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Ion-acoustic nonlinear periodic waves in a two-electron-temperature plasma
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We present a comprehensive study of nonlinear periodic waves, namely, the Korteweg —de Vries
(KdV) and modified KdV (MKdV) cnoidal waves, and snoidal waves in a two-electron-temperature plas-
ma. In the limiting case, these periodic waves reduce to bounded nonlinear structures, namely, KdV
compressive and rarefactive solitons, MKdV compressive and rarefactive solitons, and double layers.
The existence regions for these waves in the parameter space (p„cr, ), where p, and o., are the density
and temperature ratios of two electron species, are discussed in detail. The different nonlinear periodic
waves and bounded structures have been explained in terms of physical parameters depicting the phase
curves. It is found that the frequencies of the MKdV cnoidal and snoidal waves have different amplitude
dependence behaviors than that of KdV cnoidal waves. The effect of other parameters on the charac-
teristics of the nonlinear periodic waves are also discussed.

PACS number(s): 52.35.Mw, 52.35.Sb, 52.40.Hf

I. INTRODUCTION

There has been considerable interest in studying the
characteristics of nonlinear periodic waves in plasmas
[1—12]. The cnoidal waves can be expected to play an
important role in the nonlinear transport processes in
plasma [3,4]. Nonlinear periodic waves like dn waves,
where dn is the Jacobi elliptic function, are believed to be
generated in the defocusing region of the ionospheric
plasma [8]. Kauschke and Schliiter [11] have explained
the appearance of single-mode drift wave spectra in their
previous experiment [10] on the basis of cnoidal waves.
Using the plasma model of Lakhin, Mikhailovskii, and
Orischenko [13] for drift waves, Kauschke and Schliiter
[11] found that the periodic signals observed at the plas-
ma edge [10] can be well described by the cnoidal waves.
It may also be noted that the cnoidal waves have been
developed in the shallow water medium [14] and in a lay-
ered LiNb03-(SiO film) structure [15]. Nayanov has
demonstrated the conversion of cnoidal Rayleigh waves
into the solitons [15].

Using the kinetic description, Schamel [1] studied the
small-amplitude snoidal ion-acoustic waves. Schamel [2]
has also discussed the nonlinear periodic wave solutions
for small-amplitude Langmuir waves. Lee and Kan [5]
and Yashvir, Bhatnagar, and Sharma [6] have studied the
ion-acoustic and ion-cyclotron nonlinear periodic waves
in the low-P magnetized plasmas. The stability of the
cnoidal waves in a magnetized plasma has been studied
by Infeld [7] and Das, Sluijter, and Verheest [12]. In Ref.
[12], it has been found that there is an instability of ion-
acoustic cnoidal waves when the angle between the direc-
tion of perturbation and the external magnetic field
exceeds a critical value. Using the reductive perturbation
method, Ichikawa [3] and Konno, Mitsuhashi, and Ichi-
kawa [4] have discussed the ion-acoustic cnoidal wave
solution of the Korteweg —de Vries (KdV) equation with
the positive coefficient of nonlinear term a for a plasma

with single electron species, which in the limiting case
(modulus m —& I) reduces to a compressive soliton. Roy-
chowdhury, Pakira, and Paul [9] have studied the ion-
acoustic cnoidal waves in a weakly relativistic plasma
with cold ions and two electron components. They in-
ferred that a cnoidal wave does not exist when the
coefficient of the nonlinear term of their KdV equation is
negative. However, the present analysis shows that the
KdV equation with a negative coefficient of the nonlinear
term also gives rise to a cnoidal wave solution, which in
the limiting case reduces to the rarefactive soliton solu-
tion.

The two-electron-temperature distributions are very
common in the laboratory [16,17], as well as in space
plasmas [18]. The nonlinear bounded structures, namely,
the ion-acoustic compressive and rarefactive solitons and
double layers in the two-electron-temperature plasma,
have been investigated in detail, theoretically [19—26] as
well as experimentally [16,17]. Ion-acoustic solitons and
double layers have also been observed in the auroral and
magnetospheric plasmas, where the two electron species
exist [18,27]. In these observations, the periodic signals
also appear frequently, which may be due to nonlinear
periodic waves. The aim of this paper is to present a
comprehensive study of different nonlinear periodic
waves in a two-electron-temperature plasma, along with
the limiting bounded nonlinear structures.

The plan of the paper is as follows. Section II is devot-
ed to the basic equations of the system. In Sec. III, we
derive the KdV equation. The cnoidal wave solution of
the KdV equation is discussed in Sec. IV. The effect of
different parameters on the characteristics of the cnoidal
waves are discussed in detail. For some parameter values
the coefficient of the nonlinear term of the KdV equation
vanishes. At this critical curve, we consider the higher
order nonlinearity and derive the modified Korteweg —de
Vries (MKdV) equation in Sec. V. Its periodic wave solu-
tions are discussed in Sec. VI. In Sec. VII, we summarize
the main conclusions.
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II. BASIC EQUATIONS

Bn + (nu)=0,
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We consider a fully ionized, collisionless unmagnetized
plasma with two electron species having densities n„and
n,& and temperatures T, and TI, separately in thermal
equilibrium. The dynamics of the plasma is described by
the following fluid equations:

(&) (&)
(2) — 2y(2)+ (y(1))2

2 2 2 a(2 aw

+C(2)(r)

where

b, =n, a, +nha/„n, = I/()(c, +1),
n/, =p, n„ah =()(c,+1)/(p, +(7, ),
a, =o.,a&, p, =nI, /n„o. , =T&/T, .

In Eq. (11), C' )(r) is the second integration constant that
may depend on ~. The periodic boundary condition im-
plies that

where ac")/ar =0 . (12)

n „h =n, ), exp ( a, ), (t) } (4)

is the electron density for cold (hot) electron species,
a, ),

=T tt/T, &, T tt=T, T), /(n, T&+n&T, ), and T, (T&)
is the temperature of the cold (hot) electron species,
n, ), =np ), /np. In Eqs. (1)—(4},densities, velocity, space,
and potential are normalized by the equilibrium electron
plasma density n p, ion-acoustic velocity C, =(T,tt/M)'
the Debye length At),(r=(T,(tep/npe )', and T,ttle, re-
spectively.

a =-,'(3 —b, ) . (14)

For a plasma with single electron species, the KdV equa-
tion (13) becomes the same as that obtained by Konno,
Mitsuhashi, and Ichikawa [4].

Hence C"' is independent of g and r
Using Eqs. (8), (11), and (12) in the second-order

momentum equation, we obtain the KdV equation

ay(1) ay(1) ay() ) 1 a3y(()

ag ag

where

III. DERIVATION OF THE KdV EQUATION

n =1+en'"+e n' '+e n' ' . .

y(1)+ 2y(2)+ 3y(3). . .

V=FU +6 U +6 U

Using Eqs. (5) and (6) in Eqs. (1)—(3), we find that the
first-order Poisson equation, the continuity equation, and
the momentum equation give

n (1)—y(1)

u
(1)—y() )+C(1)(r)

(7)

(8)

To solve Eqs. (1)—(3), we introduce the stretched coor-
dinates

g=e' (x st), r =e t, —

where e is a small parameter and s is the phase velocity of
the wave. We expand the variable quantities about the
equilibrium values in powers of e:

IV. THE CNOIDAL %'AVE SGLUTIGN
OF THE KdV EQUATION

For the steady state solution of the KdV equation (13),
we consider rt= g ur, wher—e u is a constant velocity.

Integrating twice with respect to g, we obtain the so-
called energy equation

(1)
+ v(y(") =o,2. dn .

where the Sagdeev potential V(P" ') is given by

u)a=(s, +s )+
a

(17)

V((()'")=—(P"')' —( —C'")(P'")'
3

+p P'" ,'E——
where po and Eo are, respectively, the charge density and
electric field when p") vanishes. If a, p, and y are the
three real zeros of V(P" '), these are given by

$=1 (9)

where C")(r) is an integration constant that may depend
on ~.

Using first-order solutions, we find that the second-
order equations give

u)
y = ——'(s1+s2 )+2 a

where u
&
=u —C (&)

c3/3
(s1 —s2),

c3/3p= —
—,'(s, +s2)+ + (s, —s2), (18)

(19)

n(2) —y(2)+ (y(1))2 Y'

a/2
(10) —[ry( 3+ 2)1/2]1/3
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A cnoidal wave solution of Eq. (15) is given by

P'"=P+(a —P)cn [Dg, m], (20)

where cn is the Jacobi elliptic function. The parameter
m, called the modulus, is expressed in terms of a, P, and

y as

m
a—
CX

and D is given by the relation
1/2

D = —(a —y)
,

6

(21)

(22)

The a, P, and y are such that a)P) y for a )0, and
a &P & y for a &0.

The amplitude A of the cnoidal wave is given by Eq.
(20),

2 =+(a—P) . (23)

The upper (lower) sign in Eq. (23) corresponds to a )0
( & 0). In the following text the same convention has also
been used. The wavelength A, of the cnoidal wave is
defined as

DA, =2K (m), (24)

where K (m ) is the first kind of complete elliptic integral.
The a, P, and y can also be expressed in terms of

modulus m, the amplitude A of the cnoidal wave, by us-
ing the conservation condition of particle number density

I (n —l)dq=O . (25)
p

The frequency of the cnoidal wave, co=2m V/A, , is given
by Eqs. (22), (24), (26), and (28),

1/2+"
6

(30)
mV

CO-
E(m)m

where the velocity of the cnoidal wave V=s+u, from
Eq. (29), is

V =1+C"'+ '
3

1
[2—3H (m)] —1I (31)

P'"=P'"sech (5 'g) (32)

where the amplitude of the soliton P"'=3u /a and width
of the soliton 5=(2/u)' . Here, positive (negative) a
corresponds to the compressive (rarefactive) soliton. To
obtain (32), we have used the condition that for the soli-
ton the perturbation in different quantities vanishes at
g=+ ~ and hence have put C'"=0.

In Fig. 1 we have plotted a =0 in the parameter space

Roychowdhury, Pakira, and Paul [9] have studied the
ion-acoustic cnoidal waves in a weakly relativistic plasma
with two electron components. They inferred that a
cnoidal wave does not exist in a certain region of parame-
ter space of density and temperature ratios of two elec-
tron species. It should be noted that for that region the
coefficient of the nonlinear term of their KdV equation is
negative. However, the present analysis shows that the
KdV equation with a negative coefficient of the nonlinear
term also gives rise to cnoidal wave solution, which in the
limit m —+1 is reduced to the rarefactive soliton solution.

For m =1, H(m)=0, and hence from Eqs. (26)—(28)
P=y =0, a =+A, and en ~sech. This situation occurs
when po and Eo vanishes. Therefore, for m =1 (i.e., for
vanishing po and Eo), with (29) or (17) and (18), the
cnoidal wave solution (20) is reduced to the soliton solu-
tion [19,21]

To evaluate (25), we assume that n' ' and higher order
terms are very much less than n "'.

Therefore, from Eqs. (7), (20), (21), (23), and (25), we
obtain

1.75— b&0

a=+ [1—H(m)],A
(26)

P=+ [1—H(m) —m ],
m

y=+ H(m),
m

(27)

(28)
1.00—

where H(m)=E(m)/K(m) is the ratio of the complete
elliptic integral of the second kind E ( m ) to that of the
first kind EC(m). With Eqs. (17)—(19) and (26)—(28), the
amplitude of the cnoidal wave can be represented in
terms of Inodulus m as 0.25

a&0

10
I

18 22

A =63(u —C"') a [2—3H(m)] —1
1

m
(29) FICz. 1. Plots of a =0 (

rameter space (p„o,).
) and b =0 ( ———

) in the pa-
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o., and p, . It is clear from Fig. 1 that the coefficient of
the nonlinear term of the KdV equation a may become
positive, zero, or negative, depending on the plasma pa-
rameters. From Fig. 1, we see that for o., less than a crit-
ical value o.„we always have a &0. For the parameter
values for which a )0 or a &0, we have the cnoidal
waves, which in the limiting case reduce to compressive
and rarefactive solitons, respectively.

In Figs. 2 and 3, we have plotted phase curves using
Eq. (15) with a choice of C'"=0, corresponding to a )0
and a &0, respectively. In Figs. 2 and 3 the values of p,
and o., are chosen so that a is positive and negative, re-
spectively. For a )0, when Eo=po=0, the phase curve
starts from origin, circling clockwise around the positive

P axis, and again stops at origin, entering from the lower
side. In the "particle in a potential well analogy, " the
pseudoparticle starts with zero velocity at g= —~ and
gains some positive velocity; after attaining maximum ve-

locity, it again goes to zero velocity. However, a "poten-
tial force" rejects the pseudoparticle back toward origin,
and the latter gains velocity in the opposite direction and
again comes to rest at q = ~. In physical space, the value
of the potential increases from zero (at i)= —~ ) to a
maximum value at g=0 and then starts decreasing until
it vanishes (at 2)= 00), and it represents a compressive
soliton. For a &0, when Eo=po=0, the phase curve
starts from origin, circling clockwise around the negative
P-axis, and again stops at origin, entering from the upper
side. In physical space, the value of the potential de-
creases from zero (at rl= —~ ) to a minimum value at
2) =0 and then starts increasing until it becomes zero (at
2)

= oo ), and it represents a rarefactive soliton.
In phase curves Figs. 2 and 3, we see that when

Eo,po&0, the phase curves are repeated on the same path
and one complete cycle corresponds to a wavelength in
the physical space. In the mechanical analogy, whenever
the pseudoparticle's velocity becomes zero (i.e.,
dgldr)=0), the "potential force" (since dV(P)Id/-
does not vanish) reflects it back, and therefore it oscillates
between two points. In physical space, the potential os-
cillates periodically with space between two values. The
potential of the cnoidal wave oscillates between two

0.025—

0.000

—0.025
—0.15

I—0.09
I—0.03

I

0.03

FIG. 3. Phase curve for Eq. (15), corresponding to a &0
(p, =10 and o.,=20; i.e., a = —1.00556) with u =0.03 and
( ~E0 ~,po) =0.003,0.002 (

———
) and 0,0 ( ).

upper (lower) values of real zeros of the Sagdeev poten-
tial, corresponding to a )0 ( (0). It should be noted that
when a becomes zero or of the order of e, the KdV equa-
tion no longer remains valid and one should consider
higher order nonlinearity to obtain the MKdV equation.

g=E(x sr), 7 =e t (33)

Using Eqs. (6) and (33) in Eqs. (1)—(3), we find that the
first-order equations give the same solutions as in Eqs.
(7)-(9).

Using first-order solutions, from the second-order con-
tinuity equation, momentum equation, and Poisson equa-
tion, we obtain

V. DERIVATION OF THE MKdV EQUATION

The KdV equation (13) is no longer valid when a be-
comes zero. a vanishes along a curve in the parameter
space (o „p,). To consider the ion-acoustic waves at this
critical curve, higher order nonlinearity must be taken
into account to obtain the MKdV equation. Hence we
use the modified stretching

0.03
Iay("+C("I ~ =0 (34)

0.00

Since 1t,
") is not constant with respect to g, this equation

is identically satisfied only if

C'"=0 and a=o.
Using first-order solutions with C"'=0 and the second-
order momentum equation, we have

(2) y(2)+ 1(y(1))2+( (3) (36)

—0.03
—0.02

I

0.02
I

0.06 0. 10
I

0.14

where C' ' is an integration constant. With first- and
second-order solutions, the next higher order equations
give the MKdV equation

FIG. 2. Phase curve for Eq. (15), corresponding to a &0
(p, =0.5 and o., =4, i.e., a =0.888 89) with u =0.03 and
(

~
E ~,)D ) =0.003, —0.002 ( ———

) and 0,0 ( ).

~(t'" +b(~( )) ~4"" +c( )
W"" + 1 ~'0'"

()
87 ag Bg 2

where

(37)
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b =
—,'[15—5,I,

5, =n, cz, +n„aq .3 3
(38)

1/2
24(Q —C' ')

1
b 2—

(47)

VI. PERIODIC WAVE SOI.UTIONS
OF THE MKdV EQUATION

For the steady state solution of the MKdV equation
(37), we consider vj=g —us, where u is a constant veloci-
ty. Integrating with respect to g, we obtain

(48)

The frequency co of the cnoidal wave is given by Eq. (24),
using Eqs. (45) and (46), as

1/2
+VS b

2m%(m) 3

d2 (1)
(Q C(3))y(1)+ b (y(l))3+ 1 d

C (39)

where the velocity of the cnoidal wave V=s+u, from
Eq. (47), is

The MKdV equation is an even function of 1))") and is
satisfied for both +(b(" and —P("; therefore, constant C
becomes zero. Integrating once again with respect to g,
we obtain the Sagdeev potential energy equation

(40)

(3) b[2 —(1/m )I
24

(49)

For m = 1, ~1=3 2/4, a2=0, and en~sech. This situ-
ation occurs when Ep vanishes. Therefore, for m =1
(i.e., for vanishing Eo), using (43) or (46) and (47), the
cnoidal wave solution (44) is reduced to the MKdV soli-
ton solution as

where the Sagdeev potential V(P") ) is given by

"'] 0'" ' —
—,
'b

(41)

((("=P( "sech( v) /8 ),
where amplitude

1/2

p(1) + 6Q
m

(50)

(51)

A. Case(i): bis positive

Equation (40) can be written as

(1) —f (y(1))
b dg

The solution of Eq. (42) is given by

y")=&a,cn(Dg, m),
where

CX1

m =, D=
CX1 CX2

1/2
b (a) —a2)

3

where

f (y(1)) [((t1(1))2 ~ ][~ ($(1))2]

with

3(u —C' ') i 9(u —C' ')
CX1 2

— +
2

+
2 1/2
0

(42)

(43)

(44)

(45)

and width

ba,

1/2
1

2Q

1/2

(52)

B. Case (ii): b is negative

To obtain Eq. (50), we have used the condition that for
the soliton the perturbation in diA'erent quantities vanish
at g=+ (x), and hence we have put C' '=0.

The plus and minus signs in Eq. (51) represent the
compressive and rarefactive solitons, respectively. Equa-
tion (51) shows that compressive and rarefactive MKdV
solitons can coexist in the two-electron-temperature plas-
ma. It should be noted that the coexistence of compres-
sive and rarefactive MKdV solitons has been experimen-
tally verified in a plasma with negative ions [28]. No ex-
periment has been reported so far on the MKdV solitons
in a two-electron-temperature plasma. However, we ex-
pect that for a certain range of parameters, for which
a =0 and b is positive, compressive and rarefactive
MKdV solitons can coexist in a plasma with two electron
species.

with u1 & 0 and a2 & 0.
The integration constants a1 and a2 can also be

represented in terms of modulus m and the amplitude A
of the cnoidal wave

—[~ (y(1))2][~ (y(1))2]

In this case, Eq. (40) can be written as

dy(1)

( b) d21— (53)

a,=, a2= (m —1) .
4 4m' (46)

Using Eqs. (43) and (46), we can express the amplitude in
terms of modulus m as

with

+34

1/2
3(u —C' ') 9(u —C' ') 3Eo+ + (54)
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The solution of Eq. (53) is given by

P" ) =Qa3sn(Dq, m),

where
1/2

ba4

(55)

(56)

with a3~n4 . (57)

The integration constants a3 and cx4 can be expressed
in terms of modulus m and the amplitude A of the
snoidal wave

A
e3=, +4=

4 ' 4m2
(58)

Using Eqs. (54) and (58), we can represent the amplitude
A of the snoidal wave in terms of modulus m as

1/2
24( —c'")

b 1+ 1

(59)

The frequency of the snoidal wave co=2m. V/A, is given by
Eq. (24), using Eqs. (56) and (58), as

mVA b
2mE'(m) 3

(60)

where the velocity of the snoidal wave V =s +u, from
Eq. (59), is

(3) bI 1+(1/m )]
24

(61)

From Eq. (53), we see that, for the existence of a non-
linear structure, the term in square brackets in Eq. (54)
should be positive. This implies that there is a critical
value of ~Eoi, iEO „,above which no nonlinear structure
is possible. The value of iEO i„is given by

1/2
3(u —C"')'

(62)

The double layer solution of the MKdV equation simi-
lar to Eq. (63}has been discussed by Torven for a general
state of electron distribution [29]. The plus (minus) sign
in (63) corresponds to the double layer moving toward
the high (low} potential side and corresponds to

(E )

From the above discussion, it is implied that the
MKdV equation gives rise to a cnoidal (snoidal) wave
solution corresponding to the positive (negative)
coefficient of the cubic nonlinear term b, which in the
limit m ~1 reduces to the MKdV soliton (double layer)
solution. The curve b =0 is shown in Fig. 1, in the pa-
rameter space (o„)M, ). The curve b =0 intersects the
curve a =0 at a point O. We see that for p, less than a
critical value p„, we always have b & 0 corresponding to
curve a =0. It is clear from Fig. 1 that the lower (upper)
branch of the curve a =0 [i.e., AO (08)] corresponds to
positive (negative) b and hence corresponds to cnoidal
(snoidal) waves.

In Figs. 4 and 5, we have plotted phase curves using
Eq. (40) with a choice of C' '=0, corresponding to b )0
and b &0, respectively. In Figs. 4 and 5, the values of p,
and o., are so chosen that a =0 and b is positive and neg-
ative, respectively. For b &0, when E0=0, the phase
curve shows two symmetric contours. For the right (left)
side contour, the phase curve starts from origin, circling
clockwise around the positive (negative) P axis, and again
stops at origin, entering from the lower side (upper side).
In physical space, the right (left) side contour corre-
sponds to the compressive (rarefactive) MKdV soliton
and can be explained as before. For iEoi greater than
zero, the phase curve is repeated and we have the MKdV
cnoidal waves. Whenever the pseudoparticle's velocity
becomes zero, it still "feels" a "restoring force" [since—d V(P)/dP does not vanish] and therefore oscillates be-
tween two points, kQ(a& ), and the phase curve is syrn-
metric about both of the axes. In physical space, the po-
tential of the MKdV cnoidal wave oscillates between two
values kQ(a, ).

For b (0, when i Eo i

=
~ Eo i „, in mechanical analogy,

corresponding to the upper (lower) curve, the pseudopar-

For the extremum values of Eo, we have a3=a4 (i.e.,
m =1), and we obtain the double layer solution. There-
fore, for extremum values of Eo, using (54) or (58) and
(59), the snoidal wave solution (55) is reduced to the dou-
ble layer solution as

(63)

0.02—

E3-
/

/

0.00 [

where

amplitude =2y" '= 2
3Q

and width d =25 is given by

1/2

(64)
—0.02

—0,2
I—0, 'I 0.0 0.2

3
' 1/2

ba4
2 3

y(1)

1/2

(65)
FICx. 4. Phase curve for Eq. (40), corresponding to a =0 and

b &0 (p, =3 and o., =18.79796; i.e., a =0 and b =1.183504)
with u =0.005 and ~E0~ =0.01 ( ———) and 0 ( ).
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0.06 i

0.00

—0.06—0.3
I—0. 1 0.1

FIG. 5. Phase curve for Eq. (40), corresponding to a =0 and

b (0 (p, =95 and o., = 17.293 21; i.e., a =0 and
b = —4. 819473) with u = —0.05 and ~Eo~ =0.03 ( ~Eo~«(---),
0.039448 5=1Eol„( ), and 0.042& lEolcr ( ).

the amplitude of the MKdV cnoidal wave increases.
From Eqs. (43) and (44), we also note that the value of
~Eo ~

is, however, restricted to a limit such that the ampli-
tude of the nonlinear wave is small enough so that the
perturbation theory is applicable. From Eqs. (54) and
(55), we see that as ~Eo~ decreases, the amplitude of the
snoidal wave decreases.

From Eqs. (30), (48), and (60), we see that the frequen-
cies of the MKdV cnoidal and snoidal waves have
difFerent amplitude dependence behaviors than that of the
KdV cnoidal waves. Although we have not applied the
present theory to some speci6c situations, we think that
this study may be useful to explain the periodic signals
and bounded nonlinear structures, namely, compressive
and rarefactive solitons and double layers, in a plasma,
where two electron species exist; for example, in the au-
roral regions.

ticle starts from zero velocity in the positive (negative)
direction, at g= —(x),' its velocity increases; it attains
maximum value; then it starts to decrease; and the pseu-
doparticle comes to rest at g= 00. It may be noted that
for this case, the "potential" is such that there is no
reAection of the pseudoparticle; i.e., the velocity of the
pseudoparticle dgldg does not change sign. In physical
space, the potential is monotonically increasing or de-
creasing, i.e., a double layer. Phase curves show that for
the extremum value of Eo, the system can support two
types of double layers. In physical space, the upper
(lower) phase curve corresponds to the double layer mov-
ing toward the high (low) potential side of the double lay-
er. Both types of ion-acoustic double layers moving to-
ward the high-potential side as well as the low-potential
side have been observed [30,31]. For ~Eo~ less than the
critical value, we have the nonlinear periodic waves,
namely, the snoidal waves, and the phase curve can be ex-
plained as discussed before. The pseudoparticle oscillates
between two points +Qu3, and the phase curve is sym-
metric about both of the axes. In physical space, the po-
tential of the snoidal wave oscillates between two values
+Qlx3 and is antisymmetric with respect to rj. For
IEol & IEol„, the phase curve does not cross the P axis
and we do not have any nonlinear structure for

From Eqs. (43) and (44), we see that as /Eo /
increases,

VII. CONCLUSIONS

Our main conclusions are as follows:
(i) We have presented a comprehensive study of non-

linear periodic waves, namely, the Korteweg —de Vries
and modified KdV cnoidal waves, and snoidal waves in a
two-electron-temperature plasma. In the limiting case,
these periodic waves reduce to bounded nonlinear struc-
tures, namely, KdV compressive and rarefactive solitons,
MKdV compressive and rarefactive solitons, and double
layers.

(ii) The existence regions for these waves, in terms of
plasma parameters, has been discussed in detail.

(iii) The frequencies of the different nonlinear periodic
waves are functions of the amplitude. It is found that the
frequencies of the MKdV cnoidal and snoidal waves have
difFerent amplitude dependence behaviors than that of
KdV cnoidal waves.

(iv) It is found that corresponding to the MKdV equa-
tion with negative coefficient of cubic nonlinear term,
there is a critical value of ~Eo ~, ~Eo ~„, above which no
nonlinear structure is possible.

(v) The present theory is a more general one in the
sense that it can explain the characteristics of nonlinear
periodic waves, compressive and rarefactive KdV and
MKdV solitons, and double layers in a two-electron-
temperature plasma.
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