + () + (), (4)

where (z(t)) = imy_,00 N™1 3 z;(t). According to the
law of large numbers, (z(t)) does not fluctuate. It rep-
resents the time-dependent order parameter. The corre-
sponding NLFPE is

OP(z,t) t)
8t

8%P(z,t)
fz2
()
where the prime indicates derivative with respect to x of

the effective potential Uesy(x, (x(t))t] = (¢ —1)%- 2 ”— -
Hx(t))x, and (x(t)) satisfies

{ eflas (z(8)),t]P(z, 1)} + D

@@»z/mP@JMm (6)

Because of this condition, the FPE is a truly nonlinear
evolution equation for the probability density. Depend-
ing on the values of the parameters D and ¥, there might
be more than one stable distribution. The functional
form of the equilibrium solution of the NLPFE is ob-

tained by setting 9%1 = 0. This leads to

Peq(w,<m>eq>=z—1ex;>{ SUets(@ <x>eq)} (7)

where Z is the normalization factor. The equilibrium
effective potential that shows up in Eq. (7) depends on
(z)eq which in turn has to comply with the condition

(@)eq = / 2 Pag(2, () eq) de (8)

The solution of this implicit equation yields the behav-
ior of (x)eq with the system parameters. It is clear that
(z)eq = 0 is always a solution of Eqs. (7) and (8). On
the other hand, the slope of the right-hand side of Eq.
(8), considered as a function of (z)eq, changes from be-
ing less than 1 to greater than 1 at the origin, depend-
ing upon the values of the system parameters. Then,
when the slope is equal to 1 there exists a critical line
1 = Z[(z?)eq — (z)2,] separating two distinct regions in
the space of parameters (¥, D). For a given value of 9,
there exists a D = D, such that for values greater than
D, the only stable equilibrium average is (x)eq = 0 and
so, there is just one stable equilibrium probability den-
sity which has either one or two maxima depending on
whether 9 is larger or smaller than 1. For values of D

smaller than the critical value, there are three solutions
of Eq. (8). One of them (x)e; = 0 is unstable while the
others two (x)eq = o are stable. Thus, in this region,
there are two stable equilibrium distributions which are
always single peaked. The system tends to one of them
depending on the initial condition. We see then that this
system shows a phase transition. For parameter values
lying below the critical line, the system is said to be in
a disordered phase ({(z)eq = 0) while above the critical
line the system is in an ordered phase ((z)cq # 0). At
the critical line there is then a bifurcation of the prob-
ability density. In Fig. 1 we indicate the critical hne
in terms of the parameters 6 and |z |=|0 — 1 | (2D)“’

The equilibrium effective potential for each region is also
sketched.

A few years ago, Shiino [5] was able to prove rigorously
an important theorem which plays a role analogous to
the H theorem of the LFP models. He introduced the
quantity

P(z,t) t) dx
Q(z,t)

where the auxiliary function Q(z,t) is defined as

H= /P@Ql (9)

Q(z,t) = eXP{——[ Uess(@, (x(8)),t)] — o5 m(t)>2}
(10)

Shiino proved that (i) H(t) is bounded from below and
(ii) % <0, i.e., H(t) is a monotonically decreasing func-
tion of time. Consequently, for long times, the system al-
ways relaxes to one of the equilibrium distributions with
(z)eq being one of the stable solutions of Eq. (8).

In this work we are interested in the dynamics of the
system while being driven by an external time-dependent
sinusoidal force. The dynamics of the relevant variable
z(t) is then described by the Langevin equation

&(t) = (1 — 9)z(t) — 23(t) + Acos Qt + I{z(t)) + n(t),
(11)
or, equivalently, by the NLFPE
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FIG. 1. Equilibrium phase diagram for the mean-field

model. The dashed line is the critical line.
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6:91; = ({ ff[iﬂ (z(t)),t] — Acos Qt}P) +D?9I2)
(12)

We have not been able to find a quantity analogous to
the H used by Shiino in the absence of time-dependent
driving field. Also, by contrast with the LFP models,
Eq. (12) is nonlinear and the Floquet theorem does not
apply. Thus, in general, we cannot ensure that the long-
time solutions of the NLFPE will be periodic. In the
rest of the paper we will limit ourselves to the analysis of
the system dynamics when the driving field has a small
amplitude.

III. LINEAR RESPONSE THEORY (LRT)

Let us assume that the external field is so weak that
its action can be treated perturbatively. Then, the prob-
ability density can be expanded as P(z,t) = PO (z,t) +
P (z,t), where the first summand is the solution of the
NLPFE in the absence of driving field. The noise average

J

(x(t))V) = /dme(l)(m,t)

I

where

K(t) = (16)

0, t <0.

The response function K(t) is then related to the equi-
librium time correlation function of the system in the
absence of driving field. Notice that the stable equilib-
rium solution around which we are perturbing depends
upon the values of the parameters and also on the initial
condition when two stable distributions coexist. Using
Fourier transform we get

(w(@))® = R(w) {ﬂ<x<w>>“> + 215w — 9) + 5w +9)] }
(17)
where

= /Ooo dt K (t) exp{—iwt}. (18)

Thus, we have that the Fourier transform of the long-
time deviation of the average value with respect to its
corresponding equilibrium value is given by

/t dr[9{z(7))® + Acos Qr|K (t — 7),

also splits up in two terms as (z(t)) = (x(t))©® +(z(t))D).
From the discussion of the preceding section we know
that P(®)(z,t) decays for long times to one of the equi-
librium solutions. Thus, for long times, first order per-
turbation theory allows us to analyze the deviations of
the probability density with respect to the equilibrium
ones. It follows from Eq. (12) that

PO (z,1) / dr =PV (2)<0)

x{9(a(r)

(13)

where ()¢, is the stable equilibrium average for given
values of the parameters D and ¢ of the unperturbed
system. The linear FP operator D(®) ((z).,) is given by

32
9z2
It is straightforward to show that D°((z)eq) xP.q =

8P,
~Uls5(@, (2)eq) Peg = D221
Then it follows that

DO ((2)eq) = [(19 — 1)z —2® — H(z)eg] + D (14)

t
—%/ d‘r/d:c [$(z(r))® +AcosQT]me(’_?)D(O)(("’%")D(O)((m)eq)wPeq

(15)
r
(z(w)M = Ax(w)[§(w + Q) + 6(w — )], (19)
where
R(w) (20)

x(w) = 1—_-19?(‘7)

Inverting Eq. (19) we see that, for long times, the re-
sponse of the system shows oscillatory behavior around
its corresponding equilibrium value as given by

(@() = Alx(Q)| cos(2t — ¢), (21)

where we have written x(2) = |x(2)|exp(i¢). In the
next section, we will explicitly evaluate the generalized
susceptibility [x(§2)| to show that the response of the
system presents stochastic resonant effects which are en-
hanced by the mean-field coupling with respect to the
SR phenomena of the LFP models. The form of the re-
sponse is similar to the one found by Dykman et al. [6] for
a linear FP model in the absence of mean-field coupling
(% = 0), except that now the quantity measuring the de-
gree of amplification is x and not R. The static suscepti-
bility x(0) diverges at the critical line [5] [1—9R(0) = 0].
Therefore, the relaxation time from any initial condition
also diverges as the system is near the critical line. On the
other hand, the amplitude of the oscillations of (z(t))(*)
remains finite for nonzero frequencies. This behavior is
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valid within the limits of LRT, but one cannot guarantee
that the same behavior will remain true for fields of any
amplitude. We are presently exploring the response of
the system to large driving fields, and the results seem
to indicate a shift of the location of the critical line with
respect to its zero-field value.

IV. ANALYSIS OF THE RESPONSE IN THE
REGION OF EQUILIBRIUM BISTABLE
POTENTIALS

As it is well known, the usual SR phenomena show up
for stochastic systems whose dynamics is such that there
are two attractors with noise-induced transitions between
them. Thus we will explore the response of the system
for the region of parameter space where the equilibrium
distribution in the absence of external field is bimodal
and the equilibrium effective potential is a symmetric
double well: ¥ < 1 and |z| < |z.| (see Fig. 1).

It is clear from the fluctuation-dissipation theorem that
the response function K (t) of a LFP model can be ob-
tained from the knowledge of the equilibrium time cor-
relation function of an undriven system. For linear FP
models with bistable potentials several analytical approx-
imations for the correlation function have been consid-
ered in the literature [7,8], which reflect the two relevant
dynamics for the relaxation process: intrawell and in-
terwell motions. It is then found that the susceptibility
R shows a nonmonotonic behavior with the noise inten-
sity so that the amplification of a weak input reaches
its maximum at a value of the noise Dj for which the
external frequency roughly matches twice the Kramers
frequency of noise induced interwell jumps. For D < Dy,
or D > D the degree of amplification is small.

As pointed out in Sec. III, for the present mean-field
model, the quantity related to the degree of amplification
is x given by Eq. (20). It is then clear that if R(w) for
a corresponding linear FP model is known from some
experimental measurement or some numerical calcula-
tion, the generalized susceptibility x(w) for the mean-
field model can readily be evaluated. In a previous work
[9], the average response of a linear model with a bistable
potential was obtained by numerically solving the FPE.
The method used was not restricted to very small values
of the noise strength. The procedure of Ref. [9] pro-
vides a reliable way to obtain the complex susceptibility
R for a LFP model with a bistable unperturbed potential
Uess(z) = (9-1) % + % and for values of D so large that
|z] < |2¢]. Once this function is known, the generalized
susceptibility x is obtained using Eq. (20).

In Fig. 2 we plot the behavior of |x| with respect to
|z| for several values of 9, obtained using the procedure
outlined above. The external frequency is kept fixed at
©Q = 0.1, while the amplitude of the driving field is taken
to be A = 0.032 for 9 = 0.1. The height of the un-
perturbed barrier, given by (1 — 9)2?/4, decreases as ¥
increases. The amplitude of the external driving is ad-
justed accordingly, so that, for any value of 9, it is kept
small enough for the linear response theory to remain
valid. The curves for ¥ # 0 end at |z.(¢)|, as we have
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FIG. 2. Modulus of the dynamical susceptibility |x| as a
function of |z| for 2 = 0.1 and several values of the mean-field
coupling parameter 9.
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FIG. 3. Ratio between |x| and |R| as a function of |z| for
© = 0.1 and several values of 9.
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FIG. 4. Dependence of |x| and |R| with the driving fre-
quency 2 for ¥ = 0.5 and |z| = 0.65.
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always kept our calculation restricted to the region where
|z| < |2¢(9)] and {x)eq = 0. We have not extended our
calculations to |z| > |2.(?)| as in this region the unper-
turbed equilibrium effective potentials have a single well
and no stochastic resonance amplification of a weak im-
put is expected there. Such restriction does not apply for
the case ¥ = 0 corresponding to the linear model.

It is clear that as the strength of the mean-field cou-
pling is increased, the degree of amplification also in-
creases. For ¥ = 0.1, the point of maximun amplifica-
tion takes place at |z| = 1.7 (D = 0.14), which is less
than [z.(0.1)|. If we use the Kramers formula to evaluate
twice the hopping rate of a noise-induced transition in a
bistable potential at this noise strength, we get

V2

2wy = —
T

1-9) exp{—f;} = 0.095, (22)

which roughly matches the driving frequency. This indi-
cates that for small values of ¥, the resonance mechanism
is basically the same as in the case of linear FP models.
As ¥ is increased, the peak in |x| appears at decreas-
ing values of |z| and the corresponding noise strengths
are too large for Kramers formula to apply. Therefore,
the resonance mechanism for large values of ¥ is influ-
enced by the mean-field coupling that has a dynamical
effect, so that the average ¥(z(t)) acts as a feedback in
the dynamics cooperating with the noise and the driv-
ing field to give rise to the large amplification. This is
corroborated by the plots in Fig. 3, showing the ratio
|x|/|R| vs |2| for several values of . The curves indicate
that the generalized susceptibility |x| is always greater
than the susceptibility |[R| of a LFP system with poten-
tial U(z) = (9 — 1)% + =

We have also studied the influence of the driving fre-
quency on the phenomenon of signal amplification. For
driven linear FP models, |R| decreases monotonously as
Q increases [8]. In Fig. 4 we plot the behavior of |R|
vs the driving frequency for the parameters ¥ = 0.5 and
|z| = 0.65. The decrease of |R| as Q increases is consis-
tent with the behavior in linear models. This is because
R is actually related to the response of a linear bistable
model with a barrier height which depends on ¥. We also
show in Fig. 4 the behavior of |x(2)| for the same values
of D and 9. Although the degree of amplification in a
mean-field model also decreases as 2 increases, it is clear
that the variation of |x| with the frequency is much faster
than that of |R|. This feature also reflects the influence
of the dynamical effect of the mean-field coupling.

<x(t)>
0

C,(®

FIG. 5. Temporal evolution of the first two cumulants for
|z| = 1.16, 9 = 0.1 and driving parameters A = 0.1 and
Q2 =0.1.

The response of the system to a driving field can also
be analyzed by means of the Langevin equation. We
have solved numerically Eq. (11) by generating a suffi-
ciently large number of stochastic trajectories (5000 in
most cases) and averaging over them. At each time
step, the noise average (z(t)) is evaluated and its value
is used as an input for all the noise realizations in the
next time step. This technique was previously used by
us for the same model in the absence of driving field and
details can be found in Ref. [10]. In Fig. 5 we show
the time behavior of the first two cumulants (z(t)) and
C2(t) = (z2(t)) — (z(¢))? for |2| = 1.16,9 = 0.1 and driv-
ing field parameters A = 0.1 and Q = 0.1. It is observed
that, after a short transient, the average response (z(t))
shows an oscillation with an amplitude larger than the
driving amplitude and a frequency equal to the driving
frequency. The second cumulant also shows an oscilla-
tory behavior around a steady value which is fairly large
as it is characteristic of the cumulant of a bimodal dis-
tribution function. Similar behaviors are obtained with
simulations for different values of |z|. The degree of am-
plification depends on |z|, so that, the resonance curve for
|x| obtained with the simulation of the Langevin equation
matches the one shown in Fig. 2 using LRT.

In conclusion, we have seen that the dynamical feed-
back due to the mean-field coupling among very many
interacting bistable systems driven by a weak time pe-
riodic field enhances the stochastic resonant effect with
respect to the one obtained in a single bistable system.
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