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Symmetry properties and exact patterns in birefringent optical fibers
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A pair of nonlinear Schrodinger equations, describing the propagation of waves in birefringent
optical fibers, is studied by means of a Lie group technique. The symmetry algebra and the symmetry
group associated with the equations are exploited to provide exact configurations. These are the
soliton profile, which corresponds to a linear combination of the coordinate translations and the
constant change of phase, a solution expressed in terms of the sinus elliptic function, a solution
related to the Galilean boost, and other solutions which may be used as a guide for the creation
of different experimental patterns. Among them, of special interest is a configuration involving the
loss coe%cient of the fiber, whose "mass density" is time independent and behaves as a screened
Coulomb potential in the space variable.

PACS number(s): 42.81.Dp, 42.65.—k, 02.20.—a, 02.30.—f

I. INTRODUCTION

i u + —u„+ k'v+ (~u~2+ cr~v~2)u = 0,
2

i v 6 —vtt + k'u+ (~v~ + crau~ )v = 0,
2

(1.2a)

(1.2b)

where k' = k/a, + (—) holds in the anomalous (normal)
dispersion regime and cr = ~ = z+&, B being the third-
order susceptibility coefficient [2—4]. For n = P (cr =
1) and k = 0, the system (1.1) has an infinite set of
constants of motion and may be solved by the inverse
scattering method [5).

In general, i.e., for n g P and k g 0, the system
(1.1) is not integrable by inverse scattering. In this case,
Eqs. (1.1) possess three constants of motion only [1]. On
the other hand, it is well known that a powerful tool
for handling both integrable and nonintegrable difFeren-
tial equations is represented by the so-called symmetry
approach [6]. This method, which is based on the Lie
group theory, consists essentially in looking for symmetry
transformations that reduce the equations under consid-
eration to certain ordinary difFerential equations; each of
them comes from an invariant quantity associated with
a given symmetry allowed by the system. Following this

The propagation of optical pulses in nonlinear bire-
&ingent fibers is described by the pair of nonlinear
Schrodinger equations [1]

, = t u. + u«+ kv+ (~lul'+ &lvl')u = o, (1.»)
A2 = t ve + vtt + kK + (tilvl' + &lul')v = 0, (1»)

where u = u(2:, t) and v = v(x, t) are the circularly polar-
ized components of the optical field, x and t denote the
(normalized) longitudinal coordinate of the fiber and the
time variable, respectively, A: is the bire&ingence param-
eter, and the coefficients n and P are responsible for the
nonlinear properties of the fiber [2—4]. Perforining the
change of variables x,' nx, t:pt, with p
6 2i a, Eqs. (1.1) take the form

idea, in this work we apply the symmetry approach to
Eqs. (1.1). We display examples of exact solutions in
both cases n = P and cx g P. In this regard, we observe
that the bire&ingent parameter k involved in Eqs. (1.1)
is real. However, the symmetry algebra found for n = P
does not depend on A:. This fact suggested that we study
the system also for imaginary values of k. In such a sit-
uation, at least when u = v, k can be interpreted as the
loss coefficient of the fiber [7]: We have obtained an in-
teresting exact solution for u g v as well. This solution is
derived from the Galilean boost. Another important as-
pect of the symmetry reduction technique is the determi-
nation of the infinitesimal operator, which is responsible
for the soliton profile and the periodic configuration.

In Sec. II we outline the method of symmetry re-
duction and obtain the symmetry algebra and the corre-
sponding symmetry group related to Eqs. (1.1). Section
III contains examples of specific exact solutions, while in
Sec. IV some concluding remarks are reported.

II. METHOD OF SYMMETRY REDUCTION

A. Symmetry algebra

V~ I(z, t, u, v, u', v') = 0, j = 1, 2, ..., n, (2.1)

where (Vz) is a basis of the Lie algebra l:s of gs, and n
is the number of the independent elements (infinitesimal

The method of symmetry reduction (SR) consists of an
application of the Lie group theory to reduce Eqs. (1.1)
to a system of ordinary difFerential equations.

A fundamental step of the SR procedure is to obtain
the Lie point symmetries [6] of Eqs. (1.1): in other words,
the symmetry algebra 8 and the corresponding symme-
try group g of the equations under investigation. Then,
we can buildup solutions that are invariants under some
specific subgroup go of g. The SR can be carried out via
the determination of the invariants of go. Invariants are
furnished by the partial difFerential equations
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operators) Vz of i"o. Once the invariants related to gp
are known, Eqs. (1.1) can be written in terms of them.
In such a way, we are led to a set of reduced equations
which may yield exact solutions to the original system
(1.1). The Lie point symmetries of Eqs. (1.1) can be
found by resorting to the standard technique outlined in
[6]. Precisely, let us introduce the vector field

V —($8 + (28i + (38„+(48„.+ (38„+(sB„., (2.2)

where (~ (j = 1, 2, ..., 6) are functions that depend, in

general, on x, t, u, u*, v, v*, and 0 = , and so on. A
local group of transformations G is a symmetry group for
Eqs. (1.1) if, and only if,

pr( )V[A&] = 0, pr( )V[6,*] = 0, j = 1, 2, (2.3)

whenever L~ = 0, L' = 0 for every generator of G,
where pr(2) V is the second prolongation of V [6].

The conditions (2.3) constitute a set of constraints in
the form of partial di6'erential equations, which enable
us to obtain the coefficients (~. The calculations have
been performed in part by using the symbolic computer
language REDUGE [8]. We have achieved the following
results.

[Vt, Vs] = V& + kVs, [V&1 V7] = —2kVs)
1 1

[Vz Vs] = 2kV7, [V2, V5] = —V2, [V5, V4] = —V4, (2.7)

and

[Vs, V7] = 2Vs, [V7, Vs] = 2Vs) [Vs, Vs] = 2V7 .

(2.8)

B. Group transformations

By integrating the infinitesimal operators Vq, ..., V8, we

provide the group transformations that leave Eqs. (1.1)
invariant. These are, respectively,

Vj . t=t, x=x+4, u=u, v=v, (2.9a)

The vector fields Vq, ..., Vs are the generators of the
infinitesimal symmetries transformations of Eqs. (1.1).
These are the coordinate translations and the Galilean
boost (V4), which are common to both cases I and II.
Moreover, for n = P, Eqs. (1.1) admit the additional
symmetry SU(2, C), which is expressed by the generators
Vs V7 and Vs satisfying the commutation rules (2.8) [9].

CaseI:a+P V2.' t=t+A, x=x, u=u, v=v, (2.9b)

The symmetry algebra is defined by four elements,
namely,

V: x=x, t=t, u=ue', v=ve' (2.9c)

Vj ——0, V2 ——Og,

V3 = t(uBn —tL Bn~ + VBo —V Bo~ ),

V4 = xBL + —t (tLBn —u Bn + VBc —V Bs ),2

where the nonvanishing commutation relations are

1
[Vz, V4] = V2, [V2, V4] = —V3.

(2.4)

(2 5)

V4.

V5 .

x=x, t=t+Ax,
—'(A ——A )

~(At —2A x™)
) (2.9d)

x = e~x t = e"i"t,
&u& ( cosk(x —x) sink(x —x)) fu&
rivi & (—sink(x —x) cos k(x —x) i~ rivi~ '

(2.9e)

2. Case II: cx = P

V6 .. x —x,

(vi i vi
(2.9f)

1 1
Vs = xB~ + —tBL ——(uBn + u Bn~ + vBo + v Bow )2 2

+'Lkx(vBn —v Bni + uBo —tL Bci ) ) (2.6a)

Vs ——i(vB„—v*B„- + uB„—u'8„.), (2.6b)

The symmetry algebra is of the sl(8, C) type. It is
defined by eight elements: four of them coincide with the
previous ones, while the others are given by

V7. x=x, t=t,
eiA(cos 2ks o's —sin 2ks os)

&"i ivi

Vs.. x=x, t=t,
eiA(sin 2ks cr +cos 2ks (y )

4"i

(2.9g)

(2.9h)

V7 ——(vB„+v*B„.—uB„—u*B„.) cos 2kx
—i(uB„—u'8„. —vB„+v*B„.) sin 2kx, (2.6c)

Vs = (vB„+v*B„.—uB„—u*B„-)sin 2kx

+i(uB„—u'8„. —vB„+v'8„. ) cos 2kx (2.6d).

where A and o.q, o.2, and o3 are the group parameter and
the Pauli matrices, respectively. In deriving (2.9), we
have used the initial conditions x(A) ~g 0 ——x, t(A) ~p= t, u(A) ~g p

——u, and v(A) ~p p
——v.

Equations (2.9a)—(2.9h) tell us that if u
f (x, t), v = g(x, t) is a solution of the system (1.1),
so are

The nonvanishing commutation relations fulfilled by
Vt, . . . , Vs, are (2.5) together with u(') = f(*—X, t), (2.10a)



52 SYMMETRY PROPERTIES AND EXACT PATTERNS IN. . . 3161

u(') = f(*,t —A),

u( ) = e'"f(x, t), v( ) = e'"g(x, t),

u = f(x, t —Ax)e ~ "'

(2.10b)

(2.10c)

Inserting, for instance,

u(x, t) = U(y)e**, v(x, t) = W(y)e', (3.2)

into Eqs. (1.1) (for n = P) gives the pair of (ordinary)
reduced equations

(4)
( t A )

~f(At —~~A x)

u = e & (f(e "x,e 2 t) cos [kx(e" —1)]

+ig(e "x,e & t) sin [kx(e" —1)]),
v = e & (g(e "x,e 2 t) cos [kx(e" —1)]

+i f (e "x,e & t) sin [kx(e" —1)]),

(2.1od)

iU'+ U —U" —kW —n(~U~ + ~W[ )U = 0,

iW'+ W —W" —kU —cx([U['+ [W[')W = 0,

where

dU ( de
U=U(y), W=W(y), U'=, andW'=

8y Qy

(3.3a)

(3.3b)

(2 10e) Now, let us look for solutions to Eqs. (3.3) of the type

u( ) = f(x, t) cosA+ig(x, t) sinA,
U(y) = p(y)e"", W = q(y)e'", (3.4)

v( ) = i f (x, t) sin A+ g(x, t) cos A,

u( ) = (cos A —i sin A sin 2kx) f (x, t)
+(sinA cos2kx)g(x, t),

()=(— '
A o 2k )f(, t)

+(cos A + i sin A sin 2kx) g (x, t),

u = (cos A+i sinA cos2kx) f(x, t)
+(sinA sin2kx)g(x, t),

+(cos A —i sin A cos 2kx)g(x, t).

(2.1of)

(2.1og)

(2.1Oh)

(2b —1)q' —kpsin(b —p)y = 0, (3.5a)

p" + (p —'7 —1)p + kq cos (b —p)y + ~(p' + q')» = O,

q" + (b —b —l)q+ kpcos (b —p)y+ n(p + q )q = 0.

(3.5b)

p
dy dy)

where p, q are real functions of y and p, b are real con-
stants. In doing so, Eqs. (3.3) yield

(2p —1)p'+ kq sin (b —p)y = 0,

III. EXACT SOLUTIONS

As we have already mentioned, the method of symxne-
try reduction of a partial differential equation amounts
essentially to finding the invariants ( symmetry variables)
of a given subgroup of the symmetry group admitted by
the equation under consideration. A basis set of invari-
ants for the generators V~ can be obtained by solving
Eq. (2.1). Alternatively, one can resort to a direct equiv-
alent procedure by using the group transformations (2.9).

The invariants can be exploited to provide exact solu-
tions to Eqs. (1.1). By way of example, in this section
we shall deal with the invariants related to the symmetry
operators (a) Vp ——Vi+ V2+ V3 (b) V4) (c) Vi+ V4y

(d) Vs.

i. Case (a)

Equations (3.5) produce some interesting configurations
of Eqs. (1.1), such as the soliton profile and solutions
expressed in terms of the elliptic Jacobi function sn().

To this aim, let us choose p = b = 2. Then, by de6ning
z = p+ iq = pe' ~ (p = ~z~), we have

p =(- —k)p ——p +c,&2 3 4

2
(3.6)

1 3 1
p = q = p = (4 —k) —sech

o.
s —k (y —yp)

(3.7)

where p' = ~& and c is a constant of integration. The
soliton profile comes from (3.6) for c = 0, by taking n &
0, k ( 4. Precisely

A set of invariants related to Vo is

y=t —x=t —x,

where yp is an arbitrary constant. With the help of (3.7),
&om (3.2) we obtain

u = v = e-'('+*)p(t —x) (3.8)
0

U=ue ' =ue

Uq ——ue ' = ue

~ A

TV=ve ' =ve

R'q ——ve ' = ve (3.1)

with p(t —x) given by (3.7).
We notice that for c = 0, and n ( 0, k & —,Eq. (3.6)

leads to the solution



3162 ALFINITO, LEO, LEO, SOLIANI, AND SOLOMBRINO 52

p=q= = (4 —k) —secp 3 1
n

(3.9)

4 +~(i+~&~ ) a»~+&pv= e.'
iA:~ (s.16b)

In this case, we loose the soliton character of the profile.
(The onset of the soliton depends on the parameters n
and k.)

Another interesting solution linked to the symmetry
operator Vp arises for c = k —3/4 —(a~/2 ) 0 and
n ( 0, k ) 4. Indeed, &om Eqs. (3.6), (3.4), and (3.2),
we have

A
Up —Vo

Uo + Vo' (s.17)

with Up ——U(x, t)~e e, t t„Vp = V(x, t)~
Interesting special cases arise from (3.16) for P = 0

and A = 1. For A = 0, Eqs. (3.16) yield

where a is a real constant, and A is a parameter defined
by

u = v = e-'~' ]sn ~c(t —x), h, (3.1o) i ~ +kx+cxa inx+hp
'll = V 4a

2~x (s.18)

where sn() is the sinus elliptic function of modulus h = while when A = t. , we obtain

Case (5)

By using the basis of invariants

i 4 + 2cxa in@+ bpu = e " coskx,
x

i 4' +2cxa~ 1nx+bpv=i e sin kx.
x

(3.19a)

(3.19b)

U( )
- it /4Z — it /4z—

W( )
it /4e — — it /4e— (s.11)

i
(

U'+ —U
f
+ kW+ (n/U/'+ P[W/') U = 0,

(3.12a)

associated with the vector field V4, &om Eqs. (1.1), we
find the pair of reduced equations

We notice that the mass density ~u( + (v) is of the
Coulomb type in the x variable and is time independent.
A discussion of a possible physical interpretation of the
class of solutions (3.18) is presented in Sec. IV.

Another class of exact solutions related to the genera-
tor V4 can be found for n g P and k = ikp, where kp is a
real number.

In this case, let us look for solutions to Eqs. (3.12) of
the type

i
I

w'+ —w
I
+ kU+ (~lw['+ &IUI') w = 0

2x

U = pe', R' = pe'~, (3.2o)

(3.12b)
where p, 8, and p are real functions of x. Inserting (3.20)
into Eqs. (3.12) yields

where U' = &, W' = "& . For n = P and assuming
that k is real, Eqs. (3.12) can be solved in the following
way. First, let us divide (3.12a) and (3.12b) by U and W,
respectively. Second, let us subtract the resulting equa-
tion corresponding to (3.12a) from that corresponding to
(3.12b). Then, we obtain

p' 1+ —+ kp cos(p —8) =0,
p 2x

8' + kp sin (p —8) —(cx ~ P) p2 = 0,

p' —kpsin(p —8) —(a+P) p = 0.

(3.21a)

(3.2lb)

(3.21c)
'(WU' —UW') + k (W' —U') = o.

By introducing now

(s.13) By integrating this system and using (3.11), we give the
following pair of exact solutions to Eqs. (1.1):

U = —(A+ B), W = —(A —R) (3.14)
where

2
s(4 + S) i ercsin [sech2kc(ec —zl]

) (3.22)

into Eq. (3.13), we can determine R in terms of A, namely

—2i(A:a+bp ) (3.15)

a i —,
" +~(&+~X~') 'in~+a,u= e .'*

X (
ike + p —ike) (3.16a)

where bo is a constant of integration. Hence, putting the
quantities (3.14) into Eq. (3.12a) and taking account of
(3.15), after some manipulations we arrive at the solu-
tions

cosh 2kp(xp —x)
)

1
8 = —arcsin [cosh 2kp(xp —x) j2

&1
x'

and c, xo, and 2:~, are real constants.
At this point, let us deal with the special choice 0 = p.

Then, Eqs. (3.21) lead to the solution
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tC = V= C e 4 e
~x

(3.24)

e—2A:ox

/u[' = /v/' = c2

(3.25)

where c and xq are constants. (For xq -+ oo, the inte-
gral at the right-hand side of (3.24) becomes E—q(2kx),
where Eq ( ) is the exponential integral function [10].) The
"mass density" corresponding to the solutions (3.22) and
(3.24) is

sh 2"o(*0 )

I = ~z(u sin kz + i v cos kx)
= ~z(u sin kx + iv cos kx),

J = v x(u cos kx —iv sin kx)
= ~z(ucos kx —iv sin kx),

&om which

~ = x(lul'+ lvl') = x(lul'+ lvl').

Equations (3.29) imply

1 (I sin kx + J cos kx),

(3.29)

(3.3Oa)

We point out that for k = 0, the mass densities (3.22)
behave as 1/x. Consequently, the presence of the param-
eter k = iko induces a change of the Coulomb-like mass
density.

( I cos k—x + J sin kx) . (3.3ob)

Then, substitution from (3.30) into Eqs. (1.1) (for n = P)
yields

8. Case (c)

A basis of invariants related to the symmetry operator
V» + V4 is given by

—(I —2(I') + 6('I' + 4('I" + a (~I~' + )
J[') I = 0,

(3.31a)

—(J —2V')+«'J'+4('J" +~(III'+ IJI') J = o
2i

(3.31b)

U(q) u e
——,

* ~(@+s'~') u e
——,

* ~(g+ ~ ')

W( )
—~f B(g+ ~8m ) —~x(g+ 6'x ) (3.26)

where I = Ig'), J = J((), I' =
&&, and J' = &&. A

simple solution to the system (3.31) can be found sup-
posing that I(() and J(() are real functions. In such a
case, Eqs. (3.28) can be easily integrated. We have

By assuming n = P, and setting (3.26) into Eqs. (1.1),
we get the reduced system —2 sin(kx + P)

U" ——gU + kW + n(iUi + iWi ) U = 0,
2

(3.27a) v = —z
—2 cos(kz + P)

Ck
(3.32)

W" ——g W + k U + (oiWi + iUi ) W = 0,
2

(3.27b)

=z@+ 2g,3
GZ

(3.28)

where z = 2~ (zg —k) and @ = 23 g—o. U.

Case (d)

A set of invariants arising &om the generator V5 is

x
t2

x
7t2

where U' =
g . By requiring that U and lV are real

functions and U = W, Eqs. (3.24) lead to a special case
of the second Painleve equation [11],i.e.,

from (3.29), where P is a constant and n may take both
positive and negative values.

IV. CONCLUSIONS

We have found some exact solutions to the system of
equations (1.1) describing the propagation of waves in
bire&ingent optical fibers. These equations have been an-
alyzed in the framework of the Lie group theory. We have
determined the associated symmetry algebra and the cor-
responding group transformations that leave Eqs. (1.1)
invariant. Explicit configurations have been obtained
both in the integrable and in the nonintegrable case.
The subgroups (of the symmetry group) responsible for
the soliton profile and for other interesting configurations
have been provided. We point out that, for n g P, the
symmetry algebra is independent &om the parameter k.
This fact allows us to find exact solutions to the system
(1.1) also in the case in which k is an imaginary param-
eter. In this situation, at least when u = v, A: can be
considered as the loss coeKcient of the fiber. Then, the
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is the radiative part, where A„, O„are real quantities,
one has that mass (energy) conservation requires the fol-

lowing form for A, [14]:

&(-.')
A (4.2)

exact solution (3.24) is obtained. This is noteworthy in
the sense that the related equation is not integrable.

Concerning a possible physical interpretation of the so-
lutions (3.18) (n = P, the integrable case), (3.22), and
(3.24) (n g P, the nonintegrable case), first we notice
that in dealing with the invariance of a di8'erential equa-
tion under a group of point transformations, together
with the difFerential equation also the boundary and/or
initial conditions must be invariant under the group.
This reduces the order of the symmetry group allowed by
the equation. In other words, this fact restricts the solu-
tions to that class that is compatible with the boundary
and/or initial conditions [12]. In our paper, we have lim-
ited ourselves to find the widest symmetry group relative
to the system (1.1). We have not solved, say, a Cauchy
problem, in the sense that we have not studied how a
given initial condition evolves. In the framework of the
Lie group theory, we have only solved exactly the couple
of Eqs. (1.1). Therefore, a possible physical interpreta-
tion of our singular solutions should be necessarily indica-
tive. A physical role of our "unusual" configurations can
be argued as follows. A common feature of these con-
figurations is that the corresponding "mass density" is
time independent and becomes singular at x = 0. A first
indication that these solutions may play a physical role is
the fact that their mass density mimics a Coulomb or a
Yukawa potential [see (3.25)]. Another aspect enforcing
a possible physical interpretation is connected with the
following considerations. For simplicity, let us take the
case k = 0 and u = v [the nonlinear Schrodinger (NLS)
equation]. Then, it is well known that the solution of the
NLS equation for a nonsoliton initial condition evolves
into a soliton pulse and a decaying radiative part [13].
The asymptotic behavior for large distances is governed
by the decaying radiative part. If

(4.1)

A natural choice for A„ is

A„= -sech ' (4 3)

where A and m are parameters to be determined. Thus,
for the asymptotic form of the decaying radiative part,
to be used in the mass (energy) invariants, one finds

A~(*t) = t
sech e 2 (4 4)

Keeping in mind the previous discussion, in our case we
have that the solution (3.18) corresponds to a mass den-
sity given by the Coulomb-like expression

2

lul' + lvl' =—
4x

(4.5)

which is time independent.
Therefore, we shall interpret such a solution as a kind

of static decaying radiative configuration. In other words,
in our situation, we do not need to make convergent in-
tegrals (mass and energy invariants) in the time variable
for the simple reason that we have a static mass density.
The solutions (3.18) (n = P) and (3.24) (n g P) can be
interpreted in the same manner. We point out that in all
the above-mentioned configurations, the phase has not a

C2
pure Gaussian form, 4 . This result is not surprising,
because our configurations are exact, while, on the con-
trary, the phase involved in (4.4) is a consequence of a
certain asymptotic expansion.

To conclude, we remark that the symmetry V4 en-
ables us to determine exact configurations, which have
the form of decaying radiative signals. These signals may
exist independently of the generation of the soliton pro-
file. Therefore, they possess an own identity, in the sense
that they have not to be reg'arded necessarily as "pertur-
bations" concomitant with the onset of the soliton signal.

Finally, we think that the knowledge of exact solutions
to Eqs. (1.1), which may be used with benefit as a guide
for the development of perturbative techniques or for nu-
merical calculations, could be a challenge for trying to
create different experimental patterns.
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