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Small-signal analysis of coherent multimode coupling and optical guiding
in a Raman free-electron laser
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A coherent multimode-coupling theory is developed to investigate optical guiding in a Raman free-
electron laser (FEL) amplifier. On the assumption of using an electron beam with such a small radius
that the transverse gradient effect of the radiation field may be ignored, the multimode dispersion rela-
tion of coherent coupling among TE„O modes in a rectangular waveguide is derived. Theoretical analysis
and numerical results show, under proper conditions, that optical guiding in FEL s can be realized by
the coherent coupling of the TElo and TE30 modes. However, the dependence of the field coupling
coefficient on radiation frequency causes a strong frequency-dispersion effect on the transverse distribu-
tion of the power density of the radiation field. The range of operating frequency is limited.

PACS number(s): 41.60.Cr, 52.60.+h, 52.75.Ms

I. INTRODUCTION

In the early 1980s, it was known that the coherent in-
teraction between the radiation field and the electron
beam in a free-electron laser (FEL) can shift the trans-
verse distribution of the radiation field, and that the radi-
ation field is focused toward the electron beam [1—4].
This effect, known as optical guiding, has been studied by
many authors [5—18], both theoretically and experimen-
tally. Scharlemann, Sessler, and Wurtele [5] studied in
detail optical guiding in a Compton FEL by using a
weakly guiding optical fiber with a well-defined edge to
model the bunched electron beam. In a fiber with a pure-
ly real index of refraction optical guiding is refraction
guiding, and gain focusing when the index is purely imag-
inary. Because the index of the electron beam is general-
ly a complex number, there are both refraction guiding
and gain focusing in a FEL. When the radiation field has
saturated in a FEL with an untapered wiggler, or a ta-
pered wiggler is used in a FEL, refraction guiding plays
the leading role [18]. Gain focusing is more important in
a high-gain FEL. A few experimental observations of op-
tical guiding in FEL's have been reported [10—12].

Optical guiding can have more practical prospects in
Compton FEL's, but as a fundamental physics
phenomenon, it is paid close attention to in Raman
FEL's [7,8, 12,15—17]. In a Raman FEL, the current den-
sity of the electron beam is high, but the electrons' energy
and the FEL's operating frequency are low. So the in-
teraction region is generally a waveguide structure
[12,15]. When the optical guiding appears, the change of
the transverse distribution of the radiation field must re-

suit in multimode operation. Optical guiding cannot be
achieved in a single-mode waveguide. In the single-mode
Raman FEL of MIT, the observed change of wave struc-
ture had been interpreted as evidence of optical guiding
[15], but is now understood to be wave-profile
modification induced by electrostatic eff'ects [16]. There-
fore an overmoded waveguide must be adopted in achiev-
ing optical guiding in a Raman FEL.

In a vacuum waveguide, different waveguide modes
possess different wave numbers, and they are incoherent.
With an incoherent multimode-coupling theory, Cai,
Bhattacharjee, and co-workers studied optical guiding in
Raman FEL's [7,8]. However, when an electron beam, as
a medium, is introduced into the waveguide, the disper-
sion relations of the vacuum waveguide modes can be
modified. Under certain condition, some modes can have
the same wave number, and become coherent modes.
Based on these, in this paper we have developed a
coherent multimode-coupling theory to investigate opti-
cal guiding in a Raman FEL amplifier. On the assump-
tion of a small-radius electron beam passing through an
ideal, linearly polarized, magnetic wiggler field, the
coherent multimode-coupling dispersion relation, the
field coupling coefficient and the field expression of the
TE&o-TE30 coupling mode in a rectangular waveguide are
derived. Theoretical analysis and numerical results show
that the transverse distribution of the FEL's power densi-
ty varies with the operating frequency. Defocusing ap-
pears at some frequencies, focusing at others. Therefore
the achievement of optical guiding in FEL's is dependent
on both the FEL's parameters and the operating frequen-
cy.
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II. COHERENT MULTIMODE-COUPLING
DISPERSION RELATION

We assume that the FEL's interacting region consists
of a rectangular waveguide and a linearly magnetic
wiggler without an axial magnetic field, and that only
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TE„o modes are excited during the interaction between
the electron beam and the radiation field. The monoener-
getic electron beam aligned with the z axis is situated at
the center of the waveguide. The radius of the electron
beam r& is far smaller than 2a/n, where 2a/n is the
cutoff wavelength of the highest-order harmonic mode
and a is the waveguide width. Because the radius of the
electron beam is very small, as a very close approxima-
tion, the linearly polarized, magnetic wiggler field (in one
dimension) will be adopted; its vector potential is

u. = —yu. ,sin(k. z), (6a)

m ~ j(kllz —a)t)
uii=yQ u, i sin x e

a
(6b)

u o= le~ A o/(moyo) uii = lel A o/(moyo)
yo=(1 —Po) ', and Po is the normalized velocity of the
electron without the radiation field. The first-order axial-
ly perturbed velocity of the electron satisfies the equation

A = —yA Qsin(k z),
where A Q is the constant amplitude, k =2m /A, „,A, is

the wiggler period, and y is a unit vector in the y direc-
tion.

The scalar potential of the radiation field is zero; its
vector potential is

Bv& Bv&

oro at 'll az moyo Bz c2 Bt

~ Asc ~+sc—e(1—P')
z

+

j(k z —~t)
A~ =y gA Qsin x e

a

where kIl is the wave number and co is the frequency. As
mentioned above, when the electron beam is introduced
into the waveguide, the dispersion relations of the vacu-
um waveguide modes are modified. Under certain condi-
tions, different modes can have the same wave number.
We will derive the dispersion relation of coherent mul-
timode coupling. The dispersion relation is the condition
that different waveguide modes can have the same wave
number.

Lagrange's function for an individual electron in an
electromagnetic field can be written as

L= —moc +1—p +e(A.u —4),
where mo and e are the rest mass and the charge of an
electron, c is the light velocity, P=u /c, and u is the veloc-
ity of the electron. A and @are the general vector poten-
tial and the general scalar potential of the electromagnet-
ic field, respectively:

where vll is the axially constant velocity of the electron
without harmonic components of the radiation field.

From Maxwell's equations and the current continuity
equation

V.(EQE) =p,
Qp

V J=-
at '

(Sa)

(Sb)

we obtain

2A sc ~2@sc
p

~P1

at

(9a)

(9b)

where c.o is the vacuum dielectric constant and po is the
volume charge density of the electron beam without the
radiation field.

Substituting (9) into (7), we obtain
2

2
vll + +co „p&

A =A +A~+Asc,
@'=@'sc

poe Q2 v+
m y az' c' azqt

(10)

where Asc and @sc are the vector potential and the sca-
lar potential of the perturbed space-charge field, respec-
tively. We only consider the axial component of the
space-charge Geld, and assume that the Geld is of one di-
mension (B/Bx, B /By [ A sc, 4 sc]=0).

Because the range of the transverse motion of an elec-
tron in a FEL is far smaHer than the cutoff wavelength of
the highest-order waveguide mode, the transverse gra-
dient effect of the radiation field can be neglected.
Lagrange s function is simplified into a one-dimensional
function, and only varies with the longitudinal coordinate
z and the time t. From the conservation of canonical
transverse momentum, the zero-order transverse velocity
and the first-order transversely perturbed velocity of the
electron are given by

JA„Az = —A QQA Qsinw m

j[(k +k )z —cot] j[(k —k )z —cot]

Substituting (11) into (10) yields

j[(kll+k )z —cot] j[(kll k )z —cot]p1= Ae +Be

where

(12)

where co „=co„/(y([yQ ),co =[poe/(Eomo)]', y((=(1—P~~), and P~~=u~~/c. Because the transverse gra-
dient effect of the radiation field is neglected, we can
adopt the value of the radiation field at the center of the
waveguide (x =a /2) in (10), and obtain
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A = —+pp T(k„)g I™ m~
sin (13a)

w II II w(k +k )(P co/c —k —k )

(ki) + —oI/uii ) —(oI „/uii )
(13c)

B= ——
po T( —k„)g I™

sin
2 vII m v

The perturbed current density is

1y PQV iy+P1Vmy .

(13b) Substituting (6) together with (12) into (14), we obtain

(14)

2
~p . mm

J)y = —so g A osin
Q 2

1 —— [T(k )+T( —k )] e

1 ~wp J[(k()+2kw)z —co~] 1 ~wp j((k~( —
2kw)z wt)—

(15)

where P o=u„o/c. Substituting (2) together with (15)
into the wave equation

8 A~

c
(16)

2
CO —k

2 II
A„Q

T

m& . n&=asMQ 3 osin sin
2 2

(17)

where

2
COpa =21'SM 1 ——
QC

2

[T(k )+T( —k )]

(18)

where pQ is the vacuum magnetic permeability, dot multi-
plying on both sides of the equation by

y sin(m Irx /a )exp(k(~z alt ), an—d integrating over the
cross section of the waveguide and integer periods of the
magnetic wiggler field, we obtain

beam. In general, interactive coefficients of different
modes are different. However, we use the assumption of
a small-radius electron beam, and neglect the transverse
gradient effect of the radiation field. The electron beam
cannot distinguish different modes, so different modes
can have the same coefficient of beam-wave interaction.
But their dispersion relations are different. Equation (19)
is the dispersion relation of coherent multimode coupling
obtained by combining the dispersion relations of
different modes. Dispersion factors of even-number
modes, sllcll as (620 &sM) and (b,40 (2sM), are not III-
eluded in Eq. (19). The field of an even-number mode is
antisymmetric at the center of the waveguide. When
one-half of the electrons are in its positive field and the
other half are in its reverse field, the average effect of the
interaction between the electrons and the field is equal to
zero. Fields of even-number modes cannot arise from the
interaction with the electron beam. Their dispersion rela-
tions cannot be modified by the electron beam, so they
cannot couple with other modes.

III TEgo-TE3p COHERENT COUPLING FIELD
AND OPTICAL GUIDING

where E is the filling factor of the electron beam.
Equations (17) are a set of linearly homogeneous equa-

tions about [A oj. The set of homogeneous equations
has nontrivial solutions if the coefFicient determinant is
equal to zero. We obtain the dispersion relation of
coherent multimode coupling

(~10—~SM)

+SM

+SM

(~30 +SM)

SM

&SM

SM

(~50 ~SM )
=0, (19)

where b „0= (oI /c )
—k

~~

—( n Ir /a ) .
From Equation (17), when mAn, letting A 0=0, we

obtain that 5„0—asMsin (nm. /2)=0. This is just the
dispersion relation of the interaction between a single
TE„Q mode and the electron beam. So asM is the interac-
tive coefficient between a simple mode and the electron

(~10 SM) 410+IISM~30

~SM+ 10+(~30 ~SM) ~ 30

(20a)

(20b)

According to mathematical theory, if a function has
good characteristics, it can be expanded by a complete set
of eigenfunctions. Isin(marx/a)] are a complete set of
orthogonal functions in the interval [O,a]; by them, the
transverse distribution of a field without the y component
can be expanded into an infinite series. In general, the
early terms of a series play a leading role; the coherent
coupling among TE,Q, TE2Q, and TE3Q modes has typical
significance. As mentioned above, the field of the TE2Q
mode is antisymmetric at the center of the waveguide,
and it cannot couple with other modes. Therefore we
only discuss the coherent coupling between TE1Q and
TE3Q modes.

From (17), we obtain
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From (19), we obtain the following dispersion relation:

CO —k a
c 2 II

TE3o mode can be written as

A.

Az =yA io sin —x +5 sin
a

3~ j(k z —a)t)
x e

a
(23)

CO
X —k'—

II

'2
2

&SM &SM- (21)

O'SM
(22)

as the field coupling coefficient of TEio and TE3o modes.
The radiation field of the TE1o mode coupling with the

In Eq. (21), asM couples the dispersion relation of the
TE,o mode together with that of the TE3o mode, so it is
the coefficient of mode-mode coupling.

From (20). we define

this is the TE,O-TE30 coherent coupling field. In Eq. (22)

1o a d sM va y 't kll d ~' d
II

and co satisfy the
dispersion relation (21). Therefore the field coupling
coefficient 5 is a function of frequency, and is generally a
complex number. The transverse distribution of the radi-
ation field also varies with frequency.

We can prove (see the Appendix), when the volume
charge density of the electron beam or the plasma fre-
quency tends to zero, that the TE,o-TE3o coherent cou-
pling Geld will become vacuum waveguide fields: the
TE,o or TE3o mode. This is in keeping with our starting
point.

We rewrite Eq. (21) as

(kii+k„) Pii
——

kii
—k +(kii —ksc)(ki~ —ksc)T( —k )

(k((
—k,f )(k([ —k,f )(k() —k,+, )(k)(

—k,, )(kl —ksc )(kll ksc )

1 2 co 5'ir pe PwO2 2 Q)

p
(24)

where

k f=+ c2
5m

a
42'

2
COpe

2
goc

2 1/2 1/2
peCO

2
'Roc

(25a)

higher than the light velocity.
The slow space-charge wave can synchronize not only

with the fast electromagnetic wave, but also with the slow
electromagnetic wave. When synchronization appears,
the radiation field gets energy from the electron beam.
Let k,f =ksc or k,', =ksc then we obtain the approxi-
mate expression of the maximum growth rate

COk*=+ .
eS c

5m2

a
4

2m'

a

2
Cope

2
Xoc

2 1/2 1/2
COpe

2
Xoc

(25b) X 1+

p 0 k„„(1+/)
k s+cP

1/2

COpe

(26)

ksc= —k +--

cope
=v 2F cop

(25 )
where

(25d)

1

2~ &) oc
4 1/2 (27a)

k,f are the wave numbers of the forward and reverse fast
electromagnetic waves without the magnetic wiggler
field. k,*, are the wave numbers of the slow electromag-
netic waves. ksc are the wave numbers of fast and slow
space-charge waves. Fast or slow electromagnetic waves
are in fact fast waves, because their phase velocities are

(27b)

r,f corresponds to "+" in (26); the synchronous fre-
quency is

+ ( 4 2 p 2 2 5'ir pe+ +
a yoc

4 ' 2 1/2 1/2

'Voc
(28)

I „corresponds to "—"in (26); the synchronous frequency is

2 M2
2 + 42 2 22

a yoc

4
2m'

a

2
COpe

foe 2

1/2 1/2

(29)
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TABLE I. FEL parameters.

Relativistic factor yo
Beam current Ib

Electron beam radius rb

Magnetic wiggler field B
Wiggler period A.„
Waveguide width a

Filling factor F
Central radiation wavelength k

3
1.5 1&A

3 mm
3000 G
4 cm
5 cm
0.0113
1.16 cm

1

0

O

20

- 16

4

0 8
5

I-4 o

10.0 20

By using the parameters of Table I, we have numerical-
ly analyzed the TE&o and TE3o modes in order to study
their coupling characteristics. Because of the high
current density of the electron beam, the slow space-
charge wave can only synchronize with the slow elec-
tromagnetic wave; see Fig. 1. Numerical results show,
when co=co/co~„= 8.800, that the normalized growth rate
I /k „reaches the maximum 0.0659. From Eq. (26),
when I /k „=0.0649, the synchronous frequency is
co/ni „=8.609. That shows that Eq. (26) is a very close
approximate expression.

Figure 2 illustrates the relation between field coupling
coefficient and frequency. From Eq. (23) and the charac-
teristics of the functions sin(m. x/a) and sin(3m. x/a ), we
can directly find, when the real part of 5 is smaller than
zero and its amplitude is also small, that focusing of the
radiation field can appear. When

I
5 I is too small or too

great, TE&o and TE3O modes cannot be coupled together.
We illustrate the transverse distribution of the normal-

ized power density at three frequencies in Fig. 3 in order
to study the TE&o-TE3O coupling field's variation with fre-
quency. For reference, we show the power density of the
TE&o waveguide mode in Fig. 3. The normalized power
density is defined as

—12

—16

—20

FIG. 2. Plot of the field coupling coe%cient vs frequency.
When co=8.3, I5I=0.1850; when co=8.8, I5I=0. 1298; when
@=9.3, 151=0.2892.

T

2 . 2 1rx + I5lp
. 2 3rrx

1+ I5I'

+2 Re(5)sin sin (30)

where Re(5) is the real part of 5.
From Figs. 1 —3, we find, when 6=8.3 and the radia-

tion wavelength A, = 1.23 cm, that I =0.0335 cm
I5I =0.1850, and that defocusing of the power density ap-
pears distinctly. When co=8.8 and A, =1.16 cm, we find
that I =0.405 cm ', I5I=0. 1298, and that the growth
rate reaches the maximum, but focusing is not distinct.
When co =9.3 and A, = 1.10 cm, we find that I =0.0338
cm, I 5 I

=0.2892, and that focusing is distinct and opti-
cal guiding appears. We note that co=8.3 and 9.3 are on
both sides of the maximum growth point; their growth
rates are almost equal, but one of them is defocusing and

9. 2
3.0

8. 4

7. 6
C4

2. 4

A 1.8
) CO

6. 8 0. 6

6. 0

7.0 7. 5 8. 0 8. 5 9.0 9.5 10.0 10.5

0 0. 2 0. 4 0. 6 0. 8 1.0 x/a

FIG. 1. Dispersion diagram of TE&o-TE» coherent coupling
mode. co=m/m~„, k~„=0.6143 cm '. When co=8.8 and the
operating wavelength A, =1.16 cm, the growth rate reaches the
maximum I =0.0405 cm

FIG. 3. Transverse distribution of the power density of the
radiation field. Curve (0), TE&o mode for reference; curve (1),
A, =1.23 cm, IBI =0.1850, defocusing; curve (2), A. =1.16 cm,
I 5 I

=0.1298, not distinct focusing; curve (3), A, = l. 10 cm,
I5I =0.2892, focusing.
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IV. CONCLUSION

Based on the physical fact that the electron beam, as a
medium, can modify the dispersion relations of vacuum
waveguide modes, in this paper we have developed a
coherent multimode-coupling theory in a Raman FEL
amplifier. On the assumption of a small-radius electron
beam, the dispersion relation of coherent multimode cou-
pling among TE„p modes in a rectangular waveguide has
been derived. We have theoretically and numerically an-
alyzed the coupling between TE,p and TE3p modes. The
results have shown, under certain conditions, that optical
guiding in a FEL can be realized by the coupling between
TE&p and TE3p modes, but there is a strong frequency-
dispersion effect. Because there is a defocusing zone in a
linewidth of the growth rate, the effect frequency band-
width of optical guiding is limited.

APPENDIX: RELATION OF COHERENT COUPLING
MODE AND VACUUM WAVEGUIDE MODES

In this Appendix we will prove that, when the charge
density of the electron beam tends to zero, the TE&p-TE3p
coupling field will return to the vacuum waveguide fields.

When the magnetic wiggler field tends to zero
(P„O~O), from (18) and (22) we obtain

Xpc
2

COpe

CO

k 2 —co + m' + pe
ll 2 Q 2 (Al)

Equation (21) becomes

the other is focusing. Further numerical calculation
shows, when co&9.3, that focusing of the power density
appears strongly, but the growth rate weakens swiftly.
That shows distinctly that there is a strong frequency-
dispersion effect on optical guiding in a FEL.

The frequency dispersion of optical guiding in a FEL
can be interpreted as follows. The transverse distribution
of the radiation field can be regarded as the superposition
of waveguide modes. Because there is a coupling among
their fields, a certain proportion exists among the ampli-
tudes of the fields. The proportion varies with frequency,
so the transverse distribution of the radiation field also
varies with frequency. That results in the frequency
dispersion of optical guiding in the FEL.

COCO + 5' pe

c' a' y c'
27T peCO

Q @pc
2

2 1/2

=0,

(A2)

or

2 2
CO + 5'7l + pe +
c a yoc

42' +
Q

2
COpe

roc 2

' 2 1/2

=0.

(A3)

Equations (A2) and (A3) cannot concur unless a ~ ac and
COpe ~0.

Substituting (A2} and (A3) into (Al), we obtain
2 4 2

' 2 1/2
'Roc 2m 2m ope

~2 a Q y c2

5=0,
j(k z —cot)

AR =y A rosin —x e

2
2

=0,

5= oc or I/5=0,

AR =yA3psin
3~ j(k z—mt)

x e

(1) is the TE&c mode in the vacuum waveguide, and (2) is
the TE3p mode.

When there is no magnetic wiggler field, using the pa-
rameters of Table I, we obtain that 5=0.0108 or—92.7098 from (A4}. That shows, when there is no mag-
netic wiggler field, that the coupling between TE&o and
TE3p modes does not appear, even if the current density
of the electron beam is very high.

(A4)

"+"corresponds to (A2) and "—"corresponds to (A3).
We note that 5 is now dispersionless.

Let co&, ~0; from (A2), (A3}, (A4), and (23), then we
obtain
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