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Rotating ring-shaped bright solitons
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We show that ring-shaped bright soliton structures can exist in focusing Kerr media. Ring-shaped
bright solitons, being initially at rest, demonstrate the inherent tendency to shrink. However, the

ring axial rotation makes it possible to stabilize the soliton radius.

confirmed by numerical calculations.

PACS number(s): 42.81.Dp, 42.50.Rh, 42.65.—k

I. INTRODUCTION

Optical solitons have been observed experimentally for
the first time as temporal solitons in optical fibers [1] and
then as spatial solitons — self-trapped beams [2-7]. As
the circular-symmetry beam in a Kerr medium is unsta-
ble displaying blow-up and collapse [8], spatial solitons
have been observed in bulk media as soliton strips [2,6]
or in planar waveguide geometries [3-5,7].

The interest in spatial solitons is motivated by two
reasons. Firstly, solitons themselves are perfect, stable
self-trapped beams, which are able to interact elastically
with each other [9]. So they are very attractive for differ-
ent types of switching and logic devices. Secondly, spa-
tial solitons give a possibility to create self-induced wave-
guides for propagation of a weak beam of other wave-
length [10-12], or even a beam of comparable power
[13]. Another interesting possibility has been discussed
recently [14-16]. It was shown that a pair of paral-
lel, weakly overlapping soliton beams forms an induced
waveguide for a weak probe beam (of another wave-
length) propagating between the solitons, and such a
weak beam suppresses the mutual soliton interaction.

Additional advantages for spatial solitons are due to
the existence of one more dimension. This was recog-
nized for dark solitons, where the soliton vortices [17-20]
and ring-shaped dark solitons [21,22] were discovered. In
particular, the soliton vortices exhibit very high stabil-
ity, which is explained by the presence of a topological
charge. Ring-shaped dark solitons are not stationary,
they demonstrate a rich dynamics, but their inherent ten-
dency is to diverge, they expand and eventually decay.

In this paper we show that the ring-shaped bright soli-
tons also exist. Unlike ring-shaped dark solitons, initially
motionless bright ring-shaped solitons shrink. However,
these solitons have an additional parameter, namely, the
topological charge, which may be interpreted simply as
axial rotation of a soliton. Such rotation can stabilize
the soliton radius. Note, that the similar ring-shaped
(so-called cylindrical) solitons (without rotation) were
discovered previously in fluid dynamics and they are de-
scribed by the cylindrical Korteweg deVries equation (see
[23] and references therein).

We should emphasize the difference between the anal-
ysis presented here and the other problem, namely insta-
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The analytical results are

bility of exact stationary solutions of the circular sym-
metry (see, e.g., [24-28] and references therein). Ring-
shaped bright solitons, considered in this paper, are in-
trinsically dynamical (i.e., expanding or shrinking), and
they retain circular symmetry and soliton properties de-
spite this dynamics. Ring-shaped solitons become sta-
tionary only at particular values of parameters. By con-
trast, solutions considered in [24-28] are stationary but
they exhibit some dynamics due to instability, losing cir-
cular symmetry and finally decaying in filaments.

The paper is organized as follows. In Sec. II we intro-
duce the two-dimensional nonlinear Schrédinger (NLS)
equation and its conservation laws, and we derive an an-
alytical expression for the dynamics of the soliton radius
(Sec. IIT) and compare these results with numerical com-
putations (Sec. IV). In Sec. V we briefly discuss the pos-
sibility of experimental verification of ring-shaped bright
solitons and suppression of modulational instability. Fi-
nally, Sec. VI summarizes the paper.

II. BASIC EQUATIONS

We start from the (2+41)-dimensional NLS equation,
which may be written in the normalized form as follows:

oy o
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where ¥(z,y,2) is the complex envelope of the electric
field, z and y are two transversal coordinates, and z is
the coordinate in the propagation direction.

Equation (1) possesses several conservation laws. For
our consideration the most important are the energy,
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and the Hamiltonian,
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Note also that if the field ¥ has a topological charge,
which is described by the multiplier in the form
exp(imyp), then the value m is conserved during the prop-
agation. The simple physical reason for this is that the
topological charge is quantized, i.e., it may take only in-
teger numbers, m = 0,+1,+£2,... .

III. ANALYTICAL APPROACH
TO SOLITON DYNAMICS

To obtain the approximate ring-type bright soliton of
Eq. (1), we generalize the soliton strip by “bending” it
into a ring of the radius r assuming rn > 1,

¥(p, ¢, 2) = nsech[n(p — )] expli(mp + Qp + T'z)]. (4)

Therefore, the ring-shaped bright soliton is described by
the parameters n, 2, r, m, and I". Note that at 2z = 0
the initial values 79, g, and r¢ are independent.

Strictly speaking, the ansatz (4) contains singularity
at p = 0 for m # 0, which does not exist in the exact so-
lution. In order to make finite the integral f;° "‘72 |4|2dp,
which arises in the Hamiltonian, we have to improve the
ansatz (4), multiplying it by some function f(z), where
f(z) > 0forz — 0 and f(z) =1 for « > 1 [for example,
f(z) = tanhz].

To analyze the ring-shaped soliton dynamics analyti-
cally, we assume that the soliton parameters 7, 2, and
r are slowly varying on the propagation distance z. So
we can treat the soliton dynamics adiabatically neglect-
ing the emission of radiation. Using these propositions,
for the approximate solution (4) the energy conservation
law yields

E = 4mqr, (5)

and the Hamiltonian

m? 2
HxE([9*+ — - L. 6
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One can see from the Hamiltonian structure that the
topological charge m can significantly affect the ring-
shaped soliton dynamics, especially for m > rn.
Equations (5) and (6) together with the relationship

dr

— = 7
form the complete set of equations for three unknown
functions 7(z), Q(z), and r(z). From this set we obtain
the following solution for r(z):

r(z) = \/|Cl(Cz + 2)2 — (r2nk — 3m?)/3C4|, (8)

where the integration constants are C; = QF + (3m? —
r2n2)/(3r%), C3 = Qoro/C1. The first integration con-
stant may be expressed also as C; = H/E; the meaning
of the second constant will be clarified below. The soli-
ton amplitude and its transverse velocity can be easily
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found from Egs. (5) and (7), respectively.

Depending on the initial values 79, Qg, 79, and m,
Eq. (8) describes both the increasing and decreasing soli-
ton radius. To simplify the analytical consideration, first
we consider the case 2o = 0 and m = 0, i.e., the ring
is initially at rest both in the angular and transversal
directions. From Eq. (8) we obtain that the soliton ra-
dius decreases during the propagation, and eventually
becomes equal to zero. So, the initially motionless ring-
shaped bright solitons demonstrate the inherent tendency
to shrink and collapse. The collapse occurs at

172T2 — 3m2
ZC=V?3T—02‘ (9)
1

This effect can be treated, at least qualitatively, as
“internal tension” which exists for, e.g., a bright-soliton
stripe. Indeed, it is known that the dark soliton stripe
is unstable to transverse (snakelike) modulations [29-31],
and the ring-shaped dark soliton tends to expand [21,22].
So, the dark soliton stripe can be compared with a com-
pressed spring. The bright soliton stripe is stable to
snakelike instability and, being bended to a ring, tends
to decrease the ring radius, so it can be compared with
a stretched spring.

Otherwise, the tendency of bright ring-shaped solitons
to shrink can be considered as a consequence of the over-
lapping of the ring with itself. At m = 0 the whole ring
is in-phase and the process of shrinking can be treated as
a result of attraction among different parts of the ring.
Note that due to two-dimensional geometry the tendency
to shrink is relatively strong. For example, the soliton
with the parameters 7o =1, 79 = 5, Qo =0, and m = 0
has the focusing length z. =~ 8.6. At the same time, for
a pair of the in-phase bright solitons in one dimension
with the separation A = %5, the interaction semiperiod
is found to be L = 116.5 (see, e.g., [32]), i.e., such an
interaction is much weaker.

If Q¢ # 0, the ring is initially shrinking or expanding.
For 4 < 0 such modulation decreases only the collapse
length, while for ¢ > 0 there are two different scenar-
ios. We have found that there exists a threshold value
of the initial transversal velocity Q. For 0 < Q¢ < Q4p
the ring-shaped soliton initially expands, then its radius
reaches the maximum value at the distance

Zg = —Cz, (10)

the soliton amplitude is minimal at the turning point,
and then the soliton begins to shrink. Equation (10)
indicates a simple physical meaning of the second inte-
gration constant Cy. The threshold velocity is given by

2.2 _ g2 1/2
Qen = (L) . (11)

For Q¢ > Q the soliton expands monotonically and
subsequently decays. For instance, at 5o = 1, ro = 5,
and m = 0 the threshold velocity ., =~ 0.58.

And, at last, for the nonzero topological charge m # 0
the additional “centrifugal force” appears, which tends
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to expand the ring. As a result, for the same 7o the
threshold value €, decreases. On the other hand, at
Qo = 0 there is relationship between ry and m, which
corresponds to the stationary solution — the soliton ra-
dius and other parameters are constant during the prop-
agation. Due to discreteness of m such states are possi-
ble only for some certain values of ro. For example, at
no = 1, m = 3 the theory predicts the stationary state at
rst ~ 4.9.

IV. NUMERICAL SIMULATIONS

To prove the predictions of the analytical approach
discussed above, we perform numerical simulations us-
ing the split-step method with the fast Fourier trans-
form on a diffraction step and a rectangular numerical
grid. We choose 179 = 1 in all calculations, as it may
be rescaled by a simple normalization. First, we demon-
strate the validity of the adiabatic approximation. In
particular, this approximation leads to the approximate
relation A(z) W(z) = 1 for any z, where A is the ring
amplitude and W is the ring width (width of the stripe).
We use this proposition in the approximate solution (4),
as the same variable n denotes the ring amplitude A = 7
and ring width W = 1/7. Figure 1 shows the dynam-
ics of the amplitude A, radius r, and product AW for
the initially motionless soliton with ro = 5, o = 0, and
m = 0, where A, r, and W are extracted from numerical
solution of Eq. (1). It is clearly seen that both soliton
ring amplitude and radius change several times, and the
product AW = 1 with very good precision. So, the adi-
abatic approximation can be applied. This test has been
used in all numerical calculations.

We observe a very good quantitative agreement be-
tween analytical and numerical data in a wide region of
the parameters 2o and m. Figure 2 shows the depen-

5: ]3

: |

4% ]

: ]
:35 1%<

E o
LA ] 3
o ] =
> F a
T 2F 1 €
O? p __H<

T e Pt ]

L < :

Ot 1 1 1 L 10

0] 2 4 6 8 10

Distance 2

FIG. 1. Numerical data for the ring radius r (solid line),
amplitude A (dotted line), and amplitude-width product AW
(dashed line). Initial values are 9o = 1, ro = 5, Qo = 0, and
topological charge m = 0.
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FIG. 2. Dynamics of ring-shaped soliton for several Qq, at
ro = 5, 70 = 1, and m = 0. (a) Soliton intensity I(z) = n*(2)
and (b) soliton radius. The solid lines are according to Eq. (8),
the dotted lines correspond to a numerical solution. The val-
ues of Qo are written near the curves.

dences of the soliton radius on z for o = 1, 1o = 5,
m = 0, and several values of Q. Note that the re-
sults agree rather well even for small r ~ 1, i.e., just
before breakdown. To study the soliton dynamics near
the threshold value of g, we extend the propagation dis-
tance up to z = 25 and again observe a good agreement
(see Fig. 3).

Also, our analytical solution agrees well with the nu-
merical results for the rotating solitons (see Fig. 4). In
particular, for 7o = 1, Qo = 0, and 7o = 5 we observe
the soliton ring radius stabilization at m = 3, as it is
predicted by the theory. Strictly speaking, such a state
is unstable to deviation of the initial ring radius r¢ from
the value 75, ~ 4.9, however such an instability devel-
ops relatively slow, and the ring radius does not change
significantly at the distances z ~ 10.

The obtained agreement between the analytical and
numerical results is much better than that for ring-
shaped dark solitons [22]. This may be explained by the
following reasons. Solution (4) approximates rather well
the exact solution for bright solitons, while for dark ones
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there is a discrepancy as the background intensity differs
significantly inside and outside the dark soliton. One
more reason is that the NLS equation for dark solitons
in the small-amplitude approximation becomes a KdV-
type equation [21]. It is known that under the action of
perturbations (even weak) a KdV soliton develops a tail,
while for a NLS soliton this effect does not occur. Indeed,
for dark solitons we observed strong perturbations of the
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background outside the soliton [22].

On the other hand, such a good agreement between
the analytical calculations and the theory shows that, al-
though the considered waves are not solitons in the exact
sense [as Eq. (1) is not integrable by the inverse scatter-
ing transform, and, moreover, the soliton amplitude and
width are not constant even in the absence of perturba-
tions], their behavior is very similar to that known for
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FIG. 3. Dynamics of the initially diverging soliton, o = 1, Q¢ = 0.4 (20 < 2tn), 7o = 5, and m = 0. (a) 2D plot, (b),(c)
comparison of numerical and analytical results for the soliton intensity and radius.
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FIG. 4. Bright soliton dynamics vs the topological charge
m, o =1, Qo =0, and 7o = 5. (a) Intensity, (b) radius. The
values of m are written near the curves.

solitons. In other words, emission of radiation is small
and the ring structures remain solitary waves despite the
inherent dynamics.

V. POSSIBILITIES OF EXPERIMENTAL
OBSERVATION OF RING-SHAPED BRIGHT
SOLITONS

First of all, experimental verification of the ring-shaped
solitons predicted here requires the creation of a ring-
shaped beam. For solitons without topological charge,
it can be done by using a ring amplitude mask, while
the additional phase mask can create the topological
charge. Although experimental realizations deal usually
with pulsed beams, this may be sufficient only for the
soliton parameters near the threshold Q.

The main difficulties are expected due to the occur-
rence of modulational instability. In our numerical ex-
periments we do not observe this effect. Indeed, since
the ring radius and ring intensity are determined as the
radius and intensity of the maximum of the ring, a good
agreement between analytical and numerical data evi-
dences the absence of filamentation for » > 1. The ring
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stability is also clearly seen in Fig. 3.

It can be explained by the relatively slow develop-
ment of the modulational instability. Indeed, even near
the maximum growth rate the propagation distance z =
15 — 20 is required for initial modulation with amplitude
1072 to develop significantly; due to smaller effective in-
tensity of the ring this distance is even more. Addition-
ally, only discrete frequencies w,, = n/r can be excited
on the ring, and the maximum growth rate corresponds
to wy for » = 5. However, decay on seven filaments
goes through modulation of both the ring amplitude and
width, which makes this process even slower.

From our calculations we can draw the conclusion that
there exists an optimal value of the initial soliton ra-
dius 79 ~ 5 when the internal soliton dynamics can be
clearly observed at relatively short distances z ~ 10,
while on such spatial scales modulational instability does
not develop significantly. However, in real experiments
the modulation may be essential, especially due to de-
viation of the ring mask center from the center of the
incident beam or due to piecelike structure of the phase
mask.

In experiments with soliton stripes in bulk media (see,
e.g., [2,6]) modulation instability is usually suppressed
by means of the two-beam interference technique, where
the second beam, identical to the first one, copropagates
simultaneously through a nonlinear medium at a slight
angle in the longitudinal dimension. Possibly, this tech-
nique may be applied to ring-shaped solitons as well. To
do this, two identical ring-shaped beams are to be passed
through the phase masks of opposite “polarities,” and the
resulting interference structure will be stable to modula-
tion instability.

VI. CONCLUSION

We have described ring-shaped bright solitons which
can exist in a bulk Kerr medium. We have derived the
soliton dynamics from conservation laws and show that
these solitons form a four-parameter family, i.e., the soli-
ton dynamics is determined by the initial soliton ampli-
tude 7o, radius rg, transversal velocity o, and topologi-
cal charge m. Being initially at rest, a ring-shaped soliton
demonstrates the inherent tendency to shrink. However,
in the presence of transverse and angular velocities the
soliton dynamics becomes more complicated. In partic-
ular, there is a threshold value of the transversal veloc-
ity Qn which separates the scenarios of expanding or
shrinking solitons. Also, the angular rotation can stabi-
lize the soliton radius. Analytical results are confirmed
by numerical calculations. Very good agreement between
numerical and analytical results shows that radiation of
linear waves is small and soliton dynamics can be treated
adiabatically.
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