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Frequency dependence of the penetration of electromagnetic fields
through a small coupling hole in a thick wall
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We calculate a generalized polarizability and susceptibility for a circular hole in a thick metallic
plate as a function of hole dimensions and wavelength. In particular, we construct a variational
form that allows us to obtain accurate numerical results for the resonant frequency of a cavity with
such a hole with a minimum of computational efFort. Numerical results are obtained for a variety of
hole dimensions relative to the wavelength. Results are also obtained analytically that are valid to
second order in the ratio of the hole dimension to the wavelength for a vanishingly thin wall. These
results are con6rmed by the numerical calculations.

PACS number(s): 41.20.—q

I. INTRODUCTION

The penetration of electric and magnetic fields through
a hole in a metallic wall plays an important role in many
devices. In an accelerator, such holes in the beam pipe
serve to allow access for pumping, devices for beam cur-
rent and beam position measurement, coupling between
cavities, etc. As a consequence, the beam generates wake
fields in the beam pipe when it passes by such holes and
these wake fields are capable of affecting beam quality
and stability. In all these and other similar situations,
the quantities of importance are the polarizability and
the susceptibilities of such holes, quantities that also en-
ter into the scattering of electromagnetic waves by holes
in a metallic screen [1]. In much of the early work the
hole dimensions were considered to be very small com-
pared to the wavelength.

The purpose of this paper is to extend the calcula-
tion to include the effects of finite wavelength, although
we still confine our attention to wavelengths no smaller
than the primary hole dimensions. For example, when
considering the coupling impedance of a hole in the wall
of a beam pipe [2] of rectangular cross section, we must
evaluate the integral over the hole

the detuning of a cavity by a hole in the wall without
assuming an infinite wavelength.

The conventional treatment of Eq. (1.1) proceeds by
way of the polarizability and susceptibilities of the hole in
the wall [1,3,4]. By redefining these parameters in terms
of the cavity detuning we construct a generalized polar-
izability and susceptibility. In this way, we include the
&equency dependence of the polarizability and suscepti-
bility as well as the contributions of higher. multipole mo-
ments of the hole, as discussed in Sec. IV. But these gen-
eralized polarizabilities and susceptibilities should only
be seen as intermediate vehicles to relate the coupling
integrals of interest to the detuning of the cavity by the
hole.

We now define the generalized polarizability and sus-
ceptibility by means of the detuning of the modes of the
symmetric cavity structure shown in Fig. 1 due to the
presence of the hole. Clearly the modes will be either
symmetric or antisymmetric in the axial coordinate. We
will obtain an expression for the detuning of the pillbox
cavity of length I and radius 6 due to the presence of the
hole. Our analysis will be limited to the modes near the
TMp~g& TMy~g, and TEqN'g modes of the unperturbed
pillbox.

d~dy E( )~( ) E( )~( )X 'JJ + y y
hole II. GENERAL ANALYSIS

at the inner surface of the beam pipe. Here the normal
to the wall is in the z direction, the superscript (1) refers
to the fields with no hole, and the superscript (2) refers
to the fields in the presence of the hole.

The integral in Eq. (1.1) is exactly the same as the
coupling integral used to describe the coupling between
waveguides andior cavities [3, 4]. In fact it is also the
integral that describes the detuning of a cavity by a hole
in a plane cavity wall as shown in Sec. IV, with the
superscripts (1) and (2) having the same meaning. It is
therefore reasonable to relate the &equency dependence
of the coupling impedance in Eq. (1.1) to the detuning
of the cavity by a hole whose dimensions Inay be as large
as the wavelength. In this paper we show how to obtain

X~( i(r, zi) = ) a„e„(r) (2.1)

where v' stands for the transverse coordinates x and y
and the modes e„may be either TM or TE. Here

P„= k (2.2)

where p are the eigenvalues of the two-dimensional
scalar Helmholtz equation in the cavity region with the

Our analysis can be generalized to include cavity re-
gions and iris regions of arbitrary cross section. Taking
zq ——0 to be the left end of the left cavity, we can write
the transverse electric field as
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FIG. 1. Schematic diagram of two cavi-
ties coupled by an iris.

appropriate boundary conditions. We use latin sub-
scripts (n, m, , N, etc.) for the cavity region and kc/2'
is the frequency.

The transverse electric field in the iris region can sim-
ilarly be written as

X~~l(v. , z2) = ) b„e„(v.) cos ~g 2
(2.3)

where z2 ——0 is now the center of the iris region and
where we use greek subscripts (v, p, , 0, etc.) for the iris
region. Equation (2.3) is appropriate for the modes in

our symmetric structure for which X& is even in z2. For
those modes where X& is odd in z2 we need to replace
the cosines by sines in Eq. (2.3).

We now express the coeKcients a and 6 in terms of
X~(v') = tc(v') at the interface between the cavity and the
iris (zi ——L, z2 ———g/2). Since e and e„are complete
orthonormal sets, we find

guide and Z„being the impedance of the "iris" waveg-
uide. Here Zo ——gpo/eo is the iinpedance of free space
and

p2 k2 2 (2.8)

ds' ~(~'). ~ (~, ~') = o,
S1

where

(2.9)

It (i, v ') = ) A„e„(r)e„(r')cot P„L
n

A„e (v )e (r') tan p„g/2. (2.10)

where p„are the eigenvalues of the two-dimensional
scalar Helmholtz equation with the appropriate bound-
ary conditions in the iris region. Equating the transverse
magnetic field at zi ——L, z2 ———g/2 in the region Si
leads to the integral equation for the unknown function

a„= dS m. e, b = dS u, -e,
S1 Sg

(2.4)

where S~ is the cross section of the iris and we use the
fact that X~ ——0 on the iris surface at zi ——L.

The transverse magnetic field in each region can be
written as [we use the time dependence exp(jkct)]

III. VARIATIONAL FORM
FOR THE FREQUENCY'

Let us multiply Eq. (2.9) by u(v ) and integrate over
dS in the region Si. This leads to

Z0H&~
l x z = j) A„a„e„(r)

sin I '

ZoH& x z = —j) A„b„e (v) cos ~g 2

(2 5)

(2.6)

) A„c t cI)tf dS e.e„
- 2

—) & tee(p g/2) f aS e. e = 0. (3.t)
V

where

Z. k/P„,
Z„ P./k,

We now consider Eq. (3.1) as a transcendental equation
for the frequency k in terms of the yet to be determined
m(r), which we write symbolically as

P(k, m(v )) = 0. (3.2)

Zo k/P, TM
P„/k, TE,

with Z being the impedance of the "cavity" wave-
OF OF

bk bu. (3.3)

Any change of m(v ) will lead to a change in k that satisfies
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The requirement that Eq. (3.1) be an extremum for k
requires that the first-order variation with respect to bu
must vanish. But this variation leads to the requirement
that m(i ) must satisfy Eq. (2.9). Thus Eq. (3.1) can
be thought of as a variational equation for the frequency,
which is an extremum when u(r) is the correct function.

We shall implement this statement by expanding te(v')
into a complete set f (r) in the region Si. Specifically
we write

leading directly to the equation for the &equency

tan P~L
~N

= ) ) KNv(~ )vpKN~ ~ (3.13)

Since the frequency k is also contained in the parameters
P„,P„,P„, and P in M „, Eq. (3.13) must be solved
by iteration, each successive value of k coming from the
left-hand side using the preceding k on the right-hand
side.

and obtain

C~ ~ T (3.4)

IV. POLARIZABILITY AND SUSCEPTIBILITY

A~ cot P~L ) c„K~ =) ) ccM„„,
We now apply the considerations usually used [1,3, 5]

when a hole is placed in a cavity wall. We define the
orthonormal cavity modes for the cavity on the left-hand
side (without the hole) by

where I„is a symmetric matrix defined by Vx& =k H, VxH =k (4.1)
I

M „=—) A„cotP„L K„„K„
n+N

and write the cavity "voltage" and "current" in the mth
mode as

+ ) A tan(P g/2) K „K (3.6) E.E dv, I = H H dv, (4.2)

Here

K„= dSe . f , K =„fdSe f . (37)
S1

where the integration is over the volume of the cavity on
the left-hand side in Fig. 1. Here E, M are the fields in
the presence of the hole. We now use Maxwell's equations
to obtain

Note that we have separated the term n = N and moved
it to the left-hand side of Eq. (3.5) since we shall be
looking at modes close to the cavity modes corresponding
to P~L = Ex or

Zpk I = jkV

k V = —jkZpI — dS n. X x H (4 3)
E vr

kNE L2 + ~N (3.8)

where 8 is an integer. As a matter of fact, for a small iris
hole, the sum on the right-hand side of Eq. (3.5) diverges
inversely as the cube of the iris hole dimensions, leading
to the cavity modes corresponding to Eq. (3.8) when the
iris hole disappears.

We now consider Eq. (3.5) as a variational statement
requiring that,

(k —k )V =k dSn. Ãx H'
hole

(4 4)

The right-hand side of Eq. (4.4) is usually approximated
by using the static analysis for the fields near the hole.
This leads to a form involving the induced electric and
magnetic dipole moments

where the surface integral is over the hole opening in the
wall. The resulting equation for V is

) ) c cM„„=E (3.9)
p = dxdy xE = dxdy yEy (4.5)

(where E denotes the extremum) subject to the arbitrary
normalization constraint and

) C~K~~ = 1. (3.10) mK = dzdy xH,
hole

The method of Lagrange multipliers leads directly to the
matrix equation

) M„„c„=nKN„,
P

(3.11)

where —2o, is the Lagrange multiplier. The solution of
Eq. (3.11) for c is

my dxdy yH„
hole

(4.6)

where the direction z is normal to the hole surface.
Specifically we find

(k —k )V~ = k p. X~(0) —jkk~Zo~ M~(0)~

c„=u) (M )„„K~„, (3.12)
(4.7)

where X (0) is the normalized electric field normal to
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p=yE, m=@ H (4.8)

and assume that mode M dominates so that X
VMXM, H = IM JIM, we find

k —kM ——kMEM(0)y —k HM(0) g .HM (0). (4.9)

In Eq. (4.9) we must use the symmetric or antisymrnet-
ric values y, , Q, depending on the syminetry of the
excitation of the two cavities.

Let us now examine the integral in Eq. (4.4) in greater
depth for a TMo~g mode. The magnetic Geld H, with
no hole, has only a 0 component in the plane of the hole,
which is proportional to

the hole and H' (0) is the normalized magnetic field tan-
gential to the hole at the hole location in the absence of
the hole. If we define the polarizability (a scalar) and
susceptibility (a 2 x 2 tensor) as

k —kM
k' EM(0)

(4.14)

Similarly we define a generalized susceptibility for a cir-
cular hole (for example, the TMiivg or TEi~~ mode)

kM2 —k2

k'JIM(o)
(4.15)

V. GENERALIZED POLARIZABILITY
FOR A CIRCULAR IRIS HOLE

We envision k being calculated froin Eq. (3.13) and y or
g being obtained for that frequency from Eq. (4.14) or
(4.15). Clearly the mode identification M corresponds to
three eigenvalues; that is, M stands for ON/ or 1NE as
appropriate.

From this point on, y and @ should always be under-
stood to be the generalized polarizability and susceptibil-
ity, even though this may not always be stated explicitly.

II s = CJi(srvr/b), (4.10)

where s~ is the Nth zero of Jo(s) = 0. The rectangular
components of H g are

We now specialize to TMO waveguide modes in a cir-
cular geometry in order to obtain the polarizability [6].
The cavity radius is b and the iris radius is a and we use
the complete set

CsN
b

g—

H = —CsinoJq

s~(x + y )y
8

(4.11)

f„(r) = e.(r) = Vy„(r), —

with

o( ~ / )
& ( )

o( ~ / )
~mrs„Ji (s„) ' "

~mrs„Ji (s„)

(5 1)

H& ——C cos 0JI

Cspj' s~ (x + y )x
b

(4»)

Using this expansion, the coupling integral becomes,
apart from the overall constant Csrv/b,

2a2s„jo(s„a/b) s„
b' Ji(s„)[s' —(s„a/b) ]

' "
b

(5 3)

and

Here s are the roots of the equation Jo(s„) = 0. The
integrals in Eq. (3.7) are

dS n X x H dxdy'(xE + yEy)
hole hole

2

dxdy(xE + yE„)
hole

x(x +y)+ (4.13)

The first term on the right-hand side of Eq. (4.13) is
twice the electric dipole moment, according to Eq. (4.5).
However, since E and E„are the exact solutions in the
presence of a hole, this term is expected to depend on
the wave number k. But Eq. (4.13) also has an electric
sextupole term, proportional to sN, which will also have
a k dependence in general. Therefore when we general-
ize y in Eq. (4.9) to have a frequency dependence, this
generalization will include all higher multipoles as well
as the frequency dependence of each multipole. The ar-
gument applies as well to the susceptibilities by way of
the TM~~g and TEI~g modes.

We therefore generalize the concept of the static polar-
izability by considering a mode that has a normal electric
field, but no tangential magnetic field at the center of the
hole (for example, the TMoNg mode) and define a gener-
alized polarizability as

The frequency can now be calculated using Eq. (3.13)
and the symmetric polarizability using Eq. (4.14).
The asymmetric polarizability is obtained by replacing
tan(P„g/2) by —cot(P„g/2) in Eq. (2.10) and tan(P g/2)
by —cot(P g/2) in Eq. (3.6) and repeating the calcula-
tion of &equency and polarizability.

The polarizability obtained in this way will be a func-
tion of the geometrical parameters a/b, g/a, a/L, /, and
N of the TMo~g cavity mode. In order to tie the polar-
izability to the geometry of the hole alone, it is necessary
to take the limit for large b and I, but with finite &e-
quency. This can be accomplished by letting b, L ~ oo,
but keeping

s = s~a/b, t = &ra/L (5 6)

(5.4)

where the superscript y denotes the polarizability. The
matrix element in Eq. (3.6) becomes

M~„= b„„—tan " —) —cot P„L Kx K„"„.
k pg .I k

N n

(5.5)
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finite by also allowing N, E —+ oo. Obviously

kN&a = 8 +t (5.7)

symmetric susceptibility requires using Eq. (4.15). Once
again the asymmetric susceptibility is obtained by replac-
ing tan(P„g/2) by —cot(P„g/2) in the matrix elements

and the polarizability of the hole will be a function of
s, t, g/a. The details are contained in Sec. VII.

VI. GENERALIZED SUSCEPTIBILITY
FOR A CIRCULAR HOLE

We now must use the waveguide modes TM~ and
TEq for our complete set. Specifically we have in the
pipe region

e„=—VP„,

Ji(p„r/b) cos g
for TMi modes, 6.1

p Joip

e„=~ x Velar„,

M~„= h„„A„tan —) A„cot P„L K~„K@„.
ngN

(6.10)

In Appendix A we use a different complete set for f„,
whose Grst member is the known solution for u in Eqs.
(2.4) and (2.9) for a wall of zero thickness. In this way,
the variational form allows us to derive the k a correc-
tion to the polarizability without further analysis. The
corresponding result for the susceptibility is obtained in
Appendix B. These results are then used in Sec. IX as
the &amework for displaying the numerical results.

VII. GENERALIZED POLARIZABILITY
OF A CIRCULAR HOLE

IN A THICK INFINITE PLATE

Ji(q r/b) sin 8
for TE~„modes,

q.' —1Ji (q-)

and in the iris region

e„=—VP,

Ji(p„r/a) cos 0
for TMq„modes,

s JDJ

(6 2)

(6 3)

At the end of Sec. V, we indicated that the polarizabil-
ity of a circular hole in an infinite plate could be obtained
by proceeding to the limit b, L —+ oo with

s = s~a/b, t—:&ra/L, k~&a = s + t (7 1)

kept finite by letting N, E ~ oo. We now need the lim-
iting form of Eq. (5.3) for n -+ oo, which is obtained by
writing

e„=zxV@,

Ji(q„r/a) sing
for TEg„modes,

Qq' —1 Ji(q„)
(6.4)

~Ji(s )~ —= Q2/~s,

leading to

27ra us~2 Je(u)
b 82 —u2

(7.2)

(7.3)

where p are the roots of Ji(p „)= 0 and q „are the
roots of Ji (q „)= 0. Once again

with

K~. = S... (6.5)
u=s a b. (7.4)

but now n and v can be either TM or TE in K~„. Again,
the superscript @ denotes susceptibility. Specifically, for
n TMandv TM,

We also have

k ka coth p„L—cot „L=p„" p„a
(7.5)

2a'p„J, (p„a/b)
b' Jo(p-) Lu' —(p-a/b)'j ' (6.6)

where, as in Eq. (A12),

p„a = gu2 —k2a2 (7.6)
for n TM and v TE,

2Ji (p„a/b)

gq.' —Ip- Jo(p-)

for n TE and v TM,

K~„=O.

and for n TE and v TE,

K „= 2aq„'q„J,'(q„a/b)
bQqz —lgq2 —1Ji(q„)[q2 —(q a/b)2]

(6.7)

(6.8)

(6.9)

(7.7)

Thus we obtain for the matrix element M„, in the limit
of infinite b and L,

M~„—+ kaG~„, (7.8)

and p L is sufBciently large so that coth p L can be re-
placed by 1.

The sum over n in Eq. (5.5) can now be replaced, for
large b, by an integral over u, with

The frequency is again obtained from Eq. (3.13) but the where
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G~ = tan +2m ~,
b„pg
P a 2

with

us Jp2(u)
gu2 k2a2 (s2 u2)(s2 u2)

(7.9)

u=p„a/b, v=q a/b, (s.i)

VIII. GENERALIZED SUSCEPTIBILITY
OF A CIRCULAR HOLE

IN A THICK INFINITE PLATE

A calculation similar to that in Sec. VII can be per-
formed for the susceptibility. Setting

Here

8 8~ —8 8~
8 —8

(7.10)
we find from Eqs. (6.6)—(6.9), in the limit of small a/b
and large n, that for n TM and v TM,

(~) = du uJp(u)
p Qu2 —k2a2 (ip2 —u2)

(7.11)
2vra us~2 Ji(u)

b p2 ~2

for n TM and v TE,

(s.2)

is a well convergent integral since Jp(s ) = 0. It should
be noted that Q(iv) is complex for finite ka, the imagi-
nary part being related to the radiation loss through the
hole.

Once Mx„ is calculated and we use Eq. (7.3) to write

2ira u i~2Ji(u)

gq~ —1

for n TE and v TM,

(8 3)

2~a ss Jp2(s)
b (s2 s2) (s2 —s2) ~

we obtain from Eq. (3.13)

z~. =0;
and for n TE and v TE,~7.12~

2ira q„v ~ Ji(v)
b gq2 ] q2 —v2

(s.4)

(s.5)

tanPivL = "J:()).)
P

Prom Eq. (6.10) we then find that for p TM and v TM
(n TM),

tanP~L =P~L —Ar =
! PN—

= (k' —k„',)
2pN

(7.i4)

Using Eqs. (4.14), (A23), and (7.13) for large sN we
obtain

(k~ —k~2~) Lb
4as/3 4ss/3

tan P~L
28

(7.i3)

Por large b, L the right-hand side of Eq. (7.12) is small
and tan P~L can be approximated as

M+ =ka " tanh„„ p„g
P„a 2

u s J2(u)du
p (p2 u2) (p2 u2) gu2 k2a2

for p TM and v TE (n TM),

2ka u J2(u)du

gq„' —1 p (p' —u') i/u' —k'a' '

and for p TE and v TE (n TM and TE),

b„„p„a p„gtan
ka 2

2ka Ji (u) du

(q2 1)(q2 ] ) p u'/u —k a

(s.7)

=3-J:( )):), , (~-')-. .
P

(7.i5) qq~ Jz v v v2 —k a dv
8.8k2a2 (q2 v2) (q2 v2)

an expression depending only on s, k~ga, and g/a or, us-
ing Eq. (5.7), on s, t, and g/a. The parameter ka is now
replaced by k~ga in the last form of Eq. (7.15). Note
that y is the symmetric polarizability in units of that
for a small hole in a plate of zero thickness. The corre-
sponding expression for the asymmetric polarizability is
obtained by replacing tan(P g/2) by —cot(P„g/2) in Eq.
(7.9).

For g = 0 and ka & 1, 8 & 1, the result for y should
approach that in Eq. (A24). We shall see in Sec. IX on
numerical results that it does.

M~ =ka " tanb„„ p g
P a 2

+, , p'. &(p.) —p'.&(p.)];
IQ Ig/

for p TM and v TE (n TM),

(8.9)

These matrix elements can be written in terms of inte-
grals similar to the Q(iv), defined in Eq. (7.11). Specifi-
cally, for p TM and v TM (n TM),
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I„=b„ tan
2ka

B(0)
(q.' —1)(q,' —1)

2g g+
ka (q2 —1)(q2 —1)

S(q ) —S(q„)
Vp,

where

du u J,'(u)
o (tU —u )Qu2 —k a

S(u)) = du u [J,'(u)]'Qu' —k'a'
tU —'ll

du [J,'(u)]2@ u —k a
+m

ZC tO —'tl

and for p, TE and v TE (n TM and TE),

(8.10)

(8.1i)

(8.12)

(8.i3)

susceptibility is obtained by replacing tan(P„g/2) by
—cot(P g/2) in Eqs. (8.6), (8.8), (8.9), and (8.11).

For g = 0 and small ka,p, q, the results for @, should
reduce to those in Eqs. (B33) and (B34). We shall see in
the following section on numerical results that they do.

IX. NUMERICAL RESULTS
FOR A HOLE IN A PLATE

s = a V~E /E, (0) (9 1)

while

We have analyzed the generalized polarizability of a
circular hole in a thick plate and found that it depends
on the geometry of the hole (g/a) and, as expected, on
ka, the ratio of the hole radius to the reduced wavelength
A/2vr. What may not have been expected is the depen-
dence on 8.

This represents the fact that higher-order terms involve
separately the dependence of the electric field on r and
z near the hole. Specifically

Once M+„ is calculated, we use

p =

purva/b,

q = q1va/b, (8.14)

02E
k a —s =a '/E (0)

Oz
(9 2)

2~a ps J,'(p)
1vv 1V~ b (p2 2)( 2 2) &

(8.15)

for p TM, v TM, and NTE,

KN KN 0) (8.16)

for p TM, v TE, and NTM,

2~a p J2(p)
1v NtJ. (8.17)

as in Eq. (B35), to write for p TM, v TM, and K TM,
All numerical results for the polarizability of a circular

hole in a thick plate were obtained using Eq. (7.15) for
various values of ka, s, and g/a. In this process the inte-
gral for Q(to) in Eq. (7.15) was evaluated numerically for
various values of ka and m = 8 and the matrix G' was
truncated at an order suKcient to achieve the desired ac-
curacy. We note that Q(tu) also has an imaginary part,
leading to a small imaginary contribution to the polariz-
ability for small ka.

Vfe present the results in a form suggested. by the pre-
dictions for g = 0 and small ka, s in Eq. (A24). Specifi-
cally, we have for the real part of the symmetric polariz-
ability

for p TM, v TE, and NTE,

ZN~„ZN~„= 0; (8.18)

k a2
y, (ka, s) = y/(4a /3) = 1— (9 3)

for p TE, v TE, and N TM,

2vra J,'(p)
Nv Np. b

)

(q.' —1)(q.' —1)

and for p TE, v TE, and N TE,

(8.19)

and plot y, vs 8 for various values of ka in Fig. 2. We

1.05—

1.00 —-kg = 01

~ka= 03
0.95—

27l a
Nv Np b

q[Jl(q)]'

1) (q.' —q')(q„' —q')

(8.2o)

~ 0.90—

QC
~ 0.85—

0.80—
Finally, we obtain the renormalized symmetric suscepti-
bihty as 0.75— ka=09

~ =8. /3
= ——) ) K~~ K1v„(M )„, (8.21) 0.70—

I

0.0 0.2
I

0.4
I

0.6
I

0.8
I

1.0

where the p and v extend over both TE and TM modes
in the matrix M and its inverse. The asymmetric

FIG. 2. Real part of the scaled polarizability y, vs s for
various ka, with g/a = 0.
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FIG. 3. Real part of the scaled polarizability y, vs (s/ka)
for ka = 0.1 and 0.3, with g/a = 0.

FIG. 5. Real part of the scaled susceptibility g, vs (p/ka)
(for the TM mode) for ka = 0.1 and 0.3, with g/a = 0.

define y as

y(ka, s) —y(0, 0) s2
x=

(—kza'/5) k'a'
—1= (9 4)

and plot y vs s /k a for various values of ka in Fig. 3.
Note that k a = s +(Ara/L), so that s /k a is always
between 0 and 1.

A similar presentation is provided for the real part of
the scaled susceptibilities in Figs. 4—6. Once again we
have an additional dependence on the transverse second
derivatives for both the TM and the TE mode in the form

conditions at infinity. But the problem no longer has
azimuthal symmetry within the hole and we must allow
B2H„/Bx and B H„/By to be different in general for a
hole. This issue is discussed in greater depth in Appendix
B following Eq. (B35).

We now define g as

& = &/(8a'/3)

and are guided by the g = 0, small ka,p, q results in Eqs.
(B33) and (B34), which are

p = a V'~Hy/Hs(0) (TM),

q = a 7'~H„/Hy(0) (TE).

(9.5)

and

+ a
I 15 3k'a2 15k4a4 I

(9.8)

The fact that the TM and TE modes give diferent re-
sults when the cavity walls are moved to infinity is at
first surprising, since TM and TE refer to the boundary

ATE —= 1+k a
q15 5k2a2)

In particular, we define g as

1.4—
TM--- TE

0.0 —~

— — — ka=0. 3
ka=0. 1

1.3—

& 1.2—

IX

ka=0. 1

-Q. 1—

I
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FIG. 4. Real part of the scaled susceptibility @, vs p (for
the TM mode) and q (for the TE mode) for various ka, with

g/a = 0.
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FIG. 6. Real part of the scaled susceptibility g, vs (q/ka)
(for the TE mode) for ka = 0.1 and 0.3, with g/a = 0.
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g(ka, p, or q) —@(0,0)
(8k2a2/15)

5p p'
8~2 2 + 81,4~4, ™

3g
8/2~2 ) TE

(9.10)

0.4—

0.3— ka=p. g

TM
TE

4a ( k2a2 s2 4j
Xive —=

I
1 — ——+ —k'a'

l3 q 5 5 9~ )
(9.11)

and plot @ vs p /k a (TM) or q /k a2 (TE) for vari-
ous values of ka. Once again p /k2a2 and q2/k2a2 are
between 0 and 1.

Figures 2—6 for g = 0 and reasonably small ka show
clearly the validity of the approximation in Eqs. (9.4)
and (9.10), including the quadratic variation for the real
part of the symmetric TM susceptibility. The numerical
coefBcients in these equations are very similar to those
derived by Eggimann [9], who studied difFraction by a
circular disk. He used a power series expansion to obtain
the &equency dependence of the dipole moments, but ap-
parently did not include higher multipole moments in his
final results. It is also possible that our cavity problem
may not be identical to the diKraction problem studied
by Eggimann.

The numerical coefBcient for 8 = ka in the polariz-
ability also agrees with the value quoted by Sporleder
and Unger [10], but the coefficients in the susceptibility
for p = q = ka are difFerent &om those quoted by these
authors.

As stated before, the integrals Q(iii) in Eq. (7.11)
and S(m) in Eq. (8.13) contribute an imaginary part
to the generalized polarizability and susceptibilities, re-
spectively. These imaginary parts correspond to radia-
tion loss through the hole. The dependence of Imp vs s
and 1m' vs p2, q2 is shown in Figs. 7 and 8 for various
values of ka.

Our analytic approximate formulas for polarizability
and susceptibility should be modified to include these
imaginary parts. For small ka the left-hand side of Eq.
(A18) contains an imaginary contribution Rom x = 0 to
x = ka. This eventually leads to a modification of Eq.
(A24) according to

& 0.2—
E

0.1—
ka=0. 7

—------= ka=0.5

p p — ka=0. 3
ka=p. 1

I

0.0
I

0.2
I I

0.4 0.6
p (TM), q (TE)

1

0.8 1.0

Similarly, we obtain a comparable imaginary part &om
both terms in the first version of Eq. (818) in the range
&om x = 0 to x = ka, which adds a small imaginary part
to Eqs. (833) and (834) in the form

1+k a
8a', , (8
3 g15

p4

15k4a4)

——k a (TM),
9m

(9.12)

1+k a
8a 2 2(8

3 (15
q2

5k2a2p
ksas (TE).

9~

(9.13)

The leading imaginary term in Eqs. (9.11)—(9.13) for g =
0 and small ka appears to be well confirmed. Moreover,
these terms are the same as those obtained by Eggimann
[9]

For the wall with finite thickness, the polarizability
and susceptibility seen within the cavity are given by [6]

FIG. 8. Imaginary part of the scaled susceptibility g, vs

p (for the TM mode) and q (for the TE mode) for various
ka, with g/a = 0.

Xin=X8+ga, @in=Os+ Pa, (9.14)

6x10 ka=p. g while the polarizability and susceptibility seen outside
the cavity are given by

ka=0. 7

xoi=x. —x (9.15)

ka=0. 5

ka=0. 3
ka=0. 1

I

0.0
1

0.2
i

0.4 0.6 0.8
I

1.0

FIG. 7. Imaginary part of the scaled polarizability y, vs
s for various ka, with g/a = 0.

Here the subscripts 8 and a denote the solutions of the
symmetric and antisyminetric potential problems [6]. In
Figs. 9 and 10 we show y;„and @;„asfunctions of g/a
for various ka. Figures 11 and 12 show the dependence
of lny „i and 1n@ „i on g/a. In the limit of ka = 0, our
results are in agreement with those given in Ref. [4] to
four significant figures. As g/a ~ 0, the zero thickness
results are recovered: g;„=ga„i -+ 4as/3, @;„=@a„i~
8as/3. And as g/a becomes large, the logarithmic plots of
ya„t and ga„t become linear with slopes —si ———2.405
and —qq

———1.841, respectively. The fact that slopes
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FIG. 9. Real part of the scaled polarizability y;„vs g/a
for various A:a, with s = 0.

FIG. 12. Natural logarithm of the real part of the scaled
susceptibility Q „t vs g/a for various ka, with p = 0 (for the
TM mode) or q = 0 (for the TE mode), where the curves are
the same for both TM and TE modes.
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FIG. 10. Real part of the scaled susceptibility g;„vs g/a
for various A:a, with p = 0 (for the TM mode) or q = 0 (for
the TE mode), where the curves are the same for both TM
and TE modes.
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FIG. 13. Imaginary part of the scaled polarizability y;„
vs g/a for various ka, with s = 0.
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FIG. 11. Natural logarithm of the real part of the scaled
polarizability y „& vs g/a for various ka, with s = 0.

FIG. 14. Natural logarithm of the imaginary part of the
scaled polarizability y „t vs g/a for various ka, with s = 0.
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FIG. 15. Imaginary part of the scaled susceptibility g;„
vs g/a for various ka, with p = 0 (for the TM mode) or q = 0
(for the TE mode), where the curves are the same for both
TM and TE modes.

X. DISCUSSION AND SUMMARY

We have defined a generalized polarizability and sus-
ceptibility of a hole for finite wavelength in terms of the
frequency shift of the associated cavities due to the hole.
In addition, we have constructed a variational form for
these frequency shifts, thus ensuring good convergence
for our numerical calculations. We then allow the cav-

are equal to the first zeros of Jo(s) and Ji(q) reflects
the dominance of the lowest modes, i.e. , the modes with
the smallest exponential dropoK along the z axis, for the
thick wall. The small change of the asymptotic slopes of
the curves in Figs. 11, 12, 14, and 16 for diBerent ka
shows that the lowest modes are still dominant, even for
finite ka. In Figs. 13—16 we show the imaginary parts of
y;„, lnyo„t, @;„,and in@ „t vs g/a for various ka.

ity dimensions to be infinitely large, enabling us to ob-
tain the generalized polarizability and susceptibilities of
a circular hole in an infinite plate of finite thickness.
Then, we obtain numerical results for various values of
ka, g/a, s,p, q and note that there are in general two dis-
tinct values of the susceptibility depending on the second
derivative of the magnetic Beld in and perpendicular to
the direction of the original magnetic field at the hole
location.

The variational formulation also allows us to obtain
first-order corrections in A: a, 8, p, and q analytically
for a hole in a plate of zero thickness. Here s2, p, and q
describe the transverse dependence of the fields without
the hole and these are needed because the corrections
will depend separately on the behavior of the fields in
the longitudinal and transverse directions.

The approximate forms obtained with the first-order
corrections have been compared with our numerical re-
sults and appear to be valid for ka as large as 1, with
8 & ka, p & ka, and q & ka. These forms are very similar
to those obtained by others for diKraction of a plane wave
through a hole in a metallic plate or by a metallic disk.
Although the numerical procedures allow us to consider
much higher values of ka, the results will be extremely
complicated since there will be propagation through the
iris holes and one can expect resonant coupling. This has
not been studied in the present paper.
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APPENDIX A: ALTERNATE BASIS FUNCTIONS
FOR THE GENERALIZED

POLARIZABILITY —ANALYTIC
APPROXIMATION FOR A SMALL HOLE

IN A THIN WALL
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FIG. 16. Natural logarithm of the imaginary part of
scaled susceptibility @ t, vs g/a for various ka, with p = 0
(for the TM mode) or q = 0 (for the TE mode), where the
curves are the same for both TM and TE modes.

It is well known [I] that for a wall of zero thickness,
the function u(r) for the polarizability calculation is

( r'lt' '
~(r) = —~

I

I ——,
I (A1)a

for a circular hole whose radius is much smaller than
the wavelength. When calculating the polarizability, we
therefore may wish to use the set of functions

f.( )=r—~
I

1 ——,'I( 2x v —1/2

(A2)u'i
in Eq. (3.4), where v = 1, 2, 3, . . . . In order to evaluate
the integrals in Eq. (3.7) we use

CX ( 2 ) /

2vr rdrV'
I

1 ——
I

V'Jo(Kr)
0

= 27rK rdr
I

1 ——
I

Jp(lcr)
a

=7r~ rL G (Krr, ), (A3)
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with rc = s /b. The function G (ip) is defined as

( 1~ J-+iq2(~)G„(ur):—I'
I
v+ —

~

I'(v+ 1/2) j (ip)
I (3/2) ( /2)

where j (ip) is the spherical Bessel function of order v.
This expression can be obtained by expanding Jp(rr) into
a power series in ~ r and integrating term by term in
Eq. (A3). We then have

~a2 8 8 a
b' J,(s„) "

b

2i/era ji (s„a/b)
b J,(s„)

and from Eq. (A6)

Mixi ).& cotP„L
(

x )2
k - P„

) ~ I cotllp~L
(

x )2

gN Pn

where

p = gs2/b2 —k2.

Thus we find

(A10)

(All)

(A12)

K" =~sr, , G (s ).
J&(8~)

The matrix in Eq. (3.6) then becomes

(A5)

pN tan pNL = ji (sN a/b)
Ji sN ) I cothp„Lji(s„a/b)p„J,(s„)

.I A:Mx„= —) —cot P„L Kx„Kx
n+N

+) —tan Kx K"„.k P g
2

(A6)

We now consider only the case g = 0, separate out the
v = 1, p = 1 term, and write d„= c /ci in Eq. (3.5) to
obtain J, (s„) —= (2/7rs„), cothp„L = 1 (A14)

(A13)

If we proceed to the limit a ~ 0 in Eq. (A13) the
primary contributions come from large n and the sum in
the denominator goes as g„n2, requiring the use of a
cutofF of order n b/a. In this way we are led to a
polarizability of order a, as expected. We therefore can
evalulate Eq. (A13) by taking the large n liinit, using

k cot PNL
PN

v=2 &=2 @=2

( oo

KNx, + ) d.KNx„
)

M~, + 2) d„Mi~ + ) ) d„d„M~„

(A7)

).I b2 xdxj 2(x)

p i/x' —k'a'
ngN

(A15)

Since

and converting the sum over n to an integral over x =
s„a/b. Thus

Since the v = 1 term in Eq. (A2) is the correct solution
for a small hole with g = 0, each d for v & 2 must be
proportional to a . Expanding the right-hand side of Eq.
(A7) in powers of a2 leads to the form

cot PNL Mii
P k(K )

sin x cos x
21 ))

we find, up to terms of order a /b,
2s2N as (1 —sN2a2/5b2)

(A16)

(A17)

x 1+2) dA+) )
&=2 pl=2

(A8)

where

xdxj,'(x)
p i/x' —k'a'

where A„and B ~ are expected to be of order 1. But
the minimum value of Eq. (A8) must occur for d„pro-
portional to a and this can happen only if A~ is propor-
tional to a . In this case the term in square brackets in
Eq. (A8) will be of order 1+O(a4). The a correction
to the static result can therefore be obtained by carrying
out the calculation of Mixi/(KNxi)2 so as to include ef-
fects proportional to a2 and neglecting term of order a
or higher. This is equivalent to setting d „=0 in Eq.
(A8). Thus we obtain

k'a' dxj,'(x)
dxgi x +~

~

p 2 p x
(A18)

k2a2I —= —11+6q 5)
We now consider the cavity mode TMONg, with

(A19)

Using ji(x) in Eq. (A16) and integrating terms succes-
sively by parts in Eq. (A18), we find

pNta pNL =
M k

~

11

From Eq. (A.5) we find

(A9) 8N2 2 2

NE

Since PNL is now near Ar, Eq. (A17) leads to

(A20)
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p (p2 L2 $2~2)

P L+e~
4s2 a3 /' s2 a2

N
i

1 N
3vrb4J2(sN) ( 5b

k

5

(A21)

Since PNL —Ar is of order a3, we can set the factor
PN/(PNL + Ar) = 1/2L, accurate to order a . In this
way we And

in Eq. (3.7). The term in P corresponds to an additional
TM component that does not contribute to H, . At this
point our choice of the function P is not obvious, but
we should have P(r = a) = 0 to satisfy the boundary
condition on Eg on the iris wall.

The other members of the set of trial functions for
which Eqs. (B2) and (B3) are the first are not obvious.
But an argument parallel to the one used in Eqs. (A7)—
(A9) permits us to calculate the susceptibility, including
corrections of order a /b and k a, from

PNL

2 a3 /' g2 2a2 2s2 a2 )
3' Lb4 J2 (sN ) q

5L2 5b2 )
(A22)

Finally, we can show that for the TMo~g mode

AN cot pNL = M~]

(&Ni)'

using only the first member of the set. Thus

k(K~@i)
2

pN tan pNL = &, TMiNe mode,

(B4)

(B5)

2
( 2 N

kNeENe(o) =
Lb4J2(, )

and therefore, from Eq. (4.14), we find [7]

(A23) tan PN I (KN i)
, TE~~g mode.

PN kMii
(B6)

2 k2 4a3 / k2a2 s2
Ne

kNeEN2e(0) 3 ( 5 5 )
(A24)

4aX= 1—
3

k2a2 a2
V' E

5 5E, (0)
(A25)

depending on the second d.erivatives of the normal elec-
tric 6eld component at the center of the hole. We have
suppressed the subscripts on k in the correction term in
Eqs. (A24) and (A25).

APPENDIX B: GENERALIZED
SUSCEPTIBILITY—ANALYTIC

APPROXIMATION
FOR A SMALL HOLE IN A THIN WALL

For zero wall thickness, the longitudinal component of
the magnetic field H, (r) is proportional to [1]

H, (r, o) -+
(I r2/a2)1/2 (I r2/a2)1/2 (Bl)

Unfortunately, the general variational formulation in Sec.
III requires that we use trial functions for the transverse
electric field in the hole, as in Eq. (3.4). We therefore
must determine the form of u(r) that corresponds to Eq.
(»).

Since H, (x, y) is proportional to BE„/Bx BE /By, ew-
can produce the correct form of H for k ~ 0 by using

where s = sNa/b Direct. numerical evaluation of the sum
in Eq. (A13) confirms the fact that there is no a2/b cor-
rection when the sum over n is converted to an integral.

A logical generalization of Eq. (A24) is that, for small
a and g = 0, the polarizability is of the form

For g = 0, the matrix element Mii in Eq. (3.6) is

Mi~i = —) A„cot P„L (K„i),
ngN

(B7)

where the sum over n involves both TE and TM modes,
with K„i defined in Eq. (3.7). For n being a TM mode,
we can write

I
p- Jp(p-)

do cos 0

d P PnT P

a2 b ( a2)

/2' p„r B / r' )
p„Jp(p„) p b Br ( a2)

f a zo(™%) (z ——,I, (a9)

where we have again integrated by parts. Using Eqs.
(A3) and (A4) for v = 1, we therefore have

Kfi = dS e„ fi
S1

"&"By„dS
~

1 ——
~

+ dS V'P„. V'P
s, & a') Bx

( r2) / p2
dS P„—

~

1 ——
~

+ —" dS (j&„P,a2 a2 S1

(B8)

where the final form is a result of integration by parts in
each term. Using Eq. (6.1) we find for the first term

fi ——(1 —r /a )'/ —Bp/Bx,

f» = —B4/By

(B2) a v2~ ji(x„) + p„
nl bJ ( )

with x = p„a/b

(B10)
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If n corresponds to a TE mode, we have

K@i = dS i x 7'g„ f~

1/2
dS '~-

~'1
By ( a

Bx By Oy Bxj

(812)

(813)

Integration by parts, using P(a) = 0, shows that the last
term in Eq. (813) vanishes. An evaluation of the first
term, using Eq. (6.2), yields

a q„/27r ji(y„)
bJi(q„)gq„' —1 yn

(814)

At this point we use the symmetry of the problem and
the known behavior of electric 6elds in the vicinity of a
circular hole in a thin wall to try

@(x,y) = nx(1 —r /a ) ~, (811)
where o. is a constant to be determined in the minimiza-
tion process. An analysis parallel to the preceding one
leads to

This leads to

7ra~ dxgx2 —k2a2 ji2(x)
ka p x

xdx ji(x)
0 gx' —k'a'

ELx gg x — dx

) +2~x~ ( x

- 2
—n j2(x)

(818)

where y has been replaced by x as the dummy variable
of integration.

The general form of the integrals in Eq. (818) is given
by Watson [8]. Specifically, we use

d &~(x)~-(x)x
Q x

p @+V—4+1

+ p A+@+v+3

I (A + 1)
A+@—v+2 p A —@+v+2

with y = q a/b. The matrix element Mii in Eq. (87)
can now be written as

to obtain
'yr

dxji~(x) = —,6'
j2(x}

x2 15
(820)

2vrka )., coth o„L 1
b2 er a Je2(p )

x —nj2(x„)2i(xn)
xn

(815)

where

~„a =—gx„' —k'a2, ~„a =— gy„' —k'a'. (816)

cotho. L m 1, cothv. I m 1,

Jo(p-) ~ 2G
) na ~ Xn)

vrbx„

k2G2 2a
'ma ~ yn ~ Ji (qn) ~2' +by„

As was the case in the calculation of the polarizability,
proceeding to the a —+ 0 limit makes the sums in Eq.
(815) diverge. For small a/b, the essential contributions
to the sums come kom large n and we may convert the
sums to integrals, with the following limiting forms con-
structed so as to retain the lowest two powers of k2G2 in
Mgg.

f ar
-„ j,(x)j,(x) 7r

10 p x 30
(821)

2KG G
(TM)

(823)

2ma q~
4 2

(~Nl) gb2( 2 1)J2( )

q2 G2

562 (TE).

(824)
To complete the calculation of @~e, we also need

HM(0) in Eq. (4.15) for both the TMiere and TEiive
modes. These are found to be

(825)

[In fact Eq. (820) has already been used in deriving Eq.
(Alg). ) We then find

G k a
Mi@i = — 1 — (3 —2n+ 3n ) . (822)

In order to obtain the susceptibility, we must also ex-
pand (%~@i)2 for small a. From Eqs. (812) and (814)
we find

OO OC&) dx or kg.
'rva It a Qn

(817) (Ar/I} q~2 1~~(0) ~„k. 2, J2( )
(TE) (826)
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