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A self-consistent two-dimensional model is used to investigate intense charged-particle beam propaga-
tion through a periodic solenoidal focusing channel, particularly in the regime in which there is a
mismatch between the beam and the focusing channel. The present self-consistent studies confirm that
mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as pre-
dicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)].
Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size
is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the
same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo
formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope
mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing

halos.

PACS number(s): 07.77.+p, 29.27.Eg, 41.75.—1, 52.25.Wz

I. INTRODUCTION

There has been considerable interest in advanced
high-current ion accelerators for a variety of applications
ranging from heavy ion fusion [1,2] to accelerator pro-
duction of tritium [3]. The most important milestone in
the development of such high-average-power ion beam
systems is to accelerate and transport space-charge-
dominated ion beams with extremely low beam loss. One
mechanism for beam losses is attributed to mismatch be-
tween the beam and the focusing system, because a
mismatched beam causes a halo to develop [4—-8] which
may make physical contact with some components of the
system. Practical difficulties of achieving precise beam
matching have motivated, in recent years, vigorous
theoretical and experimental investigations [4-6,9—-15] of
the effects of mismatch on the dynamics of space-charge-
dominated beams.

Several theoretical investigations of mismatched,
space-charge-dominated beams have been carried out us-
ing root-mean-squared (rms), test-particle, and self-
consistent particle-in-cell (PIC) models. In particular, it
has been predicted in an envelope analysis [9—-11] that,
for a periodic solenoidal focusing configuration, the beam
self-fields induce a rich variety of nonlinear resonances
and chaotic behavior in the beam envelope oscillations.
It has also been shown in test-particle analyses that parti-
cle orbits themselves can become chaotic either due to
beam density nonuniformities [12,13] for an alternating-
gradient quadrupole focusing configuration or due to
mismatched envelopes [14,15] for an axisymmetric uni-
form focusing configuration. Moreover, self-consistent
PIC computer simulations [4,5] have shown that an
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envelope-mismatched beam can form a dense core and a
tenuous halo, via an array of nonlinear resonances and
chaotic processes in the beam dynamics. However, few
comparisons have been made between these analyses and
self-consistent simulations.

In this paper, a self-consistent two-dimensional macro-
particle model is presented for space-charged-dominated
charged-particle beams and is used to investigate the evo-
lution of both rms beam quantities and the particle
phase-space distribution, particularly in the regime where
a mismatch between the beam and the focusing channel
occurs. The present investigation is concentrated on a
periodic solenoidal focusing channel which possesses ax-
isymmetry. It is demonstrated in the benchmark simula-
tions that, with as many as 10 macroparticles in the
present model, the properties of stable Kapchinskij-
Vladimirskij (KV) beam equilibria [10,16-18] are
preserved over propagating distances at least on the order
of 100 focusing periods. As predicted by the previous en-
velope analysis [9—-11], nonlinear resonant and chaotic
phenomena in the envelope evolution are confirmed in
the computer simulations, supporting the expectation
that such nonlinear phenomena should be experimentally
observable. Halo formation is investigated. While the
analytical model [14,15] for envelope-mismatched beams
without emittance growth does not provide an escape
mechanism for core particles to move into the halo, the
emittance growth and transient effects in the self-
consistent model provide escape mechanisms. The size of
the halo is estimated. The halo characteristics for period-
ic focusing configurations are found to be qualitatively
the same as those for uniform focusing configurations. A
threshold condition for halo formation is obtained nu-
merically.
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II. THE MACROPARTICLE MODEL

We consider a thin, continuous, intense charged-
particle beam propagating with average axial velocity
B,ce, through an axisymmetric, linear focusing channel
provided by the applied, periodic solenoidal magnetic
field

By(x,y,5)=B,(5)¢,— 1B,(s)(xe, +ye,) (1
and
ﬁo(x,y,s +S)=§0(x,y,s) , (2)

where s =z is the axial coordinate, S is the fundamental
periodicity length of the focusing field, the ‘“prime”
denotes derivative with respect to s, and c is the speed of
light in vacuo.

In the present self-consistent two-dimensional macro-
particle model, the beam is represented by Np macropar-
ticles. The beam density is approximated by

NP

1 (x,0,9)= 1 3 8(x —x,())8(y —y;(s)) , 3)
Np /=4

where N = f n(x,y,s)dxdy=const is the number of mi-
croparticles per unit axial length of the beam, (x;,y;) is
the transverse position of the ith macroparticle, and 8(x)
is the Dirac § function. Under the paraxial approxima-
tion [10,18], the self-electric and self-magnetic fields asso-
ciated with the beam space-charge and current are ex-
pressed as

E (x,p,s)=— [ e, aa +é, ?v ®“(x,y,s) , 4)

and

KB

(s)(x,y’s)— €, aa y a A‘S)(x,y,s) (5)

where the scalar potential for the self-electric field obeys
the Poisson equation

aZ

: a o D)(x,p,5)=—4mgn (x,p,s) , (6)
x

and the vector potential for the self-magnetic field is
defined by

4 9(x,p,5)=B, @ x,y,s)e, . %)

Here g is the particle charge.

For such a beam of Np macroparticles moving in the
combined periodic solenoidal and self-fields E“ and
B +B ), the transverse equations of motion for the ith
macroparticle can be expressed as [10,18]

d —
s VK, (s) |y;

oy (5)—t —

9ol
+;/_bBZ—mC—23.;_(D ’(x,,y,) 0 (8

and
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d 2)’1'
ds?

— dx; d —_—
2)— =+ ‘Z\/Kz(s) x

9 9 (s)(x —
yZB%mCZ ay; i

where i=1,2,...,Np, m is the particle rest mass,
v =(1—pB2) 7172 is the relativistic mass factor,

4B, (s)

= 10
VK, (s) 27 Byme? (10)

is the focusing parameter, and

Np

WN_ S infix;—x;)?
47Np F=10j#0 L

(b(S)(xi’yi )=

is the scalar potential experienced by the ith macroparti-
cle and is obtained from Egs. (3) and (6).

As described by Egs. (8)-(11), the self-consistent two-
dimensional macroparticle model for intense charged-
particle beams involves 2N, second-order ordinary
differential equations which can be integrated numerical-
ly with a computer code. The present macroparticle
(direct interaction) model, which is equivalent to
particle-in-cell (PIC) models, is more straightforward but
requires more computations than corresponding PIC
models.

It should be recalled that the total emittance [19] of a,
KYV beam in a solenoidal focusing channel is defined by

€, =4((x ) (x ) —(xx"))"?, (12)

€, =4y )y ) —(yy )2, (13)

for the X and ¥ directions, respectively; i.e., four times the
rms emittance. In Egs. (12) and (13), { ) denotes the en-
semble average over the beam particle distribution. The
coordinate in the Larmor frame [20] of reference, (X,7),
is related to the coordinate in the laboratory frame of
reference, (x,y), by the relations

X(s)=x (s)cos[¢(s)]—y (s)sin[P(s)] , (14)

y(s)=x(s)sin[¢(s)]+y (s)cos[d(s)] , (15)
where ¢(s)= fﬁo dsV/ k,(s).

It is inevitable that roundoff errors and discrete parti-
cle effects generate noise in computer simulations of
charged-particle beams, regardless of whether the present
macroparticle model or a PIC model is used. Therefore it
is important to validate simulation results, which is done
in part by simulating beam propagation with the matched
KV equilibrium distribution. The KV equilibrium
[16—18] is the only known Vlasov equilibrium for period-
ically focused intense charged-particle beams and has
been discussed extensively [10] for the periodic solenoidal
magnetic field configuration. In the configuration space,
a stable KV beam equilibrium corresponds to a solid
beam with a uniform transverse density profile and a ra-
dius which varies periodically in the direction of propa-
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gation with the same periodicity as the focusing lattice.

It is demonstrated in our benchmark simulations that,
with as many as 10° macroparticles in the present model,
the properties of stable KV beam equilibria are preserved
over propagating distances at least on the order of 100
focusing periods. In particular, the computer simulations
show that the particles are well confined within the
periodically varying outermost beam envelope, and that
the beam emittance remains constant within expected rel-
ative fluctuations of order of N !/2. For a KV equilibri-
um in a periodic solenoidal channel [10], note that the
beam is round with uniform density and €; =€, and that
the constants me, and TE; are equal to the areas occupied
uniformly by the beam particles in the phase planes
(x,x') and (¥,7'), respectively.

III. DYNAMICS OF MISMATCHED BEAMS

The beam self-fields induce a rich variety of nonlinear
resonances and chaotic behavior in the envelope oscilla-
tions of mismatched, space-charge-dominated beams
propagating through a periodic solenoidal focusing chan-
nel. This was first predicted based on an envelope
analysis [9,10] in which the beam emittance was assumed
to be constant and the effect of emittance growth was ig-
nored. In this section, we verify the predicted results and
study the particle phase-space distribution, using the
present macroparticle model which allows for the self-
consistent evolution of the beam emittance.

In the remainder of this article, we introduce the di-
mensionless variables and parameters defined by

K X y
- —>S, — —>X, —— A (16)
S V€S V€S
SZKZ—H(Z, -‘g—»K ,
€

where eo=ei(0)=ey (0) is the initial total KV beam emit-
tance which is assumed to be the same for the X and y
directions. Unless specified otherwise, the above dimen-
sionless variables and parameters will be used hereafter.

To make direct comparisons with the earlier envelope
analysis [9-11], we consider here a specific periodic
focusing channel described by

Kk,(s)=[ag+a,cos(2ms)]? . 17

The vacuum phase advance over one period of such a
focusing lattice is given approximately by

172
1 172
Jrtas| =
o .

Furthermore, we define the effective (total) beam radius
as

ai
2

Oog=

(18)

ag

ry=V2(r2)=v2(x2+y?) , (19)

which is V2 times the rms beam radius {r2)'/2. For the
special case of the matched KV equilibrium distribution
[10], the effective beam radius is equal to the outermost
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FIG. 1. Evolution of the relative rms emittance of a

mismatched, space-charge-dominated beam in the focusing
channel, as obtained from the simulation for the following
choice of parameters: K=3, a,=a,=0.648 (0,=45.5°),
57, /7,(0)=0.75, and Np=1024.

beam radius, because the beam is round with uniform
density.

A. Nonlinear resonances and chaotic behavior
in the rms evolution

Figures 1 and 2 show, respectively, the evolution of the
emittance and effective radius [computed as rms quanti-
ties using Egs. (12), (13), and (19)], of a mismatched,
space-charge-dominated beam propagating through the
focusing channel, as obtained from the simulation for the
following choice of system parameters: K=3,
ay=a;=0.648 (0(,=45.5°), and Np=1024. The beam is
loaded initially according to a KV distribution but the
beam radius is mismatched outward initially by 75%
from the equilibrium beam radius, i.e., 8¢, /7,(0)=0.75,
where &r,=r,(0)—7,(0) is the initial beam radius
mismatch and 7, (0) is the initial beam radius of the corre-
sponding matched KV beam equilibrium. It is evident in
Fig. 1 that the emittance €, varies significantly as the
beam propagates through the focusing channel. When

il

(0] 20 40 60 80 100

FIG. 2. Evolution of the effective beam radius for a
mismatched, space-charge-dominated beam in the focusing
channel, as obtained from the simulation for the same choice of
system parameters shown in Fig. 1.
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the emittance reaches its maximum at s =23, it has in-
creased by as much as a factor of three from its initial
value. The emittance for the y direction evolves in a
similar way as that for the X direction. As a result of
emittance growth, transient effects are observed in the en-
velope evolution shown in Fig. 2, particularly in the early
stage of development from s=0 to 25. Both the emit-
tance and the effective beam radius oscillate back and
forth once approximately every five lattice periods. The
oscillation period is given approximately by [9]

A=27[403+K*—K(40}3+K?)!/2]71/2 (20)

Because the beam emittance increases on average by a
factor of two from its initial value, the effective value of
K is K=1.0 for the case shown in Fig. 2. Substituting
0,=45.5° and K=1.0 into Eq. (20) yields the oscillation
period A=4.9 (i.e., 4.9 lattice periods), which is in good
agreement with the simulation result.

From the data shown in Fig. 2, the effective beam ra-
dius is differentiated with respect to s, and the Poincaré
surface-of-section plot [21] is generated to better visualize
the resonant behavior in the envelope oscillations. The
result is the separatrix of the fifth-order nonlinear reso-
nance shown in Fig. 3, where the effective beam radius 7,
and its derivative ry =dr, /ds are plotted in the plane
(ry,7p) at s =26,27,...,75. For a clear view of the non-
linear resonance structure, the 50 points in Fig. 3 are
connected by five contours, each of which traces ten
points that are separated longitudinally by about five lat-
tice periods with random fluctuations seen typically in-
side a chaotic, slightly broadened separatrix. A chain of
five stable islands is found inside the five contours shown
in Fig. 3. This result agrees qualitatively with the earlier
prediction based on the envelope analysis, as one com-
pares present Fig. 3 with Fig. 2(b) in [9]. Both analyses
show weakly chaotic behavior in the envelope evolution.
(Note that the overall structure of the nonlinear reso-
nance depends crucially on o, and K [9] but does not
change qualitatively from a sinusoidal to step-function
focusing lattice.) Although not shown in present Fig. 3, a
fourth-order nonlinear resonance is also found for larger
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FIG. 3. Poincaré surface-of-section plot generated from the
data in Fig. 2 showing the separatrix of the fifth-order nonlinear
resonance for the envelope evolution from s=26 to 75.
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initial envelope mismatches [e.g., 87, /7,(0)=1.6], as pre-
dicted by the earlier envelope analysis. Of course, the
main advantage in the present analysis is that the beam
emittance is allowed to evolve self-consistently. More im-
portantly, the simulation results presented in Figs. 1-3
show that, after emittance growth and transient effects,
the nonlinear resonances and chaotic behavior in the en-
velope evolution should be experimentally observable for
mismatched, space-charge-dominated beams propagating
through a periodic focusing channel.

Although more pronounced chaotic behavior was pre-
dicted in the envelope oscillations for oy>90° [9-11], a
direct confirmation of such chaotic envelope oscillations
remains challenging. This is because emittance growth is
found to be so pronounced in this regime that initially
space-charge-dominated beams tend to evolve rapidly
into emittance-dominated beams.

B. Evolution of the particle distribution and halo
formation

The rms properties of mismatched, space-charge-
dominated beams vary smoothly and exhibit nonlinear
resonances and weakly chaotic behavior, as discussed in
Sec. IITA. Once mismatch causes a beam to form a
dense core and a tenuous halo, however, the rms descrip-
tion of the beam becomes inadequate. Under such cir-
cumstances, we must also examine the self-consistent evo-
lution of the beam particle distribution in the phase space
(x,y,x',y"). From the point of view of accelerator design,
of particular interest are the condition for halo formation
and the size of a beam halo relative to the effective beam
radius.

Shown in Fig. 4 are plots of the particle phase plane
(x,y) at (a) s=38, (b) s=139, (c) s=40, (d) s=41, (e) s=42,
and (f) s=43, for the same choice of system parameters
shown in Figs. 1-3. Approximately 5% of macroparti-
cles are in the beam halo. The halo radius (i.e., maximum
radius achieved by halo particles) is approximately con-
stant as the beam propagates through the focusing chan-
nel. The ratio of the halo radius to the maximum
effective beam radius is found to be about 1.6, as seen
from Figs. 2 and 4(d), whereas the ratio of the halo radius
to the minimum effective beam radius is about 3.8, as
seen from Figs. 2 and 4(a).

It is found that the characteristics of halos do not
change qualitatively from a periodic to uniform focusing
channel. This is perhaps because the focusing parameter
of a periodic focusing channel «,(s) may be averaged over
one focusing period to yield a uniform focusing channel
with the effective (dimensional) focusing parameter
Ky0= fgxz(s)ds =(0y/S)*=const.

Finally, we estimate the mismatch threshold for halo
formation by means of computer simulations. For sim-
plicity, this is done for the case of an initially KV distri-
bution propagating through a uniform focusing channel
with «,(s)=const. In such a simulation, the maximum
radius achieved by the beam particles is determined after
the beam has propagated more than 50 periods of
mismatched envelope oscillations. The simulations are
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performed over a wide range of K and 6r, /7,, where
8r,=r,(0)—7, =0, r,(0) is the initial beam radius, and
7, =const is the radius for the matched beam in the uni-
form focusing channel. The results are shown in Figs. 5
and 6, where the maximum radius achieved by the beam
particles 7,, is plotted relative to the initial beam radius
r,(0) as a two-dimensional function of the relative
mismatch amplitude 87, /7, and the space-charge param-
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eter pu=1—(0/0,)? Here, o, and o=(1/2)[(K?
+403)!2—K] are the vacuum and space-charge-
depressed phase advances per unit axial length for the
matched beam, respectively. Note that u—1 (K /0y>>1)
for space-charge-dominated beams, whereas p—0
(K /o y—0) for emittance-dominated beams.

The onset of a plateau in Fig. 5 defines the threshold
for halo formation, which occurs at &r,/7,=0.2 for
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FIG. 4. Plots of 1024 macroparticles in the phase plane (x,y) at (a) s=38, (b) s=39, (c) s=40, (d) s=41, (e) s=42, and (f) s =43, for

the same choice of system parameters shown in Figs. 1-3.
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FIG. 5. Relative maximum radius r,, /7,(0) achieved by the
beam particles as a two-dimensional function of the relative
mismatch amplitude 67, /7, and the space-charge parameter
p=1—(0/0,)% obtained from simulations for the case of a uni-
form focusing channel.

©>0.4 but becomes increasingly large as u—0, as indi-
cated by the dense contours in Fig. 6. The plateau shown
in Fig. 5 is approximately flat and has a vertical height of
7, /ry(0)=1.6, which is in agreement with the results
shown in Figs. 2 and 4(d). The contour plot shown in
Fig. 6 reveals fine structures associated with various non-
linear resonances and chaotic processes in the beam dy-
namics. Similar and more detailed results have also been
reported in [4,5] for an initially Hamiltonian distribution
[22] in a uniform focusing channel.

IV. CONCLUSIONS

A self-consistent two-dimensional macroparticle model
was presented for studies of the dynamics of intense
charged-particle beams propagating through an axisym-
metric, linear focusing channel provided by a periodic
solenoidal magnetic field. It was demonstrated in the
benchmark simulations that, with as many as 10> macro-
particles in the present model, the properties of stable
KV beam equilibria are preserved over propagating dis-
tances at least on the order of 100 focusing periods.

The self-consistent evolution of the rms quantities such
as the rms envelope and emittance was investigated in the
space-charge-dominated regime. It was confirmed in the
computer simulations that, for beams mismatched into
the periodic focusing channel, the beam envelope exhibits
nonlinear resonances and chaotic behavior, as predicted
by the previous analysis of the beam envelope equation
[9-11]. As a result of emittance growth, transient effects
were observed in the rms beam evolution. These results
further support the expectation that the nonlinear reso-
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FIG. 6. Shown in a contour plot the same data in Fig. 5 for a
clear view of fine structures. Here, two adjacent contours are
separated by Ar,, /r,(0)=0.02. The onset of the plateau (i.e.,
threshold for halo formation) is indicated by the dense contours
located approximately at 8r, /7, =0.2 for u> 0.4.

nances and chaotic behavior in the envelope evolution
should be experimentally observable after the emittance
growth and transient effects for mismatched, space-
charge-dominated beams propagating through a periodic
focusing channel.

Also investigated were the self-consistent evolution of
the particle distribution in the phase space and halo for-
mation. Unlike the analytical model [14,15] for
envelope-mismatched beams without emittance growth
which does not provide an escape mechanism for core
particles to move into the halo, the emittance growth and
transient effects in the self-consistent model provided es-
cape mechanisms. The halo size was estimated. The halo
characteristics for a periodic focusing channel were found
to be qualitatively the same as those for a uniform focus-
ing channel. A threshold condition was obtained numeri-
cally for halo formation for mismatched beams in the
uniform focusing channel, which indicates that relative
envelope mismatch must be kept well below 20% in order
to prevent space-charge-dominated beams from develop-
ing halos.

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Energy, Office of High Energy and Nuclear Physics,
Grant No. DE-FG02-95SER40919 and in part by the Air
Force Office of Scientific Research, Grant No. F46920-
94-1-0374.

[1]R. W. Miiller, in Nuclear Fusion by Inertial Confinement:
A Comprehensive Treatise, edited by G. Velarde, Y.
Ronen, and J. M. Martinez-Val (CRC, Boca Raton, FL,
1993), p. 437.

[2] Heavy Ion Inertial Fusion, edited by M. Reiser, T.
Godlove, and R. Bangerter, AIP Conf. Proc. No. 152
(AIP, New York, 1986).

[3] R. A. Jameson, in Advanced Accelerator Concepts, edited



3080 C. CHEN AND R. A. JAMESON 4 52

by J. S. Wurtele, AIP Conf. Proc. No. 279 (AIP, New
York, 1993).

[4] R. A. Jameson, Los Alamos National Laboratory Report
No. LA-UR-93-1209, 1993 (unpublished); Proceedings of
the 1993 Particle Accelerator Conference (IEEE Service
Center, Piscataway, NJ, 1993), Vol. 5, p. 3936.

[S1R. A. Jameson, Los Alamos National Laboratory Report
No. LA-UR-94-3753, 1994 (unpublished).

[6] D. Kehne, M. Reiser, and H. Rudd, in Proceedings of the
1991 Particle Accelerator Conference (IEEE Service
Center, Piscataway, NJ, 1991), Vol. 1, p. 248; A. Cucchet-
ti, M. Reiser, and T. Wangler, in ibid., p. 251.

[7] Los Alamos Scientific Laboratory Report No. LA-UR-
7265-C, 1978 (unpublished).

[8] R. A. Jameson, R. S. Mills, and O. R. Sander, Los Alamos
National Laboratory Report No. LA-UR-92-3033, 1992

(unpublished).

[9] C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195
(1994).

[10] C. Chen and R. C. Davidson, Phys. Rev. E 49, 5679
(1994).

[11] S. Y. Lee and A. Riabko, Phys. Rev. E 51, 1609 (1995).
[12] Q. Qian, R. C. Davidson, and C. Chen, Phys. Plasmas 1,

3104 (1994).

[13] Q. Qian, R. C. Davidson, and C. Chen, Phys. Rev. E 51,
5216 (1995); Phys. Plasmas 2, 2674 (1995).

[14]J. S. O’Connell, T. P. Wangler, R. S. Mills, and K. R.
Crandall, in Proceedings of the 1993 Particle Accelerator
Conference (IEEE Service Center, Piscataway, NJ, 1993),
Vol. 5, p. 3657.

[15] R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).

[16] I. M. Kapchinskij and V. V. Vladimirskij, Proceedings In-
ternational Conference on High Energy Accelerators
(CERN, Geneva, 1959), p. 274.

[17] 1. Hofmann, L. J. Laslett, L. Smith, and I. Haber, Part.
Accel. 13, 145 (1983).

[18] R. C. Davidson, Physics of Nonneutral Plasmas (Addison-
Wesley, Reading, MA, 1990), Chap. 10.

[19] P. M. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, 1101
(1971).

[20]J. D. Lawson, Physics of Charged-Particle Beams (Oxford
Science, New York, 1988).

[21] A. J. Lichtenberg and M. A. Lieberman, Regular and
Chaotic Dynamics, 2nd ed. (Springer-Verlag, New York,
1992).

[22] R. L. Gluckstern, R. Mills, and K. Crandall (unpublished).



