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If a mechanical system with internal degrees of freedom is acted on by an external force, the
system’s center of mass will accelerate (nonrelativistically) in direct proportion to that force, but
constituent parts of the system will not. The equations of motion for isolated parts of the system
show corrections for internal reaction forces that are similar to the correction of the motion of an
accelerated charge by the radiation reaction force, or Schott term, in electrodynamics. By analyzing
the motion of a simple mechanical model, constructed to resemble the motion of an accelerated charge
in some key details, we find that the mechanical reaction force shares many features in common
with the electromagnetic Schott term. For example, the mechanical analogue of the Schott term
produces a Larmor-like energy dissipation rate for the system. However, our mechanical analogue
does not lead to the usual shortcomings of the electromagnetic Schott term, such as the generation
of runaway or acausal solutions to the equations of motion. Furthermore, the form of our mechanical
analogue indicates a way in which the electromagnetic Schott term can be corrected so as to avoid its
usual problems. The lowest order correction results in a modified equation of motion for a charged
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particle that was suggested by Eliezer [Proc. R. Soc. London Ser. A 194, 543 (1948)].

PACS number(s): 41.90.+e, 46.10.+z

I. INTRODUCTION: NATURE OF SCHOTT
CORRECTIONS

Finding a satisfactory equation of motion for a charged
particle in classical electrodynamics has provided a chal-
lenge to field theory for quite some time. The “mod-
ern” quest began some ninety years ago with the work
of Abraham [1,2] and Lorentz [3], and continued with
contributions by Schott [4,5], seminal papers by Dirac
[6] and analysis by Eliezer [7], a comprehensive book by
Rohrlich [8], new approaches by Teitelboim et al. [9], re-
view articles by Pearle [10] and Klepikov [11], and current
work by Barut and Unal [12], Comay [13], and others.
Many hundreds of papers have been published; the refer-
ences above are but a small sample. After all this work
there does not appear to be universal agreement on how
a charged particle moves and thus the equation of mo-
tion of a charged particle remains a subtle problem, with
surprises probably still to come.

Working nonrelativistically, we focus here on the inter-
pretation of the so-called Schott term, which appears as
the radiation reaction force in the equation of motion for
a particle of charge ¢ and mass m. If the particle moves
at velocity v, that equation is [14]

md = F + m7od, with 70 = 2/3 (¢?/mc®) .

(1.1)

The dot means d/dt. F is the external force acting on
the particle, the Schott term is the one containing ¥, and
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Eq. (1.1) is usually called the Abraham-Lorentz equation
of motion. The Schott term in part accounts for the fact
that the charge, while accelerating, radiates electromag-
netic energy at a rate given by the Larmor formula

RL(t) = mrov?, (1.2)
and that in emitting this radiant energy (and momen-
tum), the charge must show a correction to its otherwise
Newtonian motion.

In this paper, we shall calculate the analogue of a
Schott correction term for the motion of a simple mechan-
ical system. Besides showing that Schott-like correction
terms are not unique to equations of motion in electrody-
namics, we shall intercompare the effects of those terms
for the mechanical and electrodynamical systems. The &
term in electrodynamics, which persists in the relativis-
tic Lorentz-Dirac (LD) version of Eq. (1.1), generates a
number of well-known difficulties in analyzing ¢’s motion.
(the reader unfamiliar with these difficulties can consult
references [14] and [8]); the mechanical analogue is free
of these difficulties.

Desirable features of a Schott term are: (1) it can
be written in a Newtonian form (no explicit dependence
on %), (2) any time-nonlocal version of the Schott term
shows causal ordering between the applied force and the
particle motion, so that preacceleration problems are
avoided, (3) runaway solutions do not appear, (4) so-
lutions to standard problems can be reproduced without
ambiguity, and (5) the Larmor radiation rate formula re-
mains intact. In analyzing the motion of our simple me-
chanical system, we find that a correction term appears in
the equation of motion, and that this term shares many
features in common with the electromagnetic Schott term
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in Eq. (1.1). However, our mechanical Schott term does
not share the pathologies of the electromagnetic term—in
fact, it easily qualifies for the desirable features (1)—(5)
listed above. The implication is that the electromagnetic
Schott term might be successfully modified by drawing
on analogies with the mechanical system.

In Sec. ITA, we set up and solve the equations of mo-
tion for our one-dimensional mechanical system. We find
an exact form for the mechanical Schott term S(t), as a
reaction force acting in the equation of motion for the
“bare” mass m. In Sec. IIB, we analyze the nature of
S(t), and find that it qualifies for the “desirable features”
(1)—(4) listed above. The leading term in S(t) is propor-
tional to ¥ for the particle, as in Eq. (1.1); otherwise, S(t)
goes as V—where V is the system’s center-of-mass veloc-
ity. In Sec. IIC, we write an energy balance equation for
the mechanical system and thereby identify its rate of
energy dissipation. This rate is similar to the Larmor
radiation rate, Eq. (1.2), but it is based on the system
acceleration V rather than the particle acceleration 7.
Point (5) on the “desirable change” list is thus addressed.
In Sec. IIT A, we summarize the points of comparison be-
tween the mechanical and electromagnetic Schott terms,
and we argue that the standard electromagnetic Schott
term could be corrected for a center-of-mass effect inher-
ent in the acceleration of a charged particle. In lowest
order, this correction would not depend on the charge
having a finite size. In Sec. IIIB, we comment on dy-
namical substitutions that can and have been made to
regularize radiation reaction forces, with special empha-
sis on a substitution first suggested by Eliezer. We find
that Eliezer’s substitution has merit, but was probably
incomplete. In Sec. III C, we discuss elaborations of the
mechanical model which might be useful in completing
the analogy to the electromagnetic problem of an accel-
erated charge. Finally, in Sec. IV, we present our con-
clusions regarding possible corrections to electromagnetic
Schott terms.

II. SOLUTION FOR THE MECHANICAL
SYSTEM

A. Mechanical system details and equations of
motion

Figure 1 depicts the mechanical system we shall ana-
lyze. The system moves in one dimension, along the z
axis, and it consists of a central particle of “bare” mass
m coupled front and back to identical masses p. The
coupling is provided by identical massless springs, each
with force constant k, unstressed length ¢, and damping
constant 3. An external force F', at most a function of
time, acts on m and accelerates the system to the right.
The problem of interest is to find an equation of mo-
tion for the velocity v = & of the particle, m. In what
follows, we will often refer to that part of the system
exterior to m, namely the u’s plus the springs, as m’s
“field.” Therefore, m’s equation of motion will not be
simply md = F(t), but must be modified by the “field”
coupling. Clearly, this field can both store and dissipate
energy, and in those regards it shares some similarities
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FIG. 1. The mechanical system is confined to the z axis,
and consists of a central (bare) mass m coupled front and back
to “field” masses u. The coupling is provided by massless
springs, each of force constant k, unstressed length ¢, and
damping constant 3. An external force F(t) acts on m and
accelerates the system to the right.

0 x t <«€—— (positions)

with the electromagnetic field of an accelerated charged
particle.

On general grounds, we expect two modifications to
m’s equation of motion. First, the force F' acts to accel-
erate both the particle (mass m) and the field (mass 2u),
so the net inertial mass m - M = m + 2u. One can say
that the bare mass m is “dressed” by the field. Second,
the applied external force F' is not the only force acting
on m—acceleration of the field generates a reaction force
that alters m’s motion. Thus we anticipate an equation
of motion of general form

My = F(t) + S(¢). (2.1)
The dot means d/dt. By contrast with F(t), a force ap-
plied to the system by some external agent, S(t) is an
internal force that appears because of the system’s in-
trinsic degrees of freedom (here, the motion of y relative
to m). S(t) is expected to depend on the field param-
eters (u,k,3), and should vanish when either u — 0 or
k — o0, because then the particle-field coupling vanishes.
Also, if the system starts from rest, S(¢) should vanish
when the force F'(t) is zero, for then the system cannot
be excited. Finally, S(t) should account for the system’s
dissipation (via damping constant (3) as well as dynami-
cal corrections to the particle velocity v = &.

If, as in Fig. 1, the instantaneous position of the central
particle is z = z(t), and the positions of the p’s are £(t)
and 7(t), front and back, the system equations of motion
are

pé+2Bpé =kt — (€ - 2)], (2.22)
pii + 2Bun = —k [ — (z —n)], (2.2b)
mi = F — p(€ + 7). (2.2¢)

The damping constant 8 has been introduced so as to
have dimensions of a frequency. We shall recast Egs.
(2.2) in the center-of-mass (M) coordinates and relative
compression

CM position: Rom = (mz + ué + un)/M,

and Y = 2z — (£ +7), (2.3)
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where M = m + 2u is the total system mass. Upon
transforming Eqgs. (2.2) into these new coordinates, we
verify an important fact, namely,
MRcy = F. (2.4)
This standard result says that the system’s center of mass
obeys a strict Newtonian equation of motion, no matter
how the system’s internal degrees of freedom may behave.
Also by combining Egs. (2.2), we find
YV +28Y + w?Y = (2/m)F + 4(M/m)BRcm.  (2.5)
Here w? = (M/m)wZ, is a renormalized natural frequency
for the system. We can obtain the equation of motion for
the particle in terms of ¥ by substituting m = M — 2u
into Eq. (2.2c), rearranging terms and finally using Eq.
(2.3). We find
Mo =F +uY. (2.6)
The reaction force posited in Eq. (2.1) is thus S(¢) = pY,
and the particle mass m has been “dressed”: m — M =
m + 24 . .

Next, we solve Eq. (2.5) for Y. Let Z = Y, and operate
through Eq. (2.5) by d/dt. Upon setting Rcm = F/M,
per Eq. (2.4), we find

Z +2BZ + w?Z = B(t), (2.7)
where B(t) = (2/m)F+(4/m)BF. This is the equation of
motion for a damped, driven simple harmonic oscillator.
A particular solution to Eq. (2.7) is

Z(t) = A ~ B(t - 1) J(r)dr, (2.8)

where J(7) = (1/w,)e P sinw,7. w, = (w? —,32)1/2 is
the reduced frequency for the motion; we assume w, is
real. J(7) is the kernel for Eq. (2.7), and causality is
guaranteed by taking 7 = 0 as the lower limit in the

integral. In the present application, we want ¥ = Z.
After a partial integration, we find

V() = /0 " B(t - 7)(dJ/dr)dr. (2.9)

Now substitution of B(t —7) from Eq. (2.7) and then an-

other partial integration (using the fact that: J +208J =
—w?J, for t > 0), yields

pY (t) = 2-:% (F(t) - w2/ F(t— T)J(T)dT) = 5(¢).
0

(2.10)

Equation (2.10) is one form of the reaction force S(t) =

1Y appearing in Egs. (2.6) and (2.1). A form that is
sometimes more useful for the analysis to come is

S(t) = u¥ (1) = p(0), (2.11)
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where p(t) = (2u/m) [5° F(t — 7)G(7)dr, and G(1) =
e PTcosw,T + (B/w,)sinw,7]. Equation (2.11) follows
from Eq. (2.10) by a partial integration with respect to
dG = —w?Jdr. G(t) satisfies the homogeneous, damped
simple harmonic oscillator equation, Eq. (2.7), with ini-
tial conditions G(0+) = 1, and G(0+) = 0. At this
point, for the mechanical system in Fig. 1, whose equa-
tions of motion are given in Egs. (2.2), we have deduced
an equation of motion for the velocity v = & of the cen-
tral particle, m. As anticipated, the particle obeys Eq.
(2.1). Now we shall study S(t).

B. Role of the Schott term in the equation of motion

Several immediate properties of the Schott correction
S(t), just derived for the mechanical system in Fig. 1, are
that it does not depend on a superacceleration explicitly,
and it is nonlocal in time, but causal. These features
can be seen by using Eq. (2.10). First, we note that by
Eq. (2.4) we can write: F(t) = MV(t), where V = Rom
is the system’s center-of-mass velocity. Then Eq. (2.10)
becomes

S(t) = (2uM/m) <V(t) —w? /Ooo Vit - T)J(T)dT) .
(2.12)

A complete specification of S(t) requires knowing the CM
(center-of-mass) acceleration V (¢o) at the time o when
the external force acts. S(¢) in Eq. (2.12) applies with the
tacit assumption [going back to the choice of the partic-
ular integrals in Egs. (2.8) and (2.9)] that V (t < to) = 0,
and hence S(t < to) = 0, i.e., the system is at rest prior
to application of the external force. This condition poses
no limitations on the theory if we can claim that the sys-
tem was at rest at some time in the distant past (even
to — —o00), before the external force acted.

The time-nonlocal character of S(¢) is apparent in Eq.
(2.12), and also in the more compact expression in Eq.
(2.11)

5(0) = 3p(0), 50 = Cud/m) [~ V- 1)G(r)ar.
(2.13)

S(t) depends on the values of the force I = MV acting at
times ¢’ < ¢; this is causal ordering. The electromagnetic
Schott correction, when recast as an integrodifferential
equation, also shows a time-nonlocal (but acausal) char-
acter [15]. The time-nonlocalization for S(t) extends over
a time interval At ~ 1/, which is the characteristic de-
cay time for G(7). This interval can be arbitrarily long
for systems with little dissipation (8 — 0).

At this point it is worth noting a significant difference
between S(t) for the mechanical system and the elec-
tromagnetic Schott correction in Eq. (1.1). The latter
depends only on the particle velocity v, while the former
depends on the system (particle + field) CM velocity V.
For the mechanical system, the velocities v and V are
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related, but they are not the same so long as the particle
(mass m) and field (mass 2u) make individual nonzero
contributions to the overall system mass (M = m + 2u).
The relation between the particle velocity v and CM ve-
locity V is found as the first integral of the equation of
motion, Eq. (2.1). With § = dp/dt, and p(t) per Eq.
(2.13)

v(t) = V() + (2u/m) /0 TVt -Gy dr.  (2.14a)

Thus in the electromagnetic case, one might expect to
see CM corrections to the Schott term if the charge and
its field make separate contributions to the overall mass
of the system. We shall return to this point later.

Next, we look at the possibility of runaway solutions
for the mechanical system. Suppose the system is at rest
at t < 0, and then at ¢t = 0 it is subjected to an impulsive
force F(t) = MVyé(t). The CM will be accelerated from
V=0toV =V, att>0, and according to Eq. (2.14a)
the central particle will move at t > 0 with velocity

v(t) =Vo{l+ (2n/m)e Pt [cos w,t + (B/wy) sinw,t]}.
(2.14b)

Even for 3 — 0, the motion remains bounded, and ex-
hibits no runaway character. By contrast, in the electro-
magnetic case, the particle velocity would be increasing
at t > 0 (and in the force-free regime) by the exponential
factor exp (¢/70). This simple example appears to rule
out the occurrence of runaway solutions for the mechan-
ical system, at least as they are known in the analogous
electromagnetic situation.

For nonsingular external forces, the Schott correction
S(t) can be developed in a Taylor series. First, write p(t)
in Eq. (2.13) as

oo 1 d n . oo n
p(t) = (2uM/m) Z:O - (_E) V(t) /0 T"G(T) dr.

(2.15)

G(7) is defined in Eq. (2.11), and the integral is tabulated

[16]

o 203 . .
/ T G(r)dr = 25 (nl/w") [sin(n + 2)0/ sin 26],
0

(2.16)

where sinf = w,/w, cos@ = B/w. The series for p(t) is
now

p(t) = MTZ (sms:;;()z)o) (—%%)HV(Q, (2.17)

where T = 4uB/Mw?. T is a scale time for the mechan-
ical system; it is analogous to the electromagnetic scale
time 79 in Eq. (1.1). S = dp/dt becomes

S(t) = MTZUH(0)<-;1;%> V), (2.18)
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where 0,(0) = sin(n+2)0/sin 20. The first few expansion
coefficients are

00(0) =sin20/sin20 = 1,
01(0) = sin30/sin 20 = —(w® — 46%)/2pw,
02(0) = sin48/sin 20 = —2(w? — 28%) /w3, (2.19)

and so the leading terms of the Schott correction are

S(t) = MT [1 + (f{ﬂ:—ﬁz) 1d _ ] V. (2.20)

To the lowest order derivative: S ~ M TV, and if we
ignore the difference between the CM velocity V and the
particle velocity v per Eq. (2.14a), then S ~ MT%. This
crude approximation gives the mechanical analogue of
the electromagnetic Schott term appearing in Eq. (1.1).
Of course the exact form for the mechanical Schott term
in Eq. (2.13) contains much more (and different) detail.

Since the external force is F = MV, we can write the
leading term in Eq. (2.20) as § ~ TF. The particle
equation of motion, Eq. (2.1), is then

Mo = [1 + T(d/dt)] F(t). (2.21)

This result, which is “exact” for the mechanical system
to lowest order derivatives, recalls an equation of motion
that has been postulated by Eliezer [17], in an attempt
to eliminate such difficulties as runaway solutions and
preacceleration problems for the electromagnetic case.
Here, Eliezer’s equation arises naturally in the analysis
of our mechanical system, and in fact it does eliminate
runaways and preacceleration problems, as we have noted
above.

Equation (2.21) has an easy solution for simple har-
monic motion. If the binding force for the particle is
F = —Mv?z, then (2.21) gives

&+ 12T + 12z = 0, (2.22)
with solutions for the central particle’s position
z(t) = e~ T/t exp(+iv,t), (2.23)

where I' = 2T, v, = v[1— (1/T/2)2]1/2 If the scale
time T = 4pB/Mw? > 0 (i.e., the “field” mass p and
damping constant § are nonzero), and if we set v = wo,
then the oscillator amplitude is damped at a rate I'/2 =
(2u4/M)p, and its frequency is shifted downward to v, =

w2 —(T/ 2)2]1/2. This behavior reproduces the standard
result [18] for a radiation-damped oscillator, except for a
numerical factor in the frequency shift (v — v;).

In this section, we have analyzed how the Schott term
S(t) for the mechanical system contributes to the equa-
tion of motion for the central (bare particle) mass. Our
findings are that S(t)

(1) is Newtonian (if the system was at rest in the dis-
tant past);

(2) is nonlocal in time, but causal (no preacceleration
problems);

(3) depends on the system’s CM velocity, rather than
the particle velocity;
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(4) shows no apparent runaway solutions for the par-
ticle’s motion;

(5) reduces (in a crude approximation) to the electro-
magnetic Schott term;

(6) leads naturally to Eliezer’s postulated equation of
motion (2.21);

(7) reproduces the behavior of a radiation-damped os-
cillator.

We shall now study how S(t) contributes to the energy
balance in the mechanical system. In particular, we are
interested in what the “radiation rate,” i.e., the energy
dissipation rate, turns out to be.

C. Role of the Schott term in the system energy
balance

To derive a general energy balance equation for the
mechanical system in Fig. 1, we start from the equation
of motion in (2.1), put in S = dp/dt from Eq. (2.13),
and multiply both sides of the equation by the central
particle velocity v. As a consequence

d (1. 5\ dWw dp

p7 (5M” ) =& TVa

where dW/dt = Fv is the rate at which the external

force F does work on the particle. Next, we write vp =

d(vp)/dt — vp, and for © here we use Eq. (2.14): v =

V+p/M, where p is defined in Eq. (2.13). On rearranging
terms, we find

aw _ d

=—K Vo,
at i cMm+Vp

(2.24)

(2.25)

where Kcm = MV2/2 is the kinetic energy of the system
CM. The term in Vp in (2.25) is present because of the
Schott correction; it will provide us with the system’s
dissipation rate, as well as an additional correction to
Kcm- )

By use of Eq. (2.17) for p(t), we can write the Vp term
of (2.25) in the following form, with o, () defined in Eq.
(2.18):

Vp=MT {V2 + g""“’)(“”‘”" [V(%)HV] } )

(2.26)

The first term on the right-hand side (rhs) is a Larmor-
like dissipation rate. We write it as
R(t) = MTV(t)". (2.27)

As for the second term on the rhs in (2.26), we use the
identity

n—1

QU/at’@ = 4 30 (P [/ary Q] [(aanme]
A=0

(2.28)

and—after a minor bit of algebra—we find that (2.26)
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becomes

Vp=R(t) - SE),

where

n
3 (TP |
A=0

E(t) = (MT/w) " 0nta(6)
(2.29)

Here Q%) denotes (l/w)k(-—d/dt)kQ. In this way, the
Schott energy rate correction Vp splits into a dissipation
rate R and an energy correction £. The energy balance
equation (2.25) is

aw d

@ [Kem — E(t)] + R(2). (2.30)
This is the energy equation we will use in what follows.

That R(t) on the rhs of Eq. (2.30) is a true dissipation
rate for the mechanical system that can be seen by first
noting it is positive definite, and then integrating Eq.
(2.30) over a time interval t; < t < t;. This operation
yields

W (ts) — W(ts) = [Kom — £(t)] /t "Ry (231)

1

tz

+
ty
In the absence of R, the energy (W — Kcm + ) is con-
served. As it is, a nonzero R produces an irrecoverable
energy loss on the rhs of (2.31). As such, R must be
the system’s energy dissipation rate. Note that, with
the time scale T = 4u8/Mw? in (2.17), Eq. (2.27) speci-
fies R = (4uﬂ/w§)f/2, so—in an accelerating system—R
vanishes only when the “field” damping rate 8 — 0 (or
when the field itself vanishes, u — 0).

It is worth remarking that the (LD) equation of mo-

tion for a point charge (¢, m) leads to the same sort of
partitioning as Eq. (2.30). The (LD) equation is

.. 1 e |k
mv"™ = (g/c)F** vy + mmo ['v" +3 (V%) v ] ,  (2.32)

where v* is m’s four velocity, the dot means differentia-
tion with respect to m’s proper time, F** is an external
field, 7¢ is the scale time in Eq. (1.1), indices < run from
0 to 3, and the metric 7. = (1,—1,—1,—1) on the di-
agonal. The Schott term is apparent; together with the
radiant term in 1/c2, it forms the radiation reaction for
the accelerating charge. By isolating the timelike com-
ponent, £ = 0, of (2.32) and converting to lab time ¢, it
is a straightforward task to show

aw d
2 = 3 K T EMI+RL(), (2.33)
dW/dt = qF - v is the rate at which the external electric
field E does work on the particle, K = (7 — 1)mc? is the
particle’s relativistic kinetic energy, R = —m7o(0%04)

is the relativistic Larmor rate, and £ = mc?roy(dvy/dt)
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is a Schott correction to the kinetic energy. We see that,
in both the nonrelativistic (2.30) and relativistic (2.33)
cases, the radiation term in the equation of motion results
in a kinetic energy correction as well as a rate of energy
dissipation.

In deriving the energy balance in Eq. (2.30), we could
have focused on the Schott reaction force S(t) alone, cal-
culating the rate at which it does work on the central
particle. It is instructive to do this, in order to achieve
a different view of how the energy partitioning occurs in
(2.30). The Schott rate of work is

vS(t) =vp = gz(vp) — Up. (2.34)

Use: © = V + p/M, which is the equation of motion [Eq.
(2.1)], incorporating p(t) of Eq. (2.13). Then use Eq.
(2.29) for Vp. The result is

vS(t) = SIK ~ (Kou— )] ~R(),  (235)

where K = Mv2?/2, Kcm = MV?/2, £ is defined in
(2.29), and R appears in (2.27). When (2.35) is put
into (2.24), we get the same energy balance as we have
achieved in Eq. (2.30). From this, we see that the Schott
reaction force not only generates the energy dissipation
rate R and kinetic energy correction £, but it also shifts
the kinetic energy from the particle coordinates (v) to
CM coordinates (V).

We close this section by looking at how the mechan-
ical system’s energy dissipation rate, R in Eq. (2.27),
differs from the Larmor radiation rate R in Eq. (1.2).
The particle masses cancel, and we are comparing the
mechanical rate ( for one-dimensional (1D) motion)

R(t) = V2, v = 4Bu°/k, (2.36a)
with the electromagnetic rate
RL(t) = y9%, vr = 2¢%/3c3. (2.36Db)

Apart from the different physical constants appearing
in the coefficients v and -y, the salient difference between
the rates in Egs. (2.36) is that R depends on the acceler-
ation of the CM, V, while Ry, depends on the particle’s
acceleration ©¥. For the mechanical system, the velocities
v and V are related by Eq. (2.14). By use of the ex-
pansion in (2.17), the coefficients o,, in (2.18), and the
derivatives Q™) = (—1/w)"(d/dt)"Q, we can write

v(t) = V(t) + i on () V™, (2.37)

This series can be inverted to give V in terms of v and
its derivatives. To first order in wT, we find

V() =v(t)—T i o (0)0™), (2.38)

n=0

from which we can calculate (still to first order in wT')

V= (1 - T—;z) 0% — 2T ) o (8)o5™.

n=1

(2.39)

The series remaining here can be reduced by use of (2.28),
but we shall ignore it and retain just the first two terms
on the rhs of (2.39). These are enough to differentiate
between R and Ry .

Suppose we replace the standard Larmor rate R in
(2.36b) by its mechanical equivalent, i.e., we define the
electromagnetic radiation rate as

= (2.40)

R(t) = ’yva’z (1 — To—d—) 'R,L(t).
This result follows from (2.39), by neglecting derivatives
of v that are third and higher order, and by setting the
time scales equal: T' = 7¢. The term in 7o in Eq. (2.40),
present because of the difference in the mechanical and
electromagnetic rates in Eqgs. (2.36), tends to damp any
sudden changes in the standard Larmor rate Ry. For
example, suppose the particle is subjected to an acceler-
ative pulse of duration At, of the form

where a is a constant. Then the rate in Eq. (2.40) is

(2.41)

R(t) ~ [1 + %(t/At)] Ri(t). (2.42)
For t < 0, when Ry is increasing, the modified rate R
is depleted; for ¢ > 0, when R}, is decreasing, R is aug-
mented. The effect is pronounced when the acceleration
time At is comparable to the (electromagnetic) scale time
T0-

III. THE MECHANICAL SYSTEM AND
ELECTROMAGNETIC ANALOGIES

A. Plausible corrections
to the electromagnetic Schott term

In Sec. I we have suggested analogies between the
Schott terms that appear for our mechanical system and
for the electromagnetic problem of an accelerated charge,
and in Sec. II we have analyzed some dynamical details
that support these analogies. The formal similarity be-
tween the two problems rests on a comparison of the reac-
tion force and dissipation rate for the mechanical system,
viz.

S(t) = MTV +---, R(t) = MTV?, (3.1)
[from Egs. (2.20) and (2.27)], with the same quantities

for the electromagnetic problem [Egs. (1.1) and (1.2)]
s(t) = mrod + -+ -, RL(t) = m7oo?. (3.2)

The masses M and m in Egs. (3.1) and (3.2) are anal-
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ogous in that both are supposed to consist of a “bare”
mass plus a contribution from the attendant field. The
time scales T = 43/MwZ for the mechanical system [Eq.
(2.17)], and 7o = 2¢%/3mc?® for the electromagnetic prob-
lem [Eq. (1.1)], depend on very different physical con-
stants, but they play similar roles in the dynamics of the
two systems. For example, for simple harmonic motion
at natural frequency wp, the damping rate in the me-
chanical system is ' = w2T, per Eq. (2.23), while the
electromagnetic damping rate is wZry. If the masses and
time scales in Eqgs. (3.1) and (3.2) are similar in these
ways, what remains is the major difference that the me-
chanical quantities depend on the system center-of-mass
(CM) velocity V, while the electromagnetic quantities
depend on the particle velocity v.

In passing, we note that S(t) in Eq. (3.1) is just the
leading term in a series [see Eq. (2.18)] whose terms do
not vanish unless the mechanical counterpart of the entire
“field” is turned off, i.e., unless the masses u — 0, and/or
spring constant k — oco. In Eq. (3.2), s(t) is the leading
term in a series whose higher order terms vanish when
the size of the charged particle shrinks to zero; the field
need not be turned off.

In the mechanical system, there is clearly a difference
between the system CM velocity V', and the central parti-
cle velocity, v—see Eq. (2.38). A natural question for the
electromagnetic problem is, can we make a similar dis-
tinction between a CM velocity and a particle velocity?
If so, the electromagnetic quantities in Eq. (3.2) might
be corrected to

s(t) — 'm,‘roV, RL(t) = mro V2. (3.3)

This correction scheme would have the desirable features
listed in Sec. I, namely, that the corrected electromag-
netic Schott term s(¢) would (1) be Newtonian with no
dependence on superacceleration, (2) be causal, (3) avoid
runaways, (4) provide standard solutions, and (5) give a
Larmor-like radiation rate. Such a list of advantages sug-
gests that we seriously consider the v — V correction for
the electromagnetic problem.

In this regard, the following exercise is instructive.
Consider a charged particle (g, m), at rest at the origin
for t < 0. At time t = 0, the particle is given an impulse
such that it travels at constant velocity v along the z axis
for ¢ > 0. The situation is pictured in Fig. 2. The sudden
acceleration at ¢ = 0 generates a radiation pulse which
travels radially outward from the origin in a spherical
shell of radius R = ct and thickness c ¢, where 8t is the
duration of the impulse. By this time, the “bare” mass
m has traveled to position z = vt. Assuming the motion
of (g, m) is nonrelativistic, we want to find the CM of this
system. Let the charge ¢ be a spherical shell of radius
b, so that the rest mass of its field is py = (1/c%)q?/2b.
Before the impulse, the total system mass is

M =m+ py, with py = ¢%/2c%. (3.4)

At time t > 0, the radiation pulse and the static field
beyond R remain centered at the origin, while the bare
mass m and a portion of ¢’s field have traveled to position
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FIG. 2. A particle of charge ¢ and (bare) mass m is initially
at rest at the origin. At time ¢t = 0, the particle is given an
impulse such that at ¢ > 0 it travels at constant velocity v
along the x axis. The sudden acceleration at ¢ = 0 generates
a pulse of radiation that travels radially outward from the
origin in a spherical shell of radius R = ct. The center of
mass of the system (particle plus field) lies to the left of m’s
instantaneous position ¢ = vt.

z. At a given time ¢, when & = vt and R = ct, the system
CM is at position

RceMm = (m + ,u,,‘):l:/M, (3.5)
where p; = ps — (¢2/2¢2R) is the field mass inside the
radiation shell. Evidently, after the impulse, we find the
CM at position

Roym = [1 — (¢*/2Mc?) ﬂ z, (3.6)
where we have put in R = ct for the radiation shell. This
result is independent of the charge size b, and it clearly
shows that the CM is not coincident with the position z of
the bare mass m and its bound field p;. Now in (3.6), we
put z = vt and Rcm = V't, where V is the CM velocity.
In the second term on the rhs, we encounter a factor v/t,
which at short times will be of order ¥, the acceleration
experienced by the charge at its initial impulse. Then
Eq. (3.6) yields

Vv — (¢?/2Mc?) 9, (3.7)
for the CM velocity V just at the end of the acceleration
period. This result shows that the system CM velocity is
distinct from the particle velocity v. The distinction does
not depend on a finite charge size, but only on the fact
that the total system mass M = m + uy is finite, even
though m (particle) and py (field) may be separately
divergent.

Equation (3.7) not only suggests a distinction between
the CM and particle velocities for the electromagnetic
problem, but it also bears a strong resemblance to the
velocity relationship established for the mechanical sys-
tem. By Eq. (2.38), to leading terms, that relation is
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V~v—To, (3.8)
where T is the mechanical time scale. Evidently, (3.7)
and (3.8) become essentially indistinguishable if we
identify T with the electromagnetic time scale 79 =
2¢%/3Mc3. This analogy has the interesting consequence
that if, for the electromagnetic problem, we take the par-
ticle v — system V corrections seriously [as suggested in
Eq. (3.3)], then the electromagnetic Schott term of Eq.
(3.2) will be changed to a series

s(t) = Moi + M7y »_ Qn(d/dt)"5,

n=1

(3.9)

where the additional terms do not depend on charge
structure, but only on the difference between the CM and
particle velocities for the electromagnetic system. With
appropriate choice of coefficients 2, in Eq. (3.9), the elec-
tromagnetic Schott term might be made to display the
desirable features (1)—(5) listed below Eq. (3.3).

At this point, the analogies between the mechanical
and electromagnetic system become less precise; in fact,
as yet we have no obvious way of finding the coefficients
Q, in terms of electromagnetic parameters. The me-
chanical model needs elaboration to more nearly match
the electromagnetic problem; we shall discuss model im-
provements in Sec. IIIC. But first, having established
the plausibility of a CM correction to the electromag-
netic Schott term, we discuss some of the ramifications
of such a correction, particularly as used by Eliezer.

B. Eliezer’s substitution for radiation reaction

We have noted that the approximate equation of mo-
tion for the mechanical system can be written as in Eq.
(2.21)

M9 =F + T (d/dt) F, (3.10)
where M is the total system mass (particle plus field), v
is the particle velocity, T is the system time scale, and
F = F(t) is the external force. The term in TF is the
“radiation reaction” for the motion. The electromagnetic
counterpart to (3.10) is Eq. (1.1), which we can state for
1D motion as
M9 = F + 79 (d/dt) Mv. (3.11)
Here we have denoted the mass by M, to emphasize the
fact that it is a system mass, presumably composed of
both particle and field contributions. Now if (3.10) is
postulated to be the correct form for the equation of mo-
tion for an accelerated charge, then the Abraham-Lorentz
Eq. (3.11) is corrected by simply replacing the particle ac-
celeration v in the radiation reaction term by the system
acceleration F//M. To leading order, this substitution in
the equation of motion is sufficient to accommodate the
electromagnetic CM correction we have just discussed.
The ¥ — F/M substitution was first suggested by
Eliezer [17]; he realized that the corrected electromag-
netic Schott term would show the sort of desirable fea-
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tures (1)—(5) listed below Eq. (3.3). Furthermore, Eliezer
generalized the correction to the relativistic case in the
following way. The Lorentz-Dirac Eq. (2.32) is

Mo" = (g/c) F**vx + ffir,

where
K : d K 1 “a . I3
fEr(Dirac) = 79 . (Mv"™) + 20 (Mvg)v™|. (3.12)

fE g is the radiation reaction four force. Eliezer corrected
it by substituting ¥* — (gq/Mc)F"* v, for each of the
terms containing M in the Dirac version of ffp, thus
obtaining

fir(Eliezer) = (g7o/c) I:Zid; (F'ﬂvA)

1
+ (o° axv?) v"]. (3.13)

With the radiation reaction force in (3.13), which is
Minkowskian, Eliezer’s resulting equation of motion is
covariant, and it reduces to the form of Eq. (3.10) in the
nonrelativistic limit. Runaway solutions are avoided im-
mediately because the reaction force vanishes when the
external field F** is zero. The corrected equation of mo-
tion has several other desirable features, but it predicts
at least one peculiar solution to a standard problem: the
total cross section for the scattering of light by a charged
particle turns out to be a universal constant, indepen-
dent of the incident light frequency v. The conventional
result is that this cross section falls off at high frequencies
as 1/v? [19]. On these grounds, we might conclude that
Eliezer’s v — F/M substitution has merit, but does not
provide a complete cure for the ills of standard radiation
reaction terms.

Why Eliezer’s © — F/M substitution may be incom-
plete is suggested by looking at the exact (nonrelativistic)
equation of motion for the mechanical system. From Egs.
(2.1), (2.13), and (2.17), we have

M3v = F(t) + T (d/dt) F(¢), (3.14)
where, in the reaction term, we have defined a force F
such that

F(t) = p(t)/T = (2u/mT) /0 " Bt - )G(r)dr

1d

= ga’n(ﬂ) (_; E)HF(t).

The coefficients 0,(0) are defined in Eq. (2.18), and the
angle 0 represents mechanical system parameters per Eq.
(2.16). The leading terms of F are

(3.15)

= (3.16)

F(t) = F(t) + (%}5[3_2) ~F(t) —

Only the first term was used in (3.10) to discuss the ap-
proximate equation of motion. However, all the terms in
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F are required to accurately represent the effects of a CM
correction to the reaction force; replacing v by F/M =V
is not enough. Comparing (3.11) with (3.14), instead of
(3.10), suggests that Eliezer’s substitution should have
been

b= F/M = (2—) Ml? /Ow F(t—)G(r)dr

m

=S o) (-22) Feym

n=0

(3.17)

at least from the standpoint of the mechanical model.
Thus, ¥ in the reaction force is replaced by an infinite
series of terms in F'//M and all its derivatives.

The argument that the substitution v — F/M in the
reaction force is an incomplete correction for the mechan-
ical system is persuasive, and all the details of the com-
plete correction in Eq. (3.17) are in place—we know the
kernel G(7) from Eq. (2.11), and the series coefficients
on(0) from Eq. (2.18). Our claim that a similar situation
prevails for the electromagnetic problem is reasonable,
but as yet we do not have the electromagnetic counter-
parts of G(7) or the coefficients oy, except for oo = 1.
If the mechanical system is to serve as a guide for con-
struction of the electromagnetic versions of G(7) and the
On, then that system needs some elaboration. Although
the equation of motion and dissipative corrections for the
mechanical system and the electromagnetic problem are
formally similar in many ways, it is not yet clear how
to map the mechanical “field,” as specified by the spring
frequency wo = (k/ /1,)1/ ? and damping constant 3, onto
the actual field of a charge q.

C. Elaboration of the mechanical model

While it is true that the overall dynamics of the present
mechanical model are quite similar to those of an accel-
erated charge (at least similar enough to suggest cor-
rections to electromagnetic Schott terms), it is also true
that the extended, three-dimensional field of a charged
particle cannot be completely modeled by a localized,
one-dimensional spring and mass system. The question
is, how can our mechanical model be improved?

We can relate the force constant & and damping con-
stant 3 for the spring system in Fig. 1 with aspects of the
field of a moving charge g, in the following heuristic fash-
ion. Suppose ¢ undergoes a simple harmonic motion at
frequency wq. Then, in the way 3 was used in Eq. (2.2a),
energy will be lost at a rate ~ ,B;Léz, and this energy loss
supplies the Larmor radiation rate ~ (g2/c3)£2. If we set
these rates equal, and—for an oscillation amplitude A¢—
put in average values £2 ~ (woAf)?, and €2 ~ (wﬁAZ)z,
then

B~ (¢*/nc®) wi,

to within numerical factors. The oscillation frequency
in (3.18) is related to the spring constant k by wZ =
k/u. Suppose the spring has length ¢, and consider the

(3.18)
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electromagnetic field energy stored in a spherical shell of
thickness A/ at distance £ from ¢

U(£,£+A£)=q—;(l— ! ) (3.19)

L L+ AL
When ¢ moves by AZ in the direction of £, this field
energy will be replaced (at the site) by U (£ — AL, ¢),
roughly speaking, and so the local field energy changes
by AU~ (¢%/¢) (Al/l)z. This energy is recovered when g
moves in the opposite direction. If AU is identified with
the spring’s energy storage ~ k(AZ)Z, then
k~g%/c® and B ~ ¢*/uc*e3, (3.20)
to within numerical factors. These estimates imply that
the simple mechanical system in Fig. 1 has a “field” that
accurately represents the field of a charged particle over
a limited region of space (specifically, a spherical shell of
radius = spring length ¢, and thickness Af < {).

An alternate way of looking at the limitation just
discussed is to say that springs at a single frequency
wo = (k/ p)l/ % can represent only a limited portion of
the frequency spectrum available to the field of an accel-
erated charge. An evident improvement in the mechani-
cal model would then be to couple the central (bare) mass
m in Fig. 1 to an assembly of springs of differing force
constants k£ and attached masses p. Thus, the spring
natural frequency wg could be varied, in order to better
accommodate the field frequency spectrum. At the same
time, the effective length £2 ~ ¢%/k at which the spring
system describes the actual field would be extended to a
range of lengths.

Another improvement in the mechanical model would
be to invest each spring with a nonzero mass density, so
as to achieve a finite propagation speed connecting the
motions of the central mass m with the “field” masses u.
This refinement would complicate the system equations
of motion, but would also provide a velocity parameter
that could be adjusted to fit energy transfer rates in the
actual field of a charged particle.

Finally, a geometrical improvement in the mechanical
model would be to couple the central (bare) mass m to
a three-dimensional array of springs and field masses u,
rather than the one-dimensional configuration shown in
Fig. 1. For springs of a given force constant k, the mass p
presumably would be distributed uniformly over a spher-
ical shell of radius £, such that £3 ~ q?/k, in order to pre-
serve the relations in Eq. (3.20). The three-dimensional
model could then be accelerated in any direction, while
showing equivalent reaction forces. However, other than
accommodating three-dimensional motion, the 1D to 3D
transition for the mechanical system is not expected to
change its basic operating parameters by more than nu-
merical factors.

IV. SUMMARY AND CONCLUSIONS:
CORRECTIONS TO SCHOTT TERMS

Our choice of the mechanical system we have analyzed
in Sec. II, and have used in Sec. III to infer corrections to
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electromagnetic Schott terms, was made with two imme-
diate goals in mind: first, to display a fully documented
Schott correction in a system much simpler than that
of an accelerated charge, and second, to model at least
some key features of the accelerated charge problem. The
system in Fig. 1 is very nearly the simplest model meet-
ing these requirements: it produces an exact expression
for the Schott corrections, and it provides mechanisms
for both energy storage and dissipation during a forced
motion—features shared by the fields of an accelerated
charge. In Sec. IIC, we have derived an energy balance
equation for the mechanical system, and have identified
the rate at which the system dissipates energy. We have
shown that the work done by the Schott force S(t) gener-
ates both the energy dissipation in the system, and a cor-
rection to the system’s kinetic energy. This is analogous
to the LD equation, where work done by the radiation
reaction force splits into the Larmor radiation rate and
a kinetic energy correction. Finally, we have compared
our mechanical dissipation rate (defined by the system
CM acceleration V) with the electromagnetic dissipation
rate (defined by the particle acceleration ), and have
found that these rates can be significantly different at
early times. In Sec. III, we have discussed how the v — V'
correction might be used to modify the electromagnetic
Schott term, and we have also discussed several improve-
ments that could be made to the mechanical model of
Fig. 1, to make it more closely resemble the problem of

describing the behavior of an accelerated charge. The
springs could be given a mass density, so as to estab-
lish an energy transport velocity in the mechanical sys-
tem, and the spring array could be extended from one to
three dimensions, to accommodate arbitrary motions of
the central mass. A more important improvement would
be to couple the central mass to an assembly of springs
of different force constants and “field” masses; this would
allow a more elaborate description of the field modes
available to a charged particle. Even without these im-
provements, however, the formal analogies between the
motions of the two systems can be supported by relating
the available physical parameters.

In conclusion, we have presented arguments suggest-
ing how and why the (nonrelativistic) Schott term in
conventional electrodynamics should be corrected. The
arguments rely on a plausible analogy with a simple me-
chanical model, and to leading order the corrections are
of a form first suggested by Eliezer [17]. Possible higher
order corrections await refinements of the model.
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