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Scattering of partially coherent electromagnetic fields by microstructured media
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Scattering of a two-dimensional, spatially partially coherent electromagnetic field by a two-
dimensionally-modulated microstructured medium is treated exactly by means of the coherent-mode
representation of the cross-spectral density tensor and a rigorous diffraction theory for fully coherent
fields. An explicit method of solution is provided for an isolated groove or slit in a perfectly conducting
substrate. The results demonstrate a significant impact of a reduced degree of spatial coherence on the
radiant intensity of the field diffracted by such a microstructure. The validity of results obtained on the
basis of Kirchhoff's boundary conditions is also assessed.

PACS number(s): 41.20.—q, 42.25.Fx, 42.25.Kb

I. INTRODUCTION

Diffraction and scattering of electromagnetic waves by
structured media with wavelength-scale surface-relief or
volume corrugations is a subject of major interest in, at
least, the optical, infrared, and radio-frequency bands of
the electromagnetic spectrum [I]. Approximate methods
such as those based on Kirchhoff's boundary conditions
are typically inadequate in the characterization of the in-
teraction of electromagnetic radiation with these micro-
structured media; accurate results can only be obtained
by solving Maxwell's equations exactly, taking fully into
account the appropriate electromagnetic boundary condi-
tions at surfaces of discontinuity.

Exact analytical solutions of electromagnetic
diffraction problems are rare [2], but numerical methods
of solution are well established for a wide variety of
periodically corrugated surface-relief and volume struc-
tures (gratings) [3] and random rough surfaces [4]. In
these rigorous investigations of diffraction by microstruc-
tured media the incident electromagnetic field has been
assumed spatially fully coherent. This assumption can be
justified, e.g. , in the microwave region and also in the op-
tical region if a single-mode laser is used to provide spa-
tially nearly coherent radiation. However, most sources
of electromagnetic radiation are only partially coherent
[5]. Besides nonlaser sources important examples are
many high-power and semiconductor lasers in photonics
applications.

In this paper we put forward a formulation for the
electromagnetic scattering of spatially partially coherent
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fields by micr ostructured media. We employ the
coherent-mode representation of randomly fIuctuating
wave fields [6] to reduce the general diffraction and
scattering problem into several individual problems with
fully coherent fields, which are then solved using efIicient
computational techniques based on rigorous difFraction
theory. The solution in the partially coherent case is ob-
tained as an incoherent superposition of these coherent-
mode contributions. In materials interactions the tech-
nique deals with single-point functions only, as opposed
to the usual two-point correlation functions. We consid-
er the diffraction of the so-called Gaussian-Schell-model
(GSM) fields [7] by grooves and slits in a perfectly con-
ducting medium. This model is particularly convenient,
because it permits a smooth transition from full spatial
coherence to complete inco'. .erence, and because the
coherent modes of a GSM field are known analytically
[8]. These modes are the Hermite-gaussian functions
characteristic of laser resonators and harmonic oscilla-
tors.

II. FUNDAMENTALS

@kl(ri r2) (Ek (rl )El(r2) ~

~kl(r 1 r2) (Hk (rl )Hl(r2) ~

&k/(r], r2) = (EI,*(r, )Ht(r, ) ),
~kl(rl r2) ~Hk (rl )El(r2) &

(3)

(4)

where Ek and Hk represent Cartesian components of the
electric and magnetic vectors associated with typical real-

A spatially partially coherent, partially polarized, sta-
tistically (wide-sense) stationary electromagnetic field at
frequency co may be characterized by four cross-spectral
density tensors [5,9] A', %, 9, and Q. In view of the
coherence theory in the space-frequency domain [6], the
field is represented by a frequency-dependent random en-
semble and the tensors are defined as
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izations, k and I may assume values x, y, and z, r& and r2
are two spatial points, the brackets denote ensemble
averaging, and we have suppressed the co-dependence for
brevity. The tensor elements in Eqs. (1)—(4) are Hermi-
tian, non-negative definite, correlation functions that are
connected by Maxwell's equations [10]. The components
of the averaged Poynting vector (S(r ) ) associated with a
fiuctuating field are given by [9]

ski ( R ) = ( Ek* ( 6)E&( R ) ), ' (6)

where r =R ( s~ =1), and the indices k and I now take
on the symbols 0 and P, which represent the spherical po-
lar angles specifying the direction of the vector k In the
rationalized mksa system of units, that we are using, the
magnetic field in the far zone is M(R) =(e/p, )' 9
XE(R), where e and p refer to the uniform medium in
question. The averaged Poynting vector and the degree
of polarization [2,5] characterizing the far field then are,
respectively,

r

(s(&))=—1 e
2 p

Tr[d(R)]s,

4 Det [8(R) ]

[Tr[z(e)] ]'

1/2

(8)

where Tr[8(R)] and Det[d"(R)] are the trace and the
determinant of the coherency matrix cg( R ).

Further simplifications take place if the material prop-
erties are strictly y-invariant in the modulated region
0(z (h and the incident field is assumed two-
dimensional and linearly polarized such that the electric
vector E (TE polarization) or the magnetic vector & (TM

X~jkl [ ~kl ( r r ) &kl (
—r r ) ]

kl

where j =x,y, z, summations extend over all Cartesian in-
dices, and ejk& denotes the Levi-Civita antisymmetric unit
tensor. The state of polarization generally varies from
point to point.

In this paper we restrict, for simplicity, the discussion
to diffraction geometries of the type illustrated in Fig. 1.
The diffracting object, which in general may contain vari-
ations of electric permittivity e, magnetic permeability p,
and conductivity o., is confined between the planes z =0
and z =h, and the material properties are assumed con-
stant if either z (0 or z )h. The half-space z (0, from
which radiation is incident, consists of a dielectric medi-
um of refractive index n„=(e„p„/e ppp)', where ep and

po are the vacuum permittivity and magnetic permeabili-
ty, respectively. In connection with finite transmission,
the half-space z & h is similarly taken to be a di-
electric medium of refractive index n, =(E,p, /e~p)'
On interacting with the microstructured medium the
scattered field in the half-spaces z (0 and z ) h,
sufficiently far from the modulated region, behaves local-
ly as a plane wave. Consequently, the far-zone diffraction
and polarization properties in both half-spaces maybe de-
scribed by a directionally dependent 2 X 2 coherency ma-
trix [2,5] defined as

polarization) of each realization points in the y direction.
We know, by symmetry, that scattered fields in these situ-
ations will be similarly polarized. In TE polarization, for
example, the electric field is fully specified by the com-
ponent E =E& and the only surviving element of the
coherence matrix (6) is 8&&(%)=(~E»(R)~ ). The far-
zone Poynting vector (7) then reduces to

1/2

(s(e)&=—— (~E (e)
2 p

(9)

According to Eq. (8), P(R)=1 as expected, i.e., despite
partial coherence the diffracted far field now is fully po-
larized. Analogous expressions and conclusions hold in
TM polarization in terms of the sole magnetic field com-
ponent H =H&.

In the analysis of microstructure interactions the field's
state of coherence plays an important role. In TE polar-
ization the entire cross-spectral tensor 8 has but one
nonzero element 6, namely,

@yy(xi ~ 1~x2& 2) (Ey (xi i ) y(X2&Z2) ) (10)

which characterizes the spectral correlations of the elec-
tric vector y-component E of the fluctuating electromag-
netic field. Maxwell's equation M(r ) =(imp) 'V XE(r )

implies that, for each realization, the nonvanishing com-
ponents H„and H, of the magnetic field vector H are
determined by E„.Thus, in the case of a linearly TE-
polarized field, all nonvanishing elements &„„,& „&
&„,Vy„,V „G„»,and 9, of the four cross-spectral ten-
sors given by Eqs. (1)—(4) are completely specified
once we know @yy. For example, %„(x„z„xz, zz )

=(cop) 8 6'yy(xi, zi, xz, zz)/BziBzz. Similarly, in the
case of a linearly TM-polarized field, the knowledge of

defined in analogy with Eq. (10) determines the spa-
tial coherence properties of the entire electromagnetic
field.

Following Wolf [6] we consider the (absolutely square-
integrable) electric cross-spectral tensor component 6"
associated with the incident field across a plane
z =zo =const and, by Mercer's theorem, express it in the
form

The functions P (x) represent the spatially fully coherent
natural modes of oscillation of the partially coherent field
at z =zo, and the coefficients A. , which are non-negative
and of which at least one is nonzero, correspond to the
relative weights of these so-called coherent modes. In
view of Eq. (11), the coherent modes P are mutually un-
correlated and the corresponding fields thus propagate
without interference. In a medium of refractive index n„
the coherent-mode contributions obey the usual Helm-

6""(x„zp,xz zp)= g A, P~(x, )P (xz),
q=0

where A, are the eigenvalues and P (x) the orthonormal
eigenfunctions of the homogeneous Fredholm integral
equation

I Cyy(x»zp xp, zp )P&(x i )dx i =Xqpq(xp ) . (12)
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holtz equation with wave number n„k=n,co/c, where
c =(eo po)

' is the vacuum speed of light. The spatial
evolution of the mode fields is conveniently accounted for
by using the angular-spectrum representation containing,
in general, both homogeneous and evanescent plane
waves; explicit expressions are given in subsequent sec-
tions. Denoting the propagated modes by gq(x, z), we
then obtain from Eq. (11)

h

nr

6"(x„z„x2,z2)= g A, lt*(x„z))g (x2 z2),
q=0

(13)

where g (x,zo)=P (x). Hence, if we know the coherent
modes for the incident field, we may treat each mode and
its interaction with the modulated region individually in
the solution of the di6'raction problem.

Once the scattered fields generated by the coherent
modes in the regions z ~ 0 and z ~ h are solved, as indi-
cated below, the electric cross-spectral tensor elements

and 8'" associated with the partially coherent
reAected and transmitted fields are obtained as superposi-
tions similar to Eq. (13). More specifically, if g (x,z)
represents the refiected (in z ~ 0 and propagating towards
negative z values) or the transmitted (in z ~ h) mode con-
tribution produced by l(q(x, z), the corresponding
electric-field tensor components are

6'""(x„z„x~,z~)= g Aqyq(x„z, )yq(x2, z2) .
q=0

(14)

T (a)= g (x,z '
) exp( —i ax )dx,2'

[(kn, ) —a ]' if ~a~ ~kn,

i [a —(kn, ) ]'~ otherwise .t(a)= '

Next we introduce polar coordinates (r, 8, ) such that
x =r sinO„z=r cosO„and let kr~ ~ along a fixed
direction 8, in the half-space z ~ h (see Fig. 1). Applica-

In TM polarization expressions analogous to Eqs. (13)
and (14) are obtained quite similarly in terms of the mag-
netic cross-spectral tensor components &~~. We em-
phasize that Eqs. (13) and (14) are exact field representa-
tions because of the linearity of Maxwell's equations but
they are not coherent-mode decompositions in the sense
of Eqs. (11)and (12). The number of coherent modes that
must be included in the di6'raction analysis depends on
the state of coherence of the incident field. For a nearly
coherent field only a few coherent modes have significant
values of A, q, whereas a large number of modes is typical-
ly necessary to represent a globally incoherent field accu-
rately.

Let us now assume that the transmitted mode contri-
bution g (x,z) is known across some transverse plane,
e.g. , z =z' ~ h. %'e may express the mode field within the
region z ~z' in the form of an angular spectrum of plane
waves as

yq(x, z)= J Tq(a) exp[i [ax+t(a)(z —z')]]da,

(15)

where

z

FIG. 1. Geometry for diffraction of a spatially partially
coherent electromagnetic field by a structured object, which is
confined between the planes z =0 and z =h.

in full agreement with the result obtained through the use
of the usual Hankel-type Green function characteristic of
two-dimensional wave propagation [12]. Thus the far-
zone distribution of 6'~~(r, ,8„,r2, 8,2) in the half-space
z~h is

(2' kni ) cos8qi cos8tp

X g A, T (kn, sin8„)T(kn, sin8, ~)
q=0

exp[ —ikn, (r, —r2)]
(19)

Considering the refiected mode contributions y (x,z) and
taking into account the fact that these propagate into the
negative half-space z ~ 0, an expression similar to Eq. (19)
is found also for the rejected far-field electric cross-
spectral tensor element 0'"'(r, , 8„„rz,8„2), if angle 8„
now is measured from the negative z axis (see Fig. 1),
T (a) is replaced by the corresponding refiected angular
spectrum Rq(a), and the refractive index n, of the medi-
um is changed to n„.

For two-dimensional fields the radiant intensity, which
is a measure of the angular distribution of energy Aow in
the far zone, may be defined as

J(9')=r~(S(ts))~, when rico . (20)

Using Eqs. (9), (10), (19), and (20) we then obtain for a
linearly TE-polarized, spatially partially coherent,
transmitted field the expression

tion of the method of stationary phase [11]to the integral
in Eq. (15) then yields

yq(r, 8( ) (2m'knt ) exp( i qr!4)—

exp(ikn, r)
X cos8, Tq (kn, sin8, )

r
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J(8, )= (kn, )

Xcos 0, g A, ~T (kn, sin8, )~

q=0
(21)

An analogous expression holds for the radiant intensity
of the rejected field in terms of p„n„,0„,and R . The
distinction between TE and TM polarizations shows in
the angular spectra T and R . In addition, the first fac-
tor on the right-hand side of Eq. (21) is replaced in TM
polarization by ~/roe, or vr/toe„ for the transmitted or
rejected field, respectively.

III. DIFFRACTION OF COHERENT FIELDS
BY GROOVES AND SLITS

We showed that the general diffraction problem with
partially coherent illumination can be reduced, by use of
the coherent-mode decomposition, into a set of
diffraction problems with coherent fields. In general, the
latter can be solved by a variety of mathematical tech-
niques. In complex scattering configurations the calcula-
tions may be tedious, utilizing, e.g., finite-element or in-
tegral methods, but a considerable advantage is gained in
that normally the solution is required only for a limited
number of coherent modes.

Below the scattering of partially coherent electromag-
netic fields by microstructures is illustrated using the
diffraction geometries presented in Fig. 2. With linearly
polarized waves and fully conducting media these
configurations are simple enough to allow analytic repre-
sentations of a coherent electromagnetic field within the
modulated region. The structures are also of practical

importance because they are encountered in binary optics
such as laser disc pickup systems.

For the numerical calculations we formulate an
efficient method which makes use of an angular-spectrum
representation of the fields in regions I and III, and a
waveguide-mode representation of the field in region II.
The mode coefficients are obtained from the boundary
conditions. We therefore arrive at methods of the gen-
eral type considered in Ref. [13]. The technique is cap-
able of dealing with incident fields of rather arbitrary
form.

A. Diffraction of a TM-polarized wave by a slit

where A (a) denotes the known angular spectrum of the
incident field, R (a) represents the unknown angular
spectrum of the diffracted field in region I, and

[(kn„)—a ]' if ~a~ &kn„
r(a)= '.

i [a —(kn„) ]' otherwise . (23)

Similarly, in region III (z )h),

H"'(x, z)= f T(a) exp[i[ax+t(a)(z —h)]}da, (24)

Consider the geometry of Fig. 2(a), which illustrates
diffraction of a monochromatic electromagnetic wave by
a slit of which c (not to be confused with the speed of
light) pierced in a perfectly conducting screen of thick-
ness h. Let us treat first the case of TM polarization, i.e.,
the sole nonvanishing component of the magnetic field
vector is H . In space region I (z &0) we may write the
solution of the Helmholtz equation in the form

H'(x, z)= f A(a)e px[i[ ax+r( a)z]}d a

+ f R (a) e px[i [ax —r(a)z]}da, (22)

(a)

ns

fly

X

(25)

In region II (0&z & h) within the slit aperture we use a
waveguide-mode expansion

where T(a) is the unknown angular spectrum of the
diffracted field in this region and

[(kn, )
—a ]'~ if ~a & kn,

t(a)= '.
i[a —(kn, ) ]' otherwise .

(b)

Z

fly

X

H» (x,z)= g X (x)[a exp(iy z)
m=0

+b exp[ i y (z ——h ) ]}, (26)

where a and b are unknown modal coefficients. The
condition that E, must vanish at the perfectly conducting
slit boundaries x =0 and x =c gives

ns jf 7yg =0
X (x)= '

(2/c)'~ cos(marx/c) if m )0 (27)

Z

FIG. 2. Geometry for di6'raction of a two-dimensional,
linearly polarized, electromagnetic field by {a) a slit and {b) a
groove in a perfectly conducting screen.

and

[(kn, )
—(mar/c) ]'~ if m &kn, c/vr

i [(mar/c) (kn, ) ]' oth—erwise, (28)

where n, is the refractive index in region II and the func-
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tions X (x) are orthonormal in the interval 0 & x & c.
We next apply the electromagnetic boundary condi-

tions at z =0 and z =h to solve for the unknown a, b
R (a), and T(a). Continuity of H across z =0 in the in-
terval 0&x &c gives

f [A (a)+R (a)] exp(iax)da

= g X (x)[a +b exp(iy h)] .
m=0

(29)

= g [a +b exp(iy h)]5
m=0

(31)

where 5 is the Kronecker delta symbol. By a similar
procedure, the continuity of H across z =h in the inter-
val 0&x &c gives

If we multiply Eq. (29) by X (x), integrate from 0 to c,
define

I~(a) = f exp( ia—x )X (x)dx, (30)

and make use of the orthonormality of the functions
X (x), we obtain

f I~*(a)[A (a)+R (a)]du

n„ f r(a)[A (a) —R(a)] exp(iax)da

=n, ' g X (x)y [a b—exp(iy h)],
m =0

(33)

in the interval 0 & x & c, with the right-hand side equal to
zero elsewhere. Multiplication by exp( ia—'x), integra-
tion from —ao to 00, use of the Fourier-integral
definition of the Dirac delta function and the orthonor-
mality of X (x) yields

2
nr

R (a') = A (a')— 1

2mr(a') n,

If we substitute Eq. (34) into Eq. (31), and Eq. (35) into
Eq. (32), and define

X g y [a bex—p(iy h)]I (a') .
m=0

(34)

A similar procedure at z =h gives
2

n,T(a')=, g y [a exp(iy h)
2rrt a' n,

b]I (a—') . (35)

f I*(a)T(u)da= g [a exp(iy h)+b ]5~ . (32)
m=0

K 1

2m n, f r '(ct)I&"(ct)I (a)da, (36)

Let us next make use of the boundary conditions for E„,
which must be continuous across z =0 in the interval
0&x &c and vanish at the perfectly conducting boun-
daries if either x & 0 or x )c. This gives

2
n, f t '(a)I&'(a)I (a)da,

we obtain a doubly infinite system of linear equations

(37)

g (5 +Ez y )a + g (5 EC y ) exp(iy —h)b =2f I~'(a) A (a)da,
m=0 m=0

(38)

g (5 Ly ) exp(i—y h)a + g (5 +L y )b =0,
m=0 m=0

(39)

which can be solved for a and b by standard methods
if the summations are truncated. Once a and b are
known, the unknown angular spectra of the difFracted
fields in regions I and III are obtained from Eqs. (34) and
(3&).

B.DifYraction of a TE-polarized wave by a slit

X (x)=(2/c)' sin(mnx/c), (40)

with m & 1 instead of m ~ 0 because the mode with m =0
vanishes identically.

It remains to apply the boundary conditions used to
match the fields at z =0 and z =h. In place of Eqs. (36)
and (37) we now define

E = f r (a)I*(a)I (a)da,
27K

(41)

If the incident field is TE polarized, i.e., the sole non-
vanishing component of the electric field is E, we may
still use Eqs. (22), (24), and (26) to represent the fields in
region I, III, and II, respectively, provided that H is re-
placed by E . The modal functions X (x) are given, in-
stead of Eq. (27), by

L = f t(a)I (a)I (a)du,
2&

(42)

with I (a) still given by Eq. (30). The final set of liner
equations for the modal coefficients a and b is now, in-
stead of Eqs. (38) and (39),
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g (I ~ +y 5~ )a~+ g (K~ —
y 5~ ) exp(iy h)b =2f r(a)I "(a)A (a)da,

m =I m=1
(43)

g (L~ —y 5~ ) exp(iy h)a + g (L +y 5 )b =() . (44)
m =1 m=1

Once a and b are solved, R (a) and T(a) are obtained
from

1R (a')= g [a +b exp(iy~h}]I (a') —A (a'),
2 7T

H"(x,z)= g X (x)Iexp(iy z)
m=0

+exp [iy (2h —z) ] ]a . (47)

~ = 1T(a')= g [a exp(iy h)+b ]I (a'),
2 7T

(46)

It remains to apply the boundary conditions at z =0. The
continuity of 0 in the interval 0 & x & c gives

f I~'(a)[A (a)+R (a)]da

which replace Eqs. (34) and (35). It is remarkable that
Eqs. (45) and (46), as well as Eqs. (34) and (35), remain
valid even when the thickness h =0; this corresponds to
an alternative solution of the classic Sommerfeld slit
problem [12].

C. DifY'raction of a TM-polarized wave by a groove

In the geometry of Fig. 2(b) the boundary condition
that E be zero at the bottom of the groove transforms
the field representation in region II, given by Eq. (26) for
a slit, into the form

= g a [1+exp(i2y h)]5~ (48)
m=0

and the boundary condition for E„yields
r 2

1 nr
R (a') = A (a')—

2~r (a') n,
L

X g y [1—exp(i2y h)]I (a')a
m=0

(49)

If we insert Eq. (49) into Eq. (48), we obtain for a a set
of linear equations

g I5 [1+exp(i2y h)]+y [1—exp(i2y h)]K„]a =2f Iz*(a)A (a)da,
m=0

where K~ is defined in Eq. (36). Once the modal coeiIicients a are determined, the angular spectrum R (a) associated
with the diFracted field in region I is obtained from Eq. (49).

D. Diffraction of a TK-polarized wave by a groove

In TE polarization we obtain, in place of Eqs. (49) and (5Q),

oo

R (a')= g a [1—exp(i2y h)]I (a') —A (a')
m=1

and

[[1—exp(i2y h)]&& +y [1+exp(i2y h}]5 }a =2f r(a)I*(a)A (a)da,
m =1 00

(52)
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with K given by Eq. (41). Obviously Eqs. (49) and (51)
are trivially correct in the limit as the groove depth
h ~0.

E. Numerical considerations

The numerical solution of the diffraction problem of a
coherent field by a groove or a slit contains two computa-
tionally critical steps.

In the numerical integration of the expressions for E
and 1. the range of integration should be chosen such
that convergence is achieved. These integrations
represent computationally the most time-consuming task,
although the integrations in Eq. (30) may be carried out
analytically. However, the coefFicients E and L, are
the same for slits and grooves of different depths, and for
all coherent modes associated with the illumination wave.
The coefficients E and I vanish analytically if p +m
is odd. For even values of p +m, integration over homo-
geneous plane waves, i.e., when r(a) and t(a) are real,
provides the real parts of E and L, whereas the
evanescent waves contribute an imaginary part. The in-
tegrand tends rapidly to zero for sufficiently large values
of

~
a ~, but the required integration range depends on the

parameters m and p.
Truncation of the summations in the final set of linear

equations must be chosen such that the waveguide-mode
amplitudes a and b, and the complex amplitudes R (a)
and T(a) converge satisfactorily. In general, the number
of waveguide modes that must be retained in the analysis
grows when c/A, or h /A, is increased (A, is the wavelength
of the radiation).

and so the incident beam no longer represents a free field.
The coherent-mode representation, Eq. (11), is known

in analytic form for a GSM field [8]. The coherent modes
are given by the Hermite-Gaussian functions

1/4
x&2 x'
w i/p 2p

expP (x)= 1 2

V 2qq! 71'W p

(55)

where we have defined

P=[1+(w/o. ) ] (56)

The quantity p satisfies 0 ~p ~ 1 and it is a measure of the
global degree of coherence. The modal coefficients, given
by

~ =W~2
1+P 1+P (57)

0.6—

decrease monotonica11y with the mode index and the rate
of decrease depends strongly on the coherence conditions
of the field. Finally, the angular spectrum of the moda1
field (55), calculated in accordance with Eqs. (15) and
(16), is given by [14]

IV. LINEARLY POLARIZED GAUSSIAN
SCHELL-MODEL FIELDS

We consider the class of fields known as Gaussian-
Schell-model (GSM) beams [7] incident on the micro-
structure. Across the plane of its waist, located at z =zo,
the electric cross-spectral tensor component C~„ in TE
polarization is given by

CD
x 04
X

0.2—

0.0

8&& (x i &zp x2&zp )= Wp exp[ —(x, +x z )/w ]

X exp [ —(x i
—s 2 ) /2o g ], (53)

(x — xc) /2

=6„„(x,,zp, x„zp)

X [8 (x„zp,x„zp)6' (X2,zp, x2, zp)] (54)

where Wp is a constant, w represents the 1/e half-width
(spot size) of the electric energy density distribution and
o. is the rms width of the complex degree of coherence
[9]
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associated with the linearly polarized electric field. The
GSM field becomes fully coherent (a Gaussian beam) in
the limit o. —+ ~, and approaches complete incoherence
as o. ~0. When og is small, i.e., o. =A, or less, 6 as
well as the other nonzero cross-spectral tensor elements
consist of significant amounts of evanescent plane waves,

(x-x, )/X

FIG. 3. (a) Distribution of electric energy density
8yy (xp 0,x,0 ) and (b) degree of coherence pyy (xp 0& Op 0) of a GSM
field with w =1.2A, , o.

g
=0.6A, {solid curve) and a field with the

angular spectrum truncated by an imaging system with= 1 {dotted curve).
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( —0' i/4 1
A (a) = (2~w P)' H —w/Pa

2~&2&q!

Xexp ——w pa2 2

4
(58)

i.e., it is also a Hermite-Gaussian function. Identical ex-
pressions hold in TM polarization for the magnetic
cross-spectral tensor element A~~ (x „zo,xz, zo ).

V. NUMERICAL RESULTS

In the numerica1 examples we consider a typical situa-
tion in microoptics, i.e., a GSM source is imaged onto the
plane z =zo=o by a unit-magnification aberration-free
optical system, such that the maximum of the Gaussian
distribution of electric energy density coincides with the
center, x =x, =c/2, of a groove or a slit. Imaging in
other locations and with. other magnifications, as well as
direct illumination, can be treated without difhculty. In
the spirit of Abbe's theory of image formation, we assume
that the angular spectrum of each coherent mode is trun-
cated at

~
a~=kn„sin8,„=kA„„,where A„„denotes

the numerical aperture of the imaging system. In gen-

eral, the truncation of the angular spectrum modifies 8
from the Gaussian form of Eq. (53). However, if we as-
sume that A„„~is close to unity, such modifications are
rather insignificant provided that w =A, and og =A, /2 or
larger.

The effects of truncation are illustrated in Fig. 3, where
we have plotted the distributions of 8~~(x, O, x, O) and

p (x, 0, 0,0) assuming that w =1.2A, , o~=0. 6A, . Here
and throughout the rest of this paper we assume that
n„=n,=n, =1, take A„„=1,and normalize the electric
energy density 6'~~(x, O, x, 0), integrated over the infinite x
range, to unity. The distributions of 6 (x,0,x, 0) associ-
ated with the original and modified fields are indistin-
guishable within the plotting accuracy, but the truncation
of the angular spectra of the coherent modes P (x) causes
oscillations in the complex degree of spatial coherence
p, (x,0,0,0). However, these oscillations are significant
only in the region where 6" (x,O, x, O) is virtually equal to
zero. Hence it may be concluded that the parameters m

and 0 associated with the initial field also characterize
the truncated field in all examples to be considered.

The inhuence of a varying degree of spatial coherence
in the radiant intensity of a field transmitted by a slit is
investigated in Fig. 4. Here we fix w =4.8A. , c =2.4A, ,
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FICx. 4. Radiant intensity of a GSM Geld with ur =4.8X diffracted by a slit of width c =2.4A, and depth h =A, when (a) o.
~
= ~, (b)
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~
=2.4A, , (c) o.

g
= 1.2A., (d) o.

g
=0.6A, . Solid curves: TE polarization. Dotted curves: TM polarization. Dashed curves: approximate

results.
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to be valid when c »k, at least if the screen thickness h
is at most of the same order of magnitude as X. Rigorous
and approximate results for TE polarization are ex-
pressed in units of vr/cop and for TM polarization in units
of ~/toe.

Inspection of Fig. 4(a), which illustrates the case of ful-
ly coherent illumination, shows that the results of the ap-
proximate model and the rigorous results in TM polariza-
tion are nearly identical throughout the paraxial region
(diFraction angle 8, =sin8, ), but the rigorous results in
TE polarization differ significantly from these curves. A
qualitative explanation of this phenomenon may be found
by considering the implications of the electromagnetic
boundary conditions at the slit boundaries x =0 and
x =c, 0 ~ z ~ h. They require that in TE polarization the
dominant field components E and H„vanish at the
boundaries but in TM polarization finite values of H and
E are allowed. We recall that the zeroth-order plane-
wave mode is permitted in the expansion (26), and depar-
tures from the prediction of the approximate model are
caused by the excitation of higher-order modes. When
8, ~+a/2, the radiant intensity given by the rigorous
method in TM polarization remains nonzero. This is
again consistent with the electromagnetic boundary con-

ditions, which permit nonvanishing components H and
E, at the boundaries z =h when x & 0 or x & c.

The general features of diffraction patterns described
above persist when the degree of spatial coherence is de-
creased, as illustrated in Figs. 4(b) —(d). The most visible
effect of partial coherence is that the side lobes of the
diffraction pattern are smeared, which is in qualitative
agreement with previous results in the scalar theory of
partial coherence, when the finite slit thickness is neglect-
ed [l5]. If os «c, we obtain an approximately Gaussian
distribution of J(8, ), in agreement with the predictions
obtained by the quasihomogeneous model of scalar
theory of partial coherence [15].

In Fig. 5 we present results similar to those given in
Fig. 4, but for a groove of width c =2.4k and depth
h =0.2A, , with w =4.8A, . We compare the rigorous re-
sults to the predictions of an approximate optical-path
method, in which we assume that each field realization
acquires an additional phase shift of 0. 8m. radians in the
region 0 & x & c. The optical-path model may be assumed
reasonably accurate when c »k. Clearly, for a groove
the polarization effects are less distinctive than they are
for a slit in Fig. 4. With coherent illumination the modu-
lation of the radiant intensity is quite pronounced, and its

2.5—

2.0—
(fl

9 1.5—
C:

GJ 1.0—
CL

0.5—

(a)
2.5—

2.0—
V)

&.5—

C
10—

CC

0.5—

(c)

00.
-90 -60 -30 0 30 60 90

()r (')

QO
-90 -60 -30 0 30 60 90

e„(.)

2.0—
V)I ~5—

c
10—c5

lD
65

CC

0.5—

(b)
2.5—

2.0—
CD

1.5—

10—CQ

0
6$

CC

0.5—

(d)

Q A

-90 -60 -30 0 30 60 90
0.0 I

-90 -60 -30 0

e, (.)
30 60 90

FIG. 7. Diffraction of a GSM field (m =4.8k and o.
~
= 1.2A, ) by a groove of depth h = 1.2A, and width (a) c =4.8g, (b) c =2.4g, (c

c = 1.2A, , (d) c =0.6A, . Solid curves: TE polarization. Dotted curves: TM polarization. Dashed curves: approximate results.
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main features are predicted by the approximate, scalar
model. Perhaps more interesting results, which may have
technical applications, are obtained when the state of
coherence is reduced: Fig. 5(b) indicates the possibility of
gaussian to (nearly) fiat-top transformation by diffraction
from a simple object. When cr &2.4A, (not shown), we
obtain approximately Gaussian distributions and the po-
larization effects nearly vanish.

In Fig. 6, we investigate diffraction by a groove with
c =2.4A, and h =0.25k, when o. =2.4A, is fixed, but the
width m of the incident field is varied. When m =9.6A, , a
sharply peaked far-zone pattern is obtained, with perhaps

surprisingly minute differences between the three curves.
With m =4.8A, and, in particular, w =2.4k, a doubly
peaked pattern results, which can be qualitatively ex-
plained in terms of constructive and destructive interfer-
ence. A nearly Oat-top profile is again obtained when
w =1.2A, , which lends support to our view that smooth
beam profile shaping operations can be achieved by opti-
mized wavelength-scale scat terers.

For a groove of fixed depth and an incident field with
w &)A,, we expect (at least for a coherent field) strongest
polarization effects when c =k. This is indeed verified for
a partially coherent field by the analysis given by Fig. 7,
where w =4.8A, , o. =1.2X and h =1.2A, are fixed, and c
is varied. With c =4.8A, polarization effects are small,
but they increase when c =2.4A, and, in particular, when
c = 1.2A, . These effects reduce again when c =0.6A, ,
which is partly explained by the limited penetration of
the field in a groove of subwavelength width irrespective
of the state of polarization.

Let us finally examine the effects of the screen thick-
ness h on the far-zone diffraction pattern of a slit with
c = 1.2X, m =4.8A, , and u = 1.2A, . In Fig. 8, we plot the
values of J(8, ) at 8, =0', 0, =15.67 (1/e half-width of
the radiant intensity associated with the incident field),
and 8, =30 . First, it is worth noticing that the perfectly
conducting screen modifies the energy distribution com-
pared to the predictions of the approximate model even
when h =0. The amplitude transmission results are in-
dependent of the screen thickness and, in general, closer
to rigorous TM than TE results. Moreover, the TE re-
sults stabilize for deep screens far more rapidly than the
TM results.

VI. CONCLUSIONS
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FIG. 8. DifFraction of a C+SM field (w =4.8A, and og =1.2X)
by a slit of width c =1.2X and varying depth h with radiant in-
tensity at a polar angle (a) 0, =0', (b) 0, =15.67', (c) 0, =30.
Solid curves: TE polarization. Dotted curves: TM polarization.
Dashed curves: approximate results.

We have proposed a physically rather general method
of solving electromagnetic diffraction and scattering
problems with spatially partially coherent illumination.
The method makes use of the coherent-mode decomposi-
tion of the random field, an angular-spectrum representa-
tion of each coherent mode, and a waveguide-mode ex-
pansion of the field within the microstructure. In the il-
lustrations a known multimode laser model was used for
the incident beam. For other types of illumination
different coherent modes apply, and they may be evalu-
ated, for example, computationally. The effects of various
relevant parameters, such as the state of coherence and
polarization of the incident electromagnetic beam and the
dimensions of the scatterer, on the radiant intensity dis-
tribution of the scattered field have been analyzed numer-
ically. The exact results were also compared to an opti-
cally intuitive scalar model. The present investigation
was restricted to simple scatterers, namely, grooves and
slits in a perfectly conducting surface, which are of cen-
tral importance in technologies involving diffractive op-
tics. However, generalizations of the waveguide-mode
representation into more complex scatterer configura-
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tions, such as those with dielectric and finitely conduct-
ing microstructured media, can be realized at the expense
of increased computation time. The methodology
presented above has rather immediate applications, e.g. ,
to optical micrometrology of lithographically fabricated
structures [16].
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