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A comparison between continuous waves (cws) and soliton pulses on the bifurcation character for sta-
tionary solutions and polarization instabilities in birefringent fibers is presented. For stationary solu-
tions, solitons are shown to demonstrate qualitatively similar bifurcation character to that of cws. The
polarization instabilities for solitons are, however, found to differ from those for cws: the fast soliton is
unstable even below the bifurcation point and elliptically polarized solitons are all unstable, in contrast
to cws, for which the fast mode is unstable only above the bifurcation point and the elliptically polarized
modes are all stable. The reason for the difference is discussed.

PACS number(s): 42.81.Dp, 42.81.Gs

In a linear birefringent fiber, the beams with two polar-
izations propagate independently. At high power, how-
ever, two orthogonally polarized beams propagating in a
birefringent fiber interact, leading to various fascinating
and intriguing nonlinear phenomena for diverse ultrafast
optical device applications. For continuous waves (cws),
the nonlinearity induced polarization dynamics of light
waves in a birefringent fiber (which are applicable to the
operation of fiber-optic logic gates and intensity discrimi-
nators) have been investigated extensively since 1982
[1-9]. One of the interesting findings reported on the
subject is the unstable evolution of the linearly polarized
beam initially launched along the fast axis of the
birefringent fiber above a critical power [S]. This unsta-
ble evolution of the beam along the fast axis consequently
results in energy swapping between the two polarizations.
The dynamic evolution of nonlinear cws in a birefringent
fiber, including the unstable propagation of the beam
along the fast axis above the critical power, is in effect
equivalent to that of a nonlinear coupler, provided the
meaning of physical quantities involved are adequately
correlated or the meaning of subscripts in the governing
equations for the two systems are properly redefined in
transforming the solutions from one system to the other
[8]. This fact can be appreciated alternatively by com-
paring the nonlinear modal or bifurcation diagrams (that
portrait the basic character of the system and accordingly
reveal dynamic evolutions of nonlinear waves in the sys-
tem [10]) and the corresponding stability character in the
two systems that are qualitatively identical as shown in
Ref. [10] for the nonlinear coupler and in Ref. [9] for the
birefringent fiber. A light evolution in an untwisted non-
linear birefringent fiber is equivalent to that in a sym-
metric nonlinear coupler and a twisted birefringent fiber
corresponds a mismatched nonlinear coupler [8,9].

Interestingly enough, for solitons it was shown that the
nonlinear effects can make the fast mode (soliton) unsta-
ble too as in cws when the beat length between the modes
is long [11]. To find out whether the propagation of soli-
ton pulse in birefringent fibers does, in general, behave
similarly to or differently from that of continuous wave,
in the following we present a comparison between the sol-
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iton and continuous wave propagation in birefringent
fibers on their bifurcation and stability characteristics.

The pulse propagation in a birefringent fiber is de-
scribed by the coupled nonlinear Schrodinger equations
[11,12]
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where u and v are the normalized envelopes of the slow
and fast linearly polarized modes, k=(8, —B,)/2 is the
linear birefringence that may result from shape or stress,
¢ is cross-phase modulation coefficient that is 2 for silica
fibers, and T and z are the normalized time and distance.
In terms of circular polarizations C.=(uz+tiv)/
V2, Eq. (1) reads
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These governing equations (1) and (2) for pulses reduce to
the ones for the cw when the terms involving the second-
order derivative with respect to T in the equations are
dropped.

For cws, the modal or bifurcation diagrams are shown
in Fig. 1(a) in terms of total power (P=|C_|?
+IC_|>=ul?>+|v|? vs fraction of power P, (=|C,|?
in the right circular polarization for the case of ¢ =%.
The bifurcation diagrams are characterized by pitchfork
bifurcation. The modal diagrams in terms of the propa-
gation constant B [C.(z)=|C.|exp(iBz)] vs the total
power P are illustrated in Fig. 1(b). The slow (u#0,v =0)
and fast (4 =0,v5<0) modes exist over the entire range of
power. The slow mode is stable for any power whereas
the fast mode becomes unstable above a critical power
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FIG. 1. Modal or bifurcation diagrams: the relation (a) be-
tween the total power (P=|C, |>+|C_|*=|u|?*+ |v|? and frac-
tion of power P, (=|C.|% in the right circular polarization
and (b) between the propagation constant 8 and the total power
P for cws in a birefringent fiber with ¢ = %

P=P,=«k/(1—c)=(B,—B,)/2(1—c), which also marks
the emergence of two stable degenerate elliptically polar-
ized modes when P> P, [8—10]. For ¢ =%, P, =3k, cor-
responding to =8, =ck /(1 —c)=2k.

For pulses, the bifurcation diagrams have qualitatively
similar characteristics as shown in Fig. 2 for the case
of ¢=2, which are obtained by substituting
u(T,z)=f(T)exp(ifz) and v(T,z)=ig(T)exp(iBz) into
Eq. (1) and solving the resulting equations. The solutions
for the slow and fast solitons have simple analytical forms

u R —
» | =V 2Bxi)sech[V/2(B=x)T Jexplifz) , 3)
with the corresponding power (or energy of the pulses)
P=ffw(|u12+|v|2)dT=ffw(|C+lz+|C_|2)dT
22\/2(Bq:l(') .

For the elliptically polarized beams, the stationary solu-
J
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FIG. 2. Modal diagrams in terms of the propagation con-
stant B vs the total power (or energy of the pulses) P
(=2 Uul+v[dT= [ _(|C.|>+|C_|?)dT] for solitons
in a birefringent fiber with ¢ = % Note that the power P for the
solitons presented in longitudinal coordinate is normalized by
dividing V'« rather than « in the cw case of Fig. 1(b). This is be-
cause the physical definition of P for the cw is the sum of inten-
sities of the two orthogonal components, which gives P propor-
tional to «, whereas that for the solitons is defined as integral of
the sum of intensities of the two orthogonal components over
the time, which yields P proportional to Vk.

tions are derived by solving the coupled equations
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numerically. Although Eq. (4) is not amiable to analyti-
cal solutions for the elliptically polarized solitions, the bi-
furcation point at which the elliptically polarized solitons
commence to exist can be derived analytically by a per-
turbation method [13]. These solitons come into ex-
istence when the propagation constant

—(B+k)g+[g2+(2c —1)f%1g =0 (4b)

B>B,=k[3+4(2c —1)—V8(2c — )+ 1]/[1—4(2c —1)+V8(2c — 1)+ 1],

which is B, =1.529« for ¢ =Z%. The associated bifurca-
tion power P, =2V2(B+«k)=4.5V'k.

Qualitatively, the bifurcation diagrams of Fig. 2 for
solitons bear resemblance to those for cws in Fig. 1(b).
The stability characteristics for the two cases, however,
differ significantly. To reveal the stability feature of the
soliton states of Fig. 2, we solve the linearized equation

(2)
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which is obtained by substituting C.=(Cy,

+8C )exp(iBz) into Eq. (2) with C., the stationary
solutions. The solutions to Eq. (5) for the soliton states of
Fig. 2 yield the growth rates A[8C.(T,z)
=8C . (T)exp(Akz)] for the elliptically polarized solitons
and for the fast soliton with 8> 0, but no growth rate for
the slow soliton. This means that the slow soliton is
stable, the elliptically polarized solitons are unstable, and
the fast soliton is unstable above =0, which is smaller
than the bifurcation value B,=1.529«. These stable
characteristics for solitons contrast strikingly with cws
for which the elliptically polarized modes are stable and
the fast mode becomes unstable only above the bifurca-
tion point B=pB, and P=P,. Figure 3 illustrates the
growth rates for the fast soliton and the elliptically polar-
ized solitons. Above the bifurcation point B>f,
(P > P,), the instability of the fast soliton results from the
existence of the real growth rate (A being real), whereas
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FIG. 3. Growth rates for the fast soliton and the elliptically
polarized solitons of Fig. 2.

below B<f, (P <P,) the growth rate becomes complex
with Re(A), the real part of A, demonstrated in Fig. 3.
On the other hand, the instability of the elliptically polar-
ized solitons results solely from the existence of the com-
plex growth rates A with Re(A) illustrated in Fig. 3.
These conclusions of the stability for the solitons derived
from the linearized equation (5) are consistent with those
from directly solving Eq. (1) or (2). Shown in Fig. 4 is the
unstable evolution of the elliptically polarized stationary
solutions at B/k=3, which breaks down with the propa-
gation distance around Z =«z =30.

The elliptically polarized solitons and the fast soliton
are unstable. This instability originates from the power
of the modes or the order of the solitons. The slow soli-
ton has the smallest power and it is the fundamental
state, whereas the fast soliton and the elliptically polar-
ized solitons carry power higher than the fundamental
one and thus are referred to as the higher-order soliton
states that can be unstable. In a nonlinear optical system
with (1+1)—D, the fundamental soliton is normally
stable whereas higher-order solitons can be unstable.
Equation (4) in fact supports other higher-order solutions
with multiple peaks in the intensity profile that have no
counterpart in cws [13—15]. These higher-order solitons
are unstable too. This unstable nature of higher-order
solitons in a birefringent fiber is similar to that in other
nonlinear optical systems such as those governed by the
single nonlinear Schrodinger equation where higher-
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FIG. 4. Unstable evolution of the elliptically polarized sta-
tionary solutions at B/k=3 of Fig. 2 (a) for |u|/V'« and (b) for
lv| /V'k with Z=zk, and X=TV'x.

order (periodical) solitons are all unstable [16].

Before concluding, it should be added here that for
nonlinear couplers, continuous waves and solitons behave
similarly in their bifurcation and stability features (and so
do their switching and other dynamic characters). This
becomes clear if one compares the bifurcation diagram
and the corresponding stability for the cws [17] with
those for the solitons [18] which demonstrate qualitative-
ly identical characteristics as far as the fundamental state
is concerned.

In summary, similarities and differences in the bifurca-
tion character for stationary solutions and polarization
instabilities in birefringent fibers between solitons and
cws are presented. For stationary solutions, solitons are
shown to demonstrate qualitatively similar bifurcation
character to that of cws. The polarization instabilities for
solitons is, however, found to differ significantly from
those for cws: the fast soliton is unstable even below the
bifurcation point and elliptically polarized solitons are all
unstable, whereas for the cws the fast mode is unstable
only above the bifurcation point and the elliptically po-
larized modes are all stable.
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