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We have critically tested the application of the diffusion approximation to describe the propagation of
ultrasonic waves through a random, strongly scattering medium. The transmission of short ultrasonic

pulses has been measured through a concentrated suspension of glass beads immersed in water. The
transmitted sound field is found to exhibit temporal fluctuations with a period determined by the width

of the incident pulse. Provided that appropriate boundary conditions are used to account for the

reAectivity of the interfaces, the time dependence of the ensemble-averaged transmitted intensity is

shown to be well described by the diffusion equation. This enables us to determine both the diffusion

coeKcient for the sound waves as well as the inelastic absorption rate. The consistency of these results is

established by varying the experimental geometry; while the transmitted pulse shape changes markedly,
the values for the diffusion coe%cient and absorption rate obtained through a description using the
diffusion approximation remain unchanged. We have also measured the absolute transmitted intensity
of the sound as the sample thickness is varied; this provides an accurate measure of the transport mean

free path and thus also the energy transport velocity. These results convincingly demonstrate the validi-

ty of using the diffusion approximation to describe the propagation of sound waves through strongly
scattering media.

PACS number(s): 43.35.+d, 43.20.+g, 62.30.+d

I. INTRODUCTION

The description of the propagation of classical waves
through strongly scattering media is a problem of consid-
erable importance to many areas of physics [1];it is also a
problem of great diSculty and a full understanding has as
yet remained elusive, despite considerable research eff'ort.
However, much progress has been achieved in recent
years through the study of the propagation of elec-
tromagnetic waves through strongly scattering materials
[1]. To a considerable extent, this progress has been
based on the success of the diffusion approximation in
describing the propagation. Within this picture, the
phase information of the scattering processes is neglected
and the propagation of the average energy density is ap-
proximated as a diffusive process. The diffusion
coefficient is D =v, l'/3, where the transport mean free
path l* is the mean distance traveled before the direction
of propagation is randomized and U, is the velocity at
which the energy is transported. The solution of the
diffusion equation determines the distribution of multiple
scattering paths; each of these paths is then assigned a
phase based on its total length. This approach has been
particularly successful with electromagnetic waves, in-
cluding light and microwaves; it correctly accounts for a
wide variety of fascinating phenomena, from the
enhancement of the backscattered radiation [2,3] to the
correlations of the transmitted intensity with variations
in the incident frequency [4], the angle of the sample [5],
or the temporal position of the scatterers [6,7].

While this approach has been very successfully and
widely applied to electromagnetic waves, the essential
physics of the approximation is completely general to all

types of classical waves. Thus it should apply equally
well to the description of the propagation of acoustic
waves. This could be of considerable practical impor-
tance; the measurement of the velocity and attenuation of
sound waves provides a sensitive probe of both the struc-
ture and the properties of the material through which
they propagate. Virtually all standard ultrasonic mea-
surements focus on the use of ballistically propagating, or
unscattered, sound. However, many materials and media
of technological interest scatter sound very strongly, pro-
viding an important practical impetus for exploring the
extension of the use of the diffusion approximation to the
description of the propagation of sound waves. Further-
more, the underlying physics of diffusing sound may
differ in unexpected but significant ways from that of
electromagnetic waves, thereby adding considerable rich-
ness to the description of the phenomena. For example,
the presence of transverse waves in solid scatterers may
lead to interesting new eff'ects. In addition, the im-
pedance mismatch of scattering particles can easily be
made significantly larger for sound than for light; this
may facilitate the observation of disorder-induced locali-
zation effects of a classical wave. However, to date, there
have been few investigations of the application of the
diffusion approximation to the description of the propa-
gation of sound waves through strongly scattering media
[8—10] and the applicability of the full diffusion treat-
ment to sound has not been critically tested. In this pa-
per, we study the application of the diffusion approxima-
tion to the propagation of ultrasound pulses transmitted
through glass beads in water. We exploit the consider-
able knowledge of diffusive propagation gained from the
study of light to provide a detailed description of the
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behavior of multiply scattered sound waves; this enables
us to critically test the applicability of the diffusion ap-
proximation for sound. We show that the diffusion ap-
proximation does indeed provide an excellent description
of the propagation and we measure the key parameters
essential for the application of this model.

In our experiments, we have investigated the propaga-
tion of ultrasonic pulses through slabs of strongly scatter-
ing glass beads immersed in water. Using a very small
detector, we have measured the amphtude of the scat-
tered sound in a single coherence area, or speckle spot;
this exhibits a rapidly fluctuating and highly dispersive
character. To compare to the diffusion equation, which
describes the propagation of the average intensity, we
have determined the scattered intensity of the sound from
the amplitude measurements and performed an ensemble
average over a large number of speckles. This allows us
to measure the pulse shape of the average multiply scat-
tered intensity that is transmitted through the medium
and to compare these data to the shape predicted by the
diffusion equation. By studying samples of different
thicknesses, we show that excellent agreement can be ob-
tained only if the effects of the boundaries are properly
accounted for in a fashion analogous to the methods
developed for describing the diffusive propagation of light
[5,11]. The description of the pulse shape provides a
measure of the diffusion coefficient D of the sound as well
as the inelastic absorption time ~, . The consistency of
this description is confirmed by comparing the results ob-
tained using a focused and an expanded incident beam;
these different geometries significantly modify the shape
of the transmitted pulse but yield identical values of both
D and v, A further consistency check is obtained in the
point source geometry by measuring the ratio of the off-
axis to the on-axis intensity; this ratio gives an indepen-
dent measure of D that is not complicated by boundary
and absorption effects and gives a value that is in excel-
lent agreement with the analysis of the on-axis pulse
shape. %'e have also measured the absolute transmission
of the sound in a quasi-continuous-wave configuration,
allowing us to determine the transport mean free path /*
of the diffusing sound from the dependence of the abso-
lute transmission on the sample thickness. From these
two separate measurements of D and l, we are able to
determine the velocity of energy transport U, for the
diffusing sound. This is the first reported measurement of
either I* or U, for diffusive sound. Our results unambigu-
ously establish the validity of the diffusion approximation
for multiply scattered sound.

II. EXPERIMENT

The propagation of very strongly scattered sound
waves was studied using samples consisting of glass beads
immersed in water, for which the acoustic impedance ra-
tio is approximately 10. The scattering was further
enhanced by choosing the glass bead diameter to be the
same order of magnitude as the acoustic wavelength in
water. This was accomplished by performing the experi-
ments at an ultrasonic frequency of 2.5 MHz and using
beads with a radius a of 0.5 mm. The glass beads were
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contained in disk-shaped cells having thin, parallel poly-
styrene walls glued to a uniform spacer ring; this ring
formed the outer circumference of the disk and had a di-
ameter that was at least ten times larger than the cell
thickness. The beads were relatively uniform in size and
were carefully packed into the water-filled sample cells so
as to avoid trapped air bubbles, which would have caused
significant additional ultrasonic absorption, obscuring the
propagation of the multiply scattered sound. The beads
were packed at a volume fraction near the limit of ran-
dom close packing, or about 63%.

One of the experimental challenges in measuring multi-
ply scattered ultrasonic radiation arises from the rapid
spatial fluctuations that occur in the phase and amplitude
of the scattered sound at the detecting plane. These Auc-
tuations are caused by the interference between the ul-
trasonic waves that have traveled different paths through
the sample, resulting in acoustic speckles that are analo-
gous to the more familiar case of optical speckles. Since
piezoelectric transducers measure the average acoustic
geld across the surface of the detector, these rapid spatial
fluctuations give rise to spurious phase cancellation
effects when conventional large-diameter transducers are
used as detectors, leading to grossly inaccurate results.
To overcome this serious experimental limitation, we
have used a miniature hydrophone, whose diameter is
much less than the ultrasonic wavelength, to detect the
scattered radiation over a single coherence area. We il-
lustrate these spatial Auctuations in Fig. 1, where we
show a typical example of the near-field acoustic speckle
pattern of the multiply scattered sound exiting one of our
glass bead samples. These data were collected by scan-
ning the small hydrophone across the face of the sample.
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FIG. 1. Cross section of the acoustic speckle pattern of mul-

tiply scattered sound transmitted through a 20-mm-thick sam-
ple containing 0.5-mm-radius glass beads immersed in water.
The speckle pattern was detected in the near field. The coher-
ence area is approximately k, where X=O.6 mm is the ultrason-
ic wavelength in water.
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FIG. 2. Time evolution of the transmitted ultrasonic fields in
a single speckle (right) for three different incident pulse widths
(left}, showing the temporal Auctuations of the multiply scat-
tered fields.

They confirm that the width of the coherence area over
which the ultrasonic signal is essentially constant is ap-
proximately equal to the ultrasonic wavelength A, . Thus
the use of the miniature hydrophone successfully elimi-
nates the deleterious effects of having more than a single
speckle impinge on the detector, while retaining the ex-
cellent sensitivity of ceramic piezoelectric transducers,
thereby making measurements of multiply scattered ul-
trasound feasible.

The experiments were performed in a water tank,
which provided a convenient coupling medium between
the transducers and the sample cell and allowed their rel-
ative positions to be readily varied. Two different experi-
mental geometries were employed. In the first, we used a
point-source geometry, in which an incident sound pulse
was generated by a focusing transducer arranged so that
its focal plane was coincident with the face of the sample
closest to the transducer. The miniature detecting hydro-
phone was placed near the opposite face of the sample, on
axis with the generating transducer. Signals from statisti-
cally independent ensembles of the glass-bead disorder
were collected by translating the sample. A second ex-
perimental geometry was used to obtain a good approxi-
mation to a plane-wave source; here the sample was
placed in the far field of a 6-mm-diam generating trans-
ducer, thereby ensuring a uniform illumination of the
front face of the sample. For the plane-wave experi-
ments, the sample was fixed in position and the detector
scanned over the central portion of the back face of the
sample cell to collect the transmitted sound in many
speckles. The signal-to-noise ratio of the detected wave
forms was improved by averaging the detected signals for
each speckle using a digitizing oscilloscope.

TIME (Ns)

FIG. 3. Transmitted ultrasonic field in a single speckle for an
incident pulse width of 100 ps. The incident pulse is shown in

(a) and the transmitted fields in typical bright and dark speckles
are shown in (b) and (c). Note the region from about 60 to 100
ps, where the amplitude is essentially fiat, corresponding to the
quasi-continuous-wave case in which the entire distribution of
allowed path lengths are filled.

The experiments were performed using different input
pulse widths, ranging from very short pulses that have
widths less than 1 ps to very long pulses that are a good
approximation to continuous waves. An example of the
signal detected in a single coherence area for a short
pulse transmitted through a 10-mm-thick sample cell
containing 0.5-mm-radius beads is shown in Fig. 2(a).
The incident pulse consisted of only two oscillations cen-
tered at a frequency f =2.45 MHz and is shown to the
left. By contrast, multiple scattering in the sample causes
the transmitted signal to be spread out over a time inter-
val exceeding 70 ps as the sound that has traveled pro-
gressively longer and longer paths reaches the detector.
The transmitted pulse also exhibits large temporal Auc-
tuations that modulate the more rapid carrier frequency
oscillations at f=2.45 MHz. These fluctuations of the
wave-form envelope have a characteristic period that
represents the time over which the magnitude and phase
of the detected field remain essentially unchanged and is
of the order of the input pulse width. Physically this
reAects the fact that the maximum overlap of the paths
contributing at any time is determined by the width of
the incident pulse, so that as the incident pulse width is
increased, the characteristic width of these temporal fluc-
tuations also increases proportionally. This is illustrated
by Figs. 2(b) and 2(c), which show the signal transmitted
through the same sample when the pulse width is in-
creased first to about four oscillations [Fig. 2(b)j and then
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to about ten oscillations [Fig. 2(c)]. In both cases, the
temporal fluctuations of the envelope vary on a time scale
that corresponds to the greater input pulse widths. These
temporal fluctuations are a consequence of the interfer-
ence effects of the sound transmitted along different
paths. Unlike the case for light, these interference effects
can be directly measured using sound because both the
amplitude and the phase of the scattered waves are
detected.

As a final illustration of the interference effects associ-
ated with different samplings of the path distributions in
the sample, we show in Fig. 3 the effect of increasing the
incident pulse width to 100 ps, a time interval that
exceeds the longest transit times for the scattered sound
to travel through the sample. This incident pulse is
shown in Fig. 3(a), normalized for comparison with the
transmitted signals to an amplitude of +1. Figures 3(b)
and 3(c) show the relative amplitudes of the signals
transmitted through a 10-mm-thick glass bead sample.
The data in Figs. 3(b) and 3(c) were taken for two
different positions of the detector, corresponding to
bright and dark speckles, respectively. Fluctuations in
the transmitted signals are still observed during the first
50—60 ps, whereupon the entire distribution of different
path lengths become simultaneously "filled" and the sig-
nal level becomes constant, as would be expected for
continuous-wave transmission. Unlike the continuous-
wave situation, however, this plateau lasts only until the
end of the input pulse, after which rapid Auctuations are
again observed as the occupation of the path distributions
for these particular ensembles of scatters decays away.
The time interval over which these fluctuations persist is
similar to the time for the sound to diffuse through the
sample in the short pulse experiments, again showing the
temporal interference effects that are directly observable
in ultrasonic experiments.

III. RESULTS

To ascertain the validity of the diffusion approximation
in describing the sound propagation, we first determined
the time dependence of the average intensity of the
transmitted pulse in the point source geometry with the
detector transducer on axis with the source transducer.
We used an input pulse containing about ten oscillations,
as shown in Fig. 2(c), so that the frequency is reasonably
well defined. We measured the ultrasonic field over N in-
dependent coherence areas by translating the sample
while keeping both transducers fixed. To ensure that in-
dependent coherence areas are probed, the sample was
moved between each measurement a distance equal to at
least the sample thickness. The envelope of the square of
each individual wave form was then determined from the
maximum of each cycle in the transmitted pulse; the re-
sulting signal, which is proportional to the transmitted
intensity, was ensemble averaged over all N speckles.
The data were normalized by dividing the signal by the
measured intensity of the incident pulse. Typical results
of this ensemble average, measured for N = 85 and an in-
cident pulse width of 4.2 ps, are shown in Fig. 4 for three
different sample thicknesses. The results exhibit the
characteristic shapes of diffusively transmitted pulses;

-310 I ~ I I I

10

10

10

0 7

10'-
10-'-

1010"-
10-11

0
I I I

20 40 60 80 100

TIME (ps)

they are plotted on a logarithmic scale to accommodate
the large changes that are observed in the transmitted in-
tensity as the sample thickness is varied. As the sample
thickness is increased, not only does the overall intensity
decrease dramatically, but the pulse broadens and the
peak occurs at later times. For all these data, the magni-
tude of the temporal fIuctuations that remain after en-
semble averaging the transmitted intensity is of order
+X, consistent with averaging independent speckles.

To describe the diffusive nature of the sound propaga-
tion, we compare the measured pulse shape of the aver-
age scattered intensity to that determined by calculating
the transmitted Aux using the solution of the diffusion
equation for the acoustic energy density U(x, y, z) in a
slab of thickness I. having infinite transverse extent [12].
To account for the initial conditions, the incident sound
is assumed to be a 5 function in time and position, which
begins to diffuse after traveling a distance zo into the
sample. To account for the boundary conditions, we as-
sume that no diffusing Aux is incident into the sample at
the faces apart from a contribution due to internal
reflections [5,11]. For these boundary conditions, the
transmitted flux J (t) normal to the slab is given by

with

—r /4Dt ae e

2~I.~t n=1

—DP„ t/L
A„e

FIG. 4. Time profile of the average intensity transmitted
through randomly close-packed suspensions of glass beads for
three sample thicknesses L. The smooth solid curves are the
best least-squares fits to diffusion theory, giving D =0.43+0.02
mm /ps and v., =12+1ps.



3110 PAGE, SCHRIEMER, BAILEY, AND WEITZ

p„[p„Ksinp„—cosp„][sin(p„zo/L)+ p„K cos(p„zo/L) ]

P„K +1+2K

Here the values of p„are given by the zeros of the equa-
tion

2 K
tan

PK —1

and the dimensionless constant E is given by

2I* 1+R
3L 1-R

(3)

(4)

The calculated refiectivity R (8) of the cell walls is aver-
aged over the incident angles 0 [5] to obtain R =0.24.
We allow for the possibility that the detector is posi-
tioned a distance r =Q(x —xo) +(y —yo) from the
axis of the source centered at (xo,yo) and integrate Eq.
(1) over the width of the detector. Finally, to account for
the finite width of the incident pulse, we also convolute
Eq. (1) with the incident pulse shape, and to account for
uncertainty in the normalization of the input pulse, we
multiply Eq. (1) by an adjustable constant that is always
found to be of order unity in the fit.

The time profile of the average transmitted intensity
depends sensitively on both the diffusion coefficient and
the absorption time; the initial rise of the pulse is deter-
mined by D, while the decay is strongly influenced by ~, .
The decay is also influenced by the cell wall reAectivity R
since large values of R have the effect of lengthening the
diffusive pulse by causing sound to remain longer in the
sample. However, the fitted parameters D and z, are
only weakly dependent on R for the range of sample
thicknesses investigated and it would be necessary to vary

I

R by more than a factor of 2 from its calculated value to
have a significant effect on the determination of these pa-
rameters from our data. Thus R was held constant at its
calculated value of 0.24 while fitting our data. We expect
the effects of the penetration depth zo to be small in thick
samples, where the dominance of long diffusion path
lengths through the sample will make the data relatively
insensitive to zo, by contrast, the results for the thin sam-
ples should show a strong dependence on zo. However,
the values of D and ~, should be completely independent
of thickness. We therefore fit the data for each thickness
in Eq. (1) using different values of zo and plot the values
of D and r, obtained in these fits as shown in Figs. 5(a)
and 5(b), respectively. As expected, the results of the
thinnest sample are relatively sensitive to the value of zo
used in the fit, while the results for the thicker samples
are much less sensitive. We find a reasonably narrow
range of values for zo, between about 0.7 and 1 mm,
where consistent values of D and ~, are found for the
three thicknesses. These self-consistent fits yield
D =0.43+0.02 mm /ps and ~, = 12+1 ps. Moreover, if
we assume that zo = l*, as predicted by computer simula-
tions [13],we obtain an estimate for the transport mean
free path of l =0.85+0.2 mm. As shown by the solid
lines in Fig. 4, an excellent fit to the data for all three
thicknesses is obtained using these values.
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FIG. 5. Dependence of the fitted parameters D and w, on the
penetration depth zo for the data shown in Fig. 4. The con-
sistency of the fitted parameters for zo between 0.7 and 1 mm
gives an estimate for I* of 0.85+0.2 mm.
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FIG. 6. Comparison of the transmitted intensity I ( t ) mea-
sured with the detector displaced a distance r away from the
axis of the source to that measured with the detector placed
directly on axis. The solid curves in the lower panel show the
expected exponential reduction in the ratio of off-axis to on-axis
intensity and give a measure of D that is independent of absorp-
tion and boundary effects.
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FICs. 7. Comparison of the time profile of the transmitted in-
tensity for a point source and a plane-wave source. The smooth
solid curves are fits to the corresponding expressions given by
diffusion theory and provide another check of the applicability
of the diffusion approximation.

As a further confirmation of the accuracy of our deter-
mination of D and of the consistency of the description
using the diffusion approximation, we exploit the use of a
point source and a point detector. If we move the detec-
tor a distance r away from the axis of the source, the
transmitted intensity is decreased by exp( r—/4Dt), in-
dependent of all other variables. The reason for this is
that the pulses arriving at the same time for each position
of the detector must follow paths of the same length;
however, fewer paths contribute to the off-axis detector,
thus reducing the signal. This is independent of absorp-
tion, and hence ~„and is independent of boundary
effects, and hence z0 and R. We show typical results in
Fig. 6, where we compare, in the upper panel, the time
dependence of the average intensity measured with the
detector on axis to the intensity that is measured when
the detector is displaced 10.2 mm off axis (middle set of
points) and 15.2 mm off axis (lowest set of points). In the
lower panel, we plot the ratio of the average intensity for
the two off-axis positions to that obtained with the detec-
tor on axis. The data are significantly different; far fewer
paths reach the detector when it is further off axis and
the ratio is correspondingly lower. However, both sets of
data for the intensity ratios are well described by the pre-
dicted exponential form, as shown by the smooth lines
through the data in Fig. 6. In obtaining these fits, the
finite spatial width of the input beam and the detector
must be accounted for; this is accomplished by convolut-
ing the exponential expression with the measured spatial
profile of the incident beam and with the detector area.
From this behavior, we obtain values of D of 0.44+0.03
mm /ps for the detector placed 10.2 mm off axis and
0.46+0.03 mm /ps for the detector placed 15.2 mm off
axis, in excellent agreement with the value obtained by
fitting Eq. (1) to the on-axis data.

As an additional check of the applicability of the
diffusion approximation, we measure the shape of the
transmitted intensity pulse for a different geometry, using

a plane-wave source. We expect the shape of the diffusive
pulse to differ noticeably; however, the values of the pa-
rameters should remain unchanged if the diffusion ap-
proximation is valid. We compare data obtained using a
plane-wave source and a point source, for the same sam-
ple with I. =10.2 mm, in Fig. 7. The transmitted pulse
measured with the plane-wave source is noticeably longer
than that obtained with the focused source and reaches
its peak value at a later time. This reAects the larger con-
tribution of sound waves traveling over longer paths from
the plane-wave source. To fit the plane-wave data, we in-
tegrate xo and yo in Eq. (1) over the input face of the slab
to obtain

2D t le, — —Dp„ t iI.
L n=1

where A„, /3„, and IC are again given by Eqs. (2)—(4).
This differs from Eq. (1) for an on-axis point source only
by the multiplicative factor 4~Dt, thus predicting that
the ratio of the plane-wave to point source time profiles
increases linearly with time. We find that the linear time
dependence of this ratio is indeed well obeyed by our
data, again confirming the validity of the diffusion ap-
proximation, although the normalization of the point
source data is too uncertain to use the slope to obtain a
precise estimate of D. However, D can be determined by
fitting Eq. (5) directly to the plane-wave data. The
smooth line through the data obtained with the plane-
wave source, shown in Fig. 7, is the fit with z0 =0.85 mm
and provides an excellent description of the time depen-
dence of the data. From this fit, we obtain
D =0.43+0.02 mm /ps and r, =11+1 ps; these values
are in good agreement with the values obtained from the
fit for the focused geometry. This confirms the robust-
ness of the fit and the applicability of the diffusion ap-
proximation to the description of the propagation.

The absorption rate ~, is surprisingly large, being
much greater than expected for either water or pure
glass. To investigate the origin of this large absorption,
we repeated the measurements using a different bead size,
with a =0.25 mm. Surprisingly, we find that the absorp-
tion rate is independent of a. Thus the absorption cannot
be due to the usual viscous losses encountered in a Quid
near a Quid-solid interface, even though these losses
might be expected to be significant because of the large
interfacial area in our glass bead sample. However, this
mechanism [14] gives an absorption rate proportional to
the surface area and hence, for close-packed spheres, to
a ', which is not observed. Instead, it appears that the
absorption is intrinsic to the glass beads themselves, as
the measured absorption depends solely on the amount of
glass in the suspension and presumably results from the
method by which the spheres are manufactured.

An additional critical parameter in the diffusion ap-
proximation is the transport mean free path l*. While
we obtain an estimate of l* from the value of z0 that pro-
vides the best fit to the pulse shape data, a far more accu-
rate value can be obtained by measuring the absolute
transmission. However, to correctly account for all the
boundary and absorption effects, this must be done as a
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FIG. 8. Dependence of the absolute transmission on sample
thickness L. The incident ultrasonic beam was generated using
the plane-wave geometry with a sufficiently long pulse that
continuous-wave conditions were obtained to an excellent ap-
proximation. The fit to Eqs. (6) and (7), shown by the solid
curve, gives l*=0.8+0.05 mm.

solute measure of the transmitted intensity, great care
must be taken to obtain accurate data. Thus we measure
the intensity profile of the incident beam without the
sample and average over this to account for the small in-
homogeneities in its spatial profile. We also normalize
the transmission measurement for each speckle by the in-
cident power measured concurrently to eliminate the
effects of any drifts in the input power. Finally, we ac-
count for the effects of the sample cell walls by repeating
the measurement using a sample to which a po-
lyacrylimide gel had been added; this allows the cell walls
to be removed while still maintaining the shape of the
sample slab. Following these procedures, we are able to
obtain reasonably accurate measures of the absolute
transmission.

The data obtained as the sample thickness is varied are
plotted logarithmically in Fig. 8. To account for the
thickness dependence of the transmission, we compare
these data to [l3]

KL KL L
el* I*

(6)
function of sample thickness. This is most accurately ac-
complished using a plane-wave source, so that the
transmitted intensity is independent of the position of the
detector. The theoretical description of the total
transmitted intensity is most readily determined for
continuous-wave conditions; thus, to approximate these,
we used very broad input pulses, of about 100 ps in
length. As shown in Fig. 3, this ensures that virtually all
the paths are excited during the middle portion of the
pulse, so that, during this interval, the transmitted inten-
sity is constant in time. We again average the intensity
over about 100 independent speckles; in this case the
averaging is accomplished by squaring the measured
fields of each speckle and averaging these over the Hat

central portion of the pulse to obtain a value for the aver-
age transmitted intensity for each speckle. Since the sam-
ple is illuminated nearly uniformly, the detector is
translated over the central region to collect data from
different speckles. To obtain a measure of the absolute
transmitted intensity, data are collected with the sample
removed and the ratio is determined. Since this is an ab-

L 2KL
I* l'

where the second term in the numerator contributes only
for the thinnest samples and accounts for the small con-
tribution of the unscattered sound. The scattering mean
free path I, is determined by an independent measure-
ment of the ballistic transmission. This is performed us-

ing large area transducers, which are relatively insensitive
to the diffusive sound because of the phase cancellation of
the independent speckles, but are better able to detect the
weak ballistic transmission. We measure a value of
I, =0.75 mm. We must also account both for the effects
of absorption and for the experimental boundary condi-
tions, the latter being the same as in the pulse propaga-
tion experiments. This can be accomplished most direct-
ly by using the angular correlation function for diffusing
light in the presence of absorption, which has been deter-
mined for this geometry and with these boundary condi-
tions [S]. We evaluate it at zero angle and obtain

L +2KL . 1. sinh zozo+KL D~,

1/2

+KL
Dw,

1/2
1

cosh zo
Dw,

1/2

1
sinh L

Dw,

1/2

+2KL
Dw,

1/2
1

cosh L
Dw,

1/2 (7)

The solid line in Fig. 8 is a plot of the theoretical predic-
tions of Eqs. (6) and (7) using the values of D and r,
determined from the pulse experiments (Fig. 4) and a
value of I*=zo =0.8 mm. The agreement with the data is
quite good, except for one of the thicker samples where
the transmission is greatly reduced and the data are less

I

reliable. In fact, for L ) 10 mm, several factors conspire
to reduce the accuracy of the experimental results. As
the sample thickness increases, we are unable to enlarge
the illuminating beam proportionately, so that, for the
two thickest samples, the incident beam is no longer as
good an approximation to a plane wave. Also, for these
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samples, it becomes difficult to fill all of the paths simul-
taneously using a 100-ps-wide pulse, so that the
continuous-wave approximation begins to break down.
A third factor is the severe reduction in the signal-to-
noise ratio for the thickest samples, causing increased
scatter in the data. However, for the thinner samples, the
data are of excellent quality and the agreement between
the data and the theory is sufficiently good that we esti-
mate the uncertainty in l* to be no more than +0.05
mm. This represents a rather good determination of the
transport mean free path.

Finally, we can also determine the energy transport ve-
locity for the diffusing sound from our measurements of
D and l, using v, =3D/I . We obtain U, =1.6+0. 1

km/s. Interestingly, this value is very close to the veloci-
ty of ballistic propagation, which we measure to be
1.7+0. 1 km/s from the transit time of the weak unscat-
tered pulse that was detected in the scattering mean free
path measurement. It is also interesting to compare the
energy velocity with the speed of sound in water, which is
1.5 km/s, and with the longitudinal and transverse sound
speeds in the glass, which are 5.7 and 3.4 km/s, respec-
tively. Thus the energy transport velocity is only slightly
faster than the speed of sound in pure water and is much
slower than the sound speeds in glass. This relatively
slow velocity compares favorably with the behavior ob-
served with light, where the energy transport velocity can
be slowed significantly because of scattering resonances
[15,16].

IV. CONCLUSIONS

In this paper we have shown that the propagation of
sound waves through very strongly scattering media can
be well described by means of the diffusion approxima-
tion. In this regard, sound behaves in a manner analo-
gous to another classical wave, light, and we are able to
exploit much of the recent knowledge gained from the
study of diffusing light waves to accurately account for
the behavior of diffusing sound. We have measured the
propagation of short pulses of sound through a sample
consisting of glass beads immersed in water. Very strong
scattering was ensured by using beads that are compara-
ble in size to the wavelength of the sound in the water.
We have used a very small detecting transducer to probe
the scattered sound field within a single spatial coherence
area. The amplitude of the transmitted pulse is observed
to fluctuate in time with a period roughly set by the
length of the incident pulse. The ensemble average of the
transmitted intensity was determined by averaging over
many independent coherence areas, allowing the pulse
shape to be measured. This is found to be much longer
than the incident pulse, refIecting the long path lengths

traveled by the multiply scattered sound waves. The time
dependence of the average transmitted intensity is very
well described by the diffusion approximation, provided
that appropriate boundary conditions are used, which ac-
count for the reQectivity of the interfaces. From a fit to
the transmitted pulse shape for different sample
thicknesses, we are able to determine both the diffusion
coefBcient for the sound and the absorption rate. The va-
lidity of the difFusion approximation is further established
by repeating these measurements using a different
geometry, the pulse shape is changed, but it is still well
described by the difFusion approximation for the new
geometry, using the same values for the coefficients. Fi-
nally, we also measure the absolute transmitted intensity
as the sample thickness is varied. We again account for
the observed behavior within the diffusion approximation
using the same boundary conditions. This enables us to
accurately determine the transport mean free path of the
diffusing sound waves. Combining this measure of the
transport mean free path with the measure of the
diffusion coefficient obtained from the pulse shape data,
we are able to determine the energy transport velocity.

Our results provide a critical test of the applicability of
the diffusion approximation to the description of sound
propagating through a multiply scattering medium and
we conclude that this description is highly accurate. Un-
like light, the use of sound has the distinct advantage that
the full field amplitude can be simply detected, including
all the phase information. This additional phase informa-
tion has not yet been included in any theoretical treat-
ments of the diffusive propagation of classical waves; do-
ing so will help account for the data available with sound
measurements and may provide new insights into the na-
ture of the propagation. Moreover, this phase informa-
tion will allow additional measurements to be made, ' for
example, the dynamics of the medium might be probed
using the acoustic equivalent of diffusing-wave spectros-
copy [6,7]. In addition, using scatterers with significantly
less intrinsic absorption, but with significantly larger
scattering cross sections, may facilitate the observation of
nonclassical propagation effects, such as scale-dependent
diffusion coefficients, that are a signature of the localiza-
tion of sound. Thus the results presented here open up
interesting possibilities for using acoustic techniques in
future studies of the propagation of multiply scattered
classical waves, thereby transcending some of the limita-
tions inherent in light scattering experiments.
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