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Nonlinear electrostatic waves in collisionless plasmas
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We report results concerning small amplitude Bernstein-Greene-Kruskal (BGK) waves, which are ex-
act undamped traveling wave solutions of the nonlinear Vlasov-Poisson-Ampere equations for collision-
less plasmas. Building upon previous work, we first develop a simple but powerful formalism that facili-
tates a methodical investigation of the types and properties of small amplitude BGK plasma waves that
can exist near a given collisionless plasma equilibrium. Using this formalism, we then show that any
physically relevant spatially uniform plasma equilibrium supports nonlinear spatially periodic BGK
waves that are described by the Vlasov dispersion relation in the small amplitude limit. We demonstrate
also that these equilibria are characterized by a discrete set of critical velocities v,",i = 1,2, .. ., at which
BGK solitary waves of vanishingly small amplitude can propagate in the plasma. The existence of these
exact nonlinear spatially periodic and solitary wave solutions illustrates the fundamental incompleteness
of the linear Vlasov-Landau theory of plasma waves since, by virtue of particle trapping, these nonlinear
waves neither damp nor grow even when their amplitude is arbitrarily small.

PACS number(s): 52.35.Fp, 52.35.Mw, 52.35.Sb

I. INTRODUCTION

The nonlinear Vlasov-Maxwell model of kinetic theory
[1] presently provides the most appropriate theoretical
description for plasmas in the collisionless regime,
wherein particle-particle interactions have a negligible
e6'ect upon the collective plasma dynamics. Due to the
analytical difBculties associated with nonlinearity, howev-
er, the theory of processes in collisionless plasmas has in
practice been based predominantly upon Landau's classic
1946 analysis [2] of the linearized approximation of this
nonlinear model. Insights gained from analysis of the
linearized model have contributed greatly to the under-
standing of plasma dynamics in a wide variety of settings
ranging from laboratory plasmas in thermonuclear fusion
devices [3] and particle accelerating machines, for in-
stance, to naturally occurring near-earth, interplanetary,
solar, and astrophysical plasmas [4]. When a small am-
plitude electrostatic disturbance is introduced into a spa-
tially uniform host plasma, Landau's analysis predicts,
for plasmas with more or less thermal distributions of
particle velocities, that the electric Aeld associated with
the disturbance should decay to zero asymptotically with
time. This phenomenon, known as collisionless wave
damping or "Landau damping, " has been substantiated
by experiments [5,6] in laboratory plasmas; moreover,
Dawson [7] has given a simple physical explanation of
the phenomenon in terms of the resonant transfer of ener-
gy between the wave and the particles of the plasma.

On the other hand, neither Landau's linearized analysis
nor any of the other prominent and physically equivalent

'Also at Department of Mechanical, Aerospace and Nuclear
Engineering, University of Virginia, Charlottesville, Virginia
22903.

linear analyses [8,9] tell the complete story of small am-
plitude plasma waves. As early as 1949, for instance,
Bohm and Gross [10] recognized the possibility of non-
linear traveling waves of arbitrarily small but constant
amplitude. Undamped waves of this type are dis-
tinguished by the existence of plasma particles that are
trapped within the electrostatic potential wells formed by
the wave. These trapped particles modify the space-
averaged plasma distribution functions in such a way as
to inhibit wave damping. Particle trapping is ignored by
traditional linear theories, which assume that the pres-
ence of small amplitude waves has a negligible effect upon
the space-averaged distribution functions. In 1957, Bern-
stein, Greene, and Kruskal [ll] formalized the methods
of Bohm and Gross and characterized a class of basic ex-
act nonlinear solutions of the Vlasov-Maxwell equations,
which have become known variously as BGK modes,
BGK waves, or BGK equilibria. These authors did not
focus on small amplitude waves however, and perhaps
this explains why many physicists believe that the linear
theory offers a complete description of small amplitude
plasma waves, even though the long-standing work of
Bohm and Gross conclusively demonstrates otherwise.

In this paper we report the results of a systematic
study of these oft neglected nonlinear plasma waves of ar-
bitrarily small yet constant amplitude. We shall apply
the label "BGK" to these waves since this has become
practiced usage for large amplitude waves of the same
type. But, while the synthesis of Bernstein, Greene, and
Kruskal was an analytical milestone, the importance of
the 1949 paper of Bohm and Gross cannot be overstated,
for it provided the seeds for the entire subsequent devel-
opment of the 6eld of undamped waves and, in fact, al-
ready contained many of the important physical con-
clusions. Recent work by Holloway [12] and by Hollo-
way and Dorning [13] has provided certain missing de-
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tails concerning the mathematical description of these
waves in the small amplitude limit and in particular,
gives a rigorous nonlinear characterization of the particle
distribution functions. In this paper we shall recast some
of the developments of that recent work into a simple and
more powerful formalism, which we then shall use to
methodically investigate the types and properties of small
amplitude BGK plasma waves, both spatially periodic
and aperiodic, that can exist nearby physically relevant
collisionless plasma equilibria. We have previously sum-
marized these results very brieAy elsewhere [14].

After introducing the basic one-dimensional model for
electrostatic processes in Sec. II, we brieAy review the
linear theory of electrostatic traveling waves in Sec. III.
In Sec. IV we introduce the essential ideas of Bohm and
Gross and of Bernstein, Greene, and Kruskal and discuss
the representation scheme for the plasma distribution
functions developed from these ideas by Holloway and
Dorning. This representation scheme is crucially impor-
tant since it reduces the problem of searching for travel-
ing wave solutions of a set of three partial di6'erential
equations to a much simpler search for solutions of a sin-
gle ordinary diA'erential equation. In Sec. V we develop a
simple method for solving this equation, which obviates
much of the complicated nonlinear analysis carried out in
Refs. [12] and [13], and we then apply this approach to
determine the most important general classes of near-
equilibrium collisionless plasma traveling wave states and
establish their properties. We illustrate these general re-
sults in the case of the practically important thermal
e -p plasma in Sec. VI and in Sec. VII present a gen-
eral argument that shows that small amplitude undamped
waves, both spatially periodic and solitary, can exist near
all physically relevant plasma equilibria. Finally, in Sec.
VIII we comment briefly on the possible relevance of
these solutions to waves in physical plasmas, particularly
plasmas that evolve toward time-asymptotic states fol-
lowing nonlinear Landau damping.

II. ELECTROSTATIC PROCESSES

A plasma can support an enormous variety of process-
es such as transverse electromagnetic waves, in which
case the plasma may be adequately treated as a dielectric
medium, as well as longitudinal or compressional waves,
which often exhibit fundamentally nonlinear features.
We shall be concerned here only with the latter.
Specifically, the one-dimensional model we shall study de-
scribes a commonly occurring physical situation in which
a rarefied plasma is embedded in an external magnetic
field, in which case the longitudinal (along 8 ) degrees of
freedom may be studied apart from their very complicat-
ed interactions with other degrees of freedom that are in-
volved in general three-dimensional plasma motion. For
a plasma in a field B =Box; the Vlasov-Maxwell model
can be reduced to the one-dimensional Vlasov-Poisson-
Ampere system of equations

Bf df q df
+Q

Bt B

BE =4mgq fdu f (2)

BE =4' + q f du u f (3)

where f =f (x, u, t) is the distribution function for par-
ticle species a, a=1,2, . . . , N, and E =E(x, t) is the
self-consistent longitudinal electric field.

The simplest solutions of Eqs. (1)—(3) describe spatially
homogeneous equilibrium states of the plasma, usually
called "Vlasov equilibria. " The distribution functions
f (x, u, t) =F (u ) of a spatially uniform Vlasov equilibri-
urn (we shall always denote equilibria by capital letters)
must give zero charge and current densities

p=gq fduF =0, (4)

j=gq fduuF =0,

which imply, through Eqs. (2) and (3), a vanishing electric
field. In an actual physical system the states correspond-
ing to these equilibria in fact represent "metaequilibria"
that should evolve, given enough time, toward thermal
equilibrium. But in many naturally occurring, highly
rarefied plasmas, the time scale over which thermal equi-
librium is attained is very long compared to that over
which collective plasma processes occur. Thus, on the
time scales relevant to these collective phenomena, which
include stationary plasma oscillations as well as traveling
waves, it is appropriate to consider the Vlasov equilibria
as true stationary states of the plasma.

Throughout this paper we shall be concerned with
plasma states that are close to Vlasov equilibria. In par-
ticular, we shall consider near-equilibrium states of trav-
eling wave form, i.e., E (x, t) =E (x —ut), f (x, u, t)
=f (x ut, u —u—), where u is the wave phase velocity.
Plasmas far from equilibrium are of course also impor-
tant, but near equilibrium states are of special interest
since they can arise as the result of weak perturbations of
an equilibrium plasma and are therefore relevant to wave-
like processes observed in many natural plasma environ-
ments.

III. LINEAR THEORY

The conclusions of the analysis of the linearized form
of Eqs. (1)—(3) are well known. We review them here for
completeness and also because we shall find later that
there are very important di6'erences between the con-
clusions of this linear analysis and recent rigorous non-
linear analyses. Linearization about a particular Vlasov
equilibrium F (u) is performed by writing

f (x, u, t)=F (u)+h (x, u, t),
where the h represent the presumed small deviations of
the distribution functions from their equilibrium values
F . One of the resulting terms in the Vlasov equation,
(q /m )E(Bh /c)u), is then dropped since it is nonlinear
as E itself depends linearly on h through Poisson's equa-
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tion. The set of linearized equations so obtained are

Bh Bh q dF
+u + E =0,

Bt Bx m du

BE =4m gq fduh
ax

and

aE =4mgq fduuh
Bt

(9)

for all x, u, and t.
In his 1946 analysis [2] Landau solved the initial value

problem for Eqs. (7)—(9). His essential result was an ex-
pression for the time-asymptotic value of the electric po-
tential

qk(t) —ck(~k)e '
f~ oo

where ck(A, k ), a constant, depends upon the initial pertur-
bation of the plasma and A, k is that root of the Landau
dispersion relation

DF(k, i, )=1— g f du =04m. ~a F~(u)
m~ L u EA/k

(12)

Clearly, for the neglected term (q /m )E(Bh /Bu) to be
small compared to the term (q /m )E(dF /du), which
is retained in the Vlasov equation, it is necessary that

Bh dF
(10)

um plasma], is the well-known phenomenon of "Landau
damping.

Prior to Landau's work, Vlasov [1]had obtained on the
basis of the linearized equations a different dispersion re-
lation

F'(u)
m u —a)/'k

(13)

which describes undamped plasma waves and differs from
Eq. (12) in that it involves the principal value P rather
than the Landau contour. However, since Vlasov offered
no plausible defense for his ad hoc introduction of this
principal value, the "Vlasov dispersion relation" of Eq.
(13) has long been considered irrelevant [except insofar as
it arises in seeking roots of Eq. (12) that correspond to
weakly damped solutions]. Nevertheless, as we shall see
in Sec. V, Eq. (13) does correspond to a very important
class of plasma waves.

The condition Eq. (10), necessary for the validity of the
linear approximation, does not necessarily agree with the
common sense notion that the linearization should be val-
id when the h are small, that is, when there is only a
minor rearrangement of particles. This apparently minor
point is in fact very important, for it leaves open the pos-
sibility that there exist exact nonlinear near-equilibrium
states that violate the condition of Eq. (10) even as
h —+0. In fact, the principle theme of this paper is that
the linear theory can fail even for plasma wave states that
are arbitrarily close to equilibrium. We shall develop
such solutions and investigate their properties in detai1 in
the following sections.

that has least negative real part. The Landau contour L,
is depicted in Fig. 1. Whether Re(A, k ) is positive or nega-
tive depends solely upon the distribution functions F (u)
of the Vlasov equilibrium, since these determine the func-
tion DF(k, A, ). The linear analysis predicts exponential
growth of the electric field if Re(A,„)& 0 and exponential
damping if Re(Xk) (0. The latter, which results for all
monotonically decreasing equilibria [g (q /m )F ( u )

decreasing with increasing
~
u ~, as in a thermal equilibri-

Im(u)

Re(u)

FIG. 1. Landau contour L in the complex u plane.

IV. THK BERNSTEIN-GRKKNK-KRUSKAL
REPRESENTATION

That the linear theory does not offer a complete
description even of small amplitude plasma waves has in
fact been known since the work of Bohm and Gross [10],
who discussed small amplitude waves that maintain con-
stant amplitude as they travel. The existence of these
waves depends upon a nonlinear phenomenon known as
particle trapping, which is not captured by the linear
theory. Bernstein, Greene, and Kruskal [11]obtained ex-
act nonlinear solutions to the Vlasov-Poisson system by
generalizing and formalizing the approach first suggested
by Bohm and Gross. The essential idea is that for a uni-
formly translating wave g =y(x —ut), the conserved
single-particle energy @ =

—,'m (u —u) +q p(x —ut) can
be exploited to integrate exactly the motion of the plasma
particles. The self-consistent problem is then one of dis-
tributing particles over the calculated trajectories, includ-
ing those corresponding to trapped particles, in such a
way as to generate the assumed field p =p(x —ut). Bohm
and Gross solved the problem approximately for small
amplitude waves without making specific use of the
Vlasov equation. By using this equation, Bernstein,
Greene, and Kruskal were able to solve the self-consistent
problem without recourse to linearization. Below, in
making these ideas more specific, we shall depart from
the original scheme of Ref. [11] and instead develop
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another approach, more convenient for studying near-
equilibrium plasma states, which we shall exploit in Sec.
V.

We consider a plasma of N species and search for trav-
eling wave solutions of velocity v nearby a Vlasov equilib-
rium characterized by distribution functions F . It is
simplest to conduct the analysis in the wave frame where
the independent variables are g=x —vt and w =u —v

and the distribution functions f are stationary, i.e.,
f =f (g, w). To study traveling wave states that are
near equilibrium, it is convenient to resolve f (g, w) into
even and odd parts with respect to velocity w,

f'(g, w)= —,'[f (g, w)+f (g, —w)],

f'(4, w)= —,'[f (k, w) f (4,——w)] .
(14)

We then find that the full nonlinear equations (1)—(3)
separate, in the wave frame, into two pairs of tirne-
independent equations

=4m. gq f dwg"'( —,'m w +q p(g)), (21)
a

0=8m. gq f dw wg"'( —,'m w +q y(g)) .
0

(22)

F"'(w)= —,'[F (v+w)+F (v —w)],

Thus the search for space-dependent equilibria of Eqs.
(15)—(18) near the Vlasov equilibrium F (w) is essentially
reduced to the much simpler search for small amplitude
solutions y(g) of Eqs. (21) and (22).

The judicious choice of the BGK functions g"' and
g"' is crucial in this reduction. A near-equilibrium plas-
ma state necessarily has a small electric field and satisfies
f'(g, w)= F"( w) and f'(g, w)=F"'(w), where F"'(w)
and F"'(w) are the even and odd parts of the velocity-
shifted equilibrium F"(w)—:F (w+v),

af:"
ag

qa dg fa
m dg Bw

(15) F"(w) =
—,
' [F (v + w) —F (v —w)] .

(23)

tp =4rigq f.du f'
a

(16)

df
m dg ~3w

0=4vrg q fdu u f',
(17)

(18)

where f ' and f ' satisfy identical Vlasov equations.
The basic insight of Ref. [11] is that the conservation

of the single-particle energy 6 in the field p(g) is
refiected, in the context of the Vlasov equation, by the
fact that f' =g'(6 ) and f' =g'(@ ) are exact solu-
tions to Eqs. (15) and (17), where g

' and g
' are any

differentiable functions. In words, any distribution of
particles according to their total energy @ automatically
satisfies the Vlasov equation. Indeed, since the Vlasov
operator gives the total time derivative along particle tra-
jectories, any function of 6 is constant along such trajec-
tories by virtue of the invariance of @ . We shall use this
insight in seeking steady solutions of Eqs. (15)—(18) that
are near the velocity-shifted equilibrium F" (w)

F(w +v ); such—solutions are small amplitude traveling
waves when viewed in the original frame.

Once g' and g' are chosen as specific functions, which
we denote as g" and g ",then the BGK representation

6" e( g ) =F" (e( @2/m )i~2} (24)

6"'(8 )=F"'((2A' /m )' ) (25)

When p(g)=0, and therefore A' =m w /2, F"'(w) andF"(w) are expressed using 6"'(Ca) and Ga"(6 ) as

Thus the functions g"' and g" must be chosen carefully
so that when qr(g) =0 the particle distribution reduces to
that of the equilibrium F' (w), for this guarantees that for
small y(g) the distribution functions are close to those of
the equilibrium. In the remainder of this section we sha11
outline complete and very flexible definitions for the func-
tions g"' and g"', which were developed in Refs. [12]
and [13]. This will set the stage for Sec. V, where we
shall analyze Eqs. (21) and (22) to determine the physical-
ly important classes of small amplitude undamped non-
linear waves that can exist nearby typical plasma equili-
bria.

In order to define the functions g"' and g"' appropri-
ately it is useful to first define BGK functions 6"(8 )

and 6"'(6' ) that can be used, when y(g) =0, to
represent the equilibrium functions F"'(w) and F"'(w).
The necessary definitions for 6"'(6 ) and 6"'(6 ) are

f'(g, w)= "g(e ) (19) F"'(w)=6"'(6 ) (26)

g "(6 ), w ~0
—g"'(8 ), w ~0f'(E, w)= (20)

6"'(8 ), w ~0
Fv, o —G"(6 ) ~0. (27)

immediately solves Eqs. (15) and (17), while Eqs. (16) and
(18) become Thus, in the wave frame, the complete equilibrium distri-
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bution functions are written in BGK form as

6"'(8 )+G"(8 ), w ~0
(28)

plus a variable function h ",so that

f'(g, w)=g"'(6' )=6"(6' )+h "(6' ) . (29)

A. Even BGK functions g"'

Following Refs. [12] and [13],a general representation
for f' is obtained by writing each g"' in Eq. (19) as 6"

When both y(g) and the functions h" vanish, then

f '
( g, w ) =6 '

( 8 ), which again reduces exactly to the
even part F"(w) of the shifted equilibrium as in Eq. (26).
Moreover, when both p(g) and the h" are small, then by
a Taylor expansion about y(g) =0,

f'(g', w)=g"'( —,'m w +q y(g)}
V, e

=g"(—,'m w )+ ( —,'m w )q y(g)+o(&p)
a

dg v, e

=6"(—,'m w )+h "(—,'m w )+ ( ,'m w —)q qi(g)+o(qi)

=F"'(w)+0 (p, h "); (30)

B. Odd BGK functions g"'

In Sec. V we shall construct parametrized branches of
solutions y( g ) of Eq. (21) that take the form
(y(g;go), h "(po)), where the parameter q&o is closely re-
lated to the amplitude of the electric potential. On any
such branch, a small value of {p0 specifies an exact non-
linear solution of Eqs. (15) and {16),where y(g) is small
and f ' is close to F"'(w). Furthermore, the branches of
solutions we shall construct are continuously connected
to the equilibrium in the sense that

lim {y(g';go), h "(yo)}=(0,0),
q)o —+0

(31)

hence f' (g, w) is close to F"'(w).
In the above definition we have ignored a minor techni-

cal issue: Eq. (24) actually defines 6"(6 ) only for
~ 0, whereas when y(g)WO the energy @ can be nega-

tive. Hence the definition Eq. (29) is inadequate. It is
necessary, therefore, to construct a smooth non-negative
extension of the definition of Eq. (24) to negative values
of its argument. Since 6"'(6' ) ~0, which follows from
the positivity of the F, and since 6"(0)=F"'(0)
=F ( u ), which is nonzero except in extremely special
cases, such an extension can almost always be found.
The resulting extended function G'(iv ) will agree with
the definition of Eq. (24) for 6 ~ 0 and will have at least
half as many continuous derivatives as the functions
F (u}. The details of a very general extension of this
form have been worked out and they apply directly to the
case at hand [12];hence, in all that follows this extended
function will be used. However, for simplicity we shall
denote the extended function by the same symbol G".
As discussed earlier, the substitution of f ' (g, w)
=g"(6 ) into Poisson's equation, Eq. (16), results in the
ordinary differential equation for y(g), Eq. (21), which
now clearly depends parametrically on the variable func-
tions h ".

in which case f' reduces exactly to F"(io). For any
such branch of solutions, it is possible to develop ap-
propriate definitions for the BGK functions g" that are
used to represent the odd parts f' as given in Eq. (20).
The definition for g"' analogous to Eq. (29) for g"' is, us-

ing the function G"' defined in Eq. (25),

g "(6' )=6"'(6 )+h"'(6 ), (32)

where the h" are another set of variable functions. This
definition is in general unsatisfactory however, since Eq.
(20) implies that f'(g, )wmust vanish along the line
w =0. For if we approach this line from above we find
lim o+f'(g, w)=g"'(q y(g)), while from below we
have in contrast lim„o f'(g, w) = —g"(q y(g) ). This
problem, associated again with particle trapping, necessi-
tates smooth modification of the definition of Eq. (32) so
that

g"(6" )=0, 6' ~Q =~q p~ (33)

In other words, the functions h" must depend not only
on 8 but on the amplitude parameter yo as well. Using
g"' in Ampere's equation, Eq. (18), gives

0=8m gq j dw w g "(,'m w +q y—(g)),
0

(34)

which is a zero current constraint in the wave frame.
Definitions of the odd functions g", that satisfy Eqs. (33)
and (34), and are suitable for each of the cases considered
in this paper have been developed in Ref. [13]. Because
the details are technically rather complicated and would
lead us away from our main line of development, we omit
them here and instead summarize them in Appendix A.
The important conclusion established there is that, given
a solution rp(g) to Eq. (21), the functions g" always can
be defined in such a way that (i) the zero-current con-
straint of Eq. (34) is satisfied, (ii) the overall distribution
functions f are non-negative, and (iii) the odd parts f,
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given in Eq. (20), uniformly approach the odd parts of
the velocity-shifted equilibrium F" as the wave ampli-
tude goes to zero. Thus, corresponding to any near-
equilibrium solution of Eqs. (15) and (16) is at least one
and usually many physically reasonable solutions of Eqs.
(17) and (18).

V. MECHANICAL POTENTIAL
AND NONLINEAR TRAVELING WAVE SOLUTIONS

x (v)=4' g f dw F"—'(w),9'a 1 d

ma M 8M
(36)

there exist branches of small amplitude spatially periodic
solutions y(g') of Eq. (35) that bifurcate from the zero
solution as the h" are increased from zero. Such solu-
tions correspond to periodic traveling waves of velocity U

in the original frame of reference. While their analysis is
correct, there nevertheless exists a much simpler, more
intuitive, and yet equally rigorous method for construct-
ing these solutions, as we shall now show. We shall em-
ploy the BGK representation developed in Sec. IV and
focus upon the fundamental nonlinear differential equa-
tion for p(g'), Eq. (35). For clarity we shall first consider

We now exploit the representation scheme just
developed to construct exact nonlinear traveling wave
solutions to the full Vlasov-Poisson-Ampere equations.
Recall that after shifting to a wave frame translating with
velocity U, in which the position and velocity variables
are g=x vt and—w =u —v, and decomposing the wave
frame distribution functions f (g, w) into their even and
odd parts with respect to m, the Vlasov-Poisson-Ampere
equations were seen to divide into two pairs of time-
independent equations: Eqs. (15) and (16) for f'(g, w)
and y(g) and Eqs. (17) and (18) for f'(g, w) and y(g).
The first pair was reduced to one equation for q~(g) by
virtue of the convenient representation, Eq. (29), which
automatically satisfied Eq. (15) and guaranteed that for
small y(g) and h"', f' was close to F"(w). Poisson's
equation thereby became a basic nonlinear difFerential
equation for qr(g),

d2
=4' gq f dwg"'( ,'m w —+q qi(g')) . (35)

a

Thus, through a judicious choice of a BGK representa-
tion for the plasma distribution functions, the entire
problem of the existence of small but constant amplitude
nonlinear waves near an equilibrium with distribution
functions F (u) is reduced to that of solving the non-
linear differential equation given by Eq. (35). This equa-
tion contains a great deal of physics and in particular
determines, as we shall see, the relationship between fre-
quency co and wave number k for spatially periodic BGK
waves in the small amplitude limit. Holloway and Dorn-
ing [13] approached Eq. (35) as a bifurcation problem
with the functions h "' considered as an infinite-
dimensional set of variable parameters. Through
Lyapunov-Schmidt reduction and subsequent bifurcation
analysis, they were then able to show that if ~ (v) &0,
where

the simplest case in which the variable functions h" are
identically zero, in which case we have just g"=6"'.

The key to the formulation is an observation by Bern-
stein, Greene, and Kruskal [11]that Eq. (35) may be cast
in the convenient form

d ~ ( )
dy

(37)

(38)

and is obtained by formally integrating the right-hand
side of Eq. (35) once with respect to p. The form of Eq.
(37) is particularly convenient since, after multiplying by
dy/dg, it may be integrated once to obtain a first in-
tegral

2

A= — +A, (p) .1 dg
(39)

This important exact integral A was not exploited in the
previous analyses [12,13], even though its existence al-
lows the problem to be solved completely without
recourse to methods of nonlinear functional analysis. For
Eq. (37) has, in fact, the simple form of Newton's equa-
tion for particle motion in a one-dimensional potential
A„(y): the integral A plays the role of the particle's en-
ergy and q& that of its position, while g takes the place of
the independent time variable. Thus, by analogy with the
one-dimensional motion of a classical particle in a poten-
tial well, the character of the solutions to Eq. (37) is
determined entirely by the shape of A, (y), which, in
turn, depends both upon the phase velocity U and the dis-
tribution functions F (u) of the underlying plasma equi-
librium, which enter into Eq. (37) through the definition
of G"' in Eq. (38). Therefore, to find the solutions y(g),
if any exist, which represent traveling waves of velocity U

near an equilibrium I, we need only use the explicit
definition of 6" to calculate the shape of the potential
A„(y).

Unfortunately, in general, the integrals in Eq. (38),
though certainly amenable to numerical evaluation, can-
not be performed analytically so as to yield a useful
closed form expression for A, (q&). On the other hand,
since our main interest is BGK waves of small amplitude,
we need only know the shape of A„(y) in the neighbor-
hood of pe=0; hence we can proceed by expanding A, (y)
in powers of y. Small amplitude waves are of particular
importance, of course, not only because the existence of
such waves reflects upon the nonlinear stability of the
Vlasov equilibria but also because they play a physically
important role in any collisionless plasma subject to weak
perturbing inAuences. Considering equilibria for which
the F (u) are sufficiently smooth, we have for small y

where

where the "mechanical potential" A„(y) is introduced as

A(y)—:4m gq f dq&'f dw G"'( ,'m w—+qqr')
a
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=4~y, , J dw—9'a ~ 1 d
m ' —oo W 8Wa a

F"(w),
x &0

l=2, 3, . . . , (41) ()
which follows from the definitions in Eqs. (24) and (38).

In Eq. (40) we have taken account of the fact that the
coefBcients of the first two terms in the expansion vanish:
3„'O'= A„(0)=0 by virtue of the definition of A, (g), Eq.
(38), while by direct calculation

2,"'=4m g q Jdw F"(m) =0, (42)

which vanishes since it is precisely the charge density re-
sulting from the velocity shifted Vlasov equilibrium
F~(w +U). For purposes of analysis it is also convenient,
using Eq. (36), to replace the coefficient 3,' ' in Eq. (40)
with the exactly equivalent quantity K (U). With this
change in notation Eq. (37) then takes, for small p(g), the
form

(b)

x &0

= —K (U)qr ——A„' 'qP ——A,' 'P +O(P ) . (43)

It is our goal in this section to investigate methodically
the small amplitude solutions g(g) of Eq. (43) as the
coefficients K (U), A„' ', and 2„' ' take various possible
values. In most cases, K (U) and A„' ' determine the shape
of A„(y) in the neighborhood of y=O and therefore the
form of the small amplitude traveling wave solutions of
velocity v. Exceptions will occur, however, when both
K (U) and A„' ' vanish simultaneously, i.e., at the same ve-
locity v, in which case A„'"' and possibly higher-order
terms become important. Explicit examples of the above
coefFicients, exhibiting their dependence upon the phase
velocity v, will be given in Sec. VI for an e -p+ thermal
plasma; however, it is important to discuss them first in a
more general context.

A. Spatially periodic waves

From Eq. (43) let us first rederive the sufficiency condi-
tion K (U) & 0, originally derived in Refs. [12] and [13],for
the existence of small but constant amplitude, spatially
periodic traveling waves of velocity v arbitrarily close to
an equilibrium E (u). We shall find that this condition
results almost trivially in the context of the perspective
based on the simple mechanical potential introduced
above.

In the expansion of the mechanical potential A„(y),
the parameter K (U) (= A„' ') is the lowest nonvanishing
coefficient and gives the curvature of A„(y) at y=O. If
K ( U ) & 0, then this curvature is positive, which implies
the existence of a well of finite depth with its minimum at
y=O as indicated scheinatically in Fig. 2(a). By analogy
with single-particle motion in a confining well, there then
exist solutions y(g) confined to this well that represent
spatially periodic equilibria in the moving frame and spa-

Pe

FIG. 2. (a) Whenever a. (U))0 the mechanical potential
A, (p) contains a well of finite depth with minimum at qp=0. (b)
Phase portrait in the (y, y&) plane for the case sc (U) )0.

tially periodic traveling waves y(x —Ut) when viewed in
the laboratory frame of reference. Thus, at any velocity v

for which K (u)) 0, there exists a family of spatially
periodic traveling waves, parametrized by the mechanical
energy A= —,'(dy/dg) + A„(y), which includes waves of
arbitrarily small but constant amplitude. Thus the
sufficiency condition K (U) & 0 reported earlier in Ref. [13]
has been obtained here quite simply. That the slightly
less restrictive condition K (U) & 0 is also sufficient follows
from the fact that arbitrarily close to any equilibrium
with K (U) =0 is another with K (U) )0 [12].

We can find the small amplitude form of these spatially
periodic waves by keeping only the lowest-order term in
A„(y), in which case Eq. (43) becomes

(p

g2
+K (U)y=O((P ) .

Thus, in the small amplitude limit the solutions are
sinusoidal with wave number k =K(U) (=+A„' ') and
frequency co=K(v)U. Waves of small but finite amplitude
are only approximately sinusoidal and can be expressed
in terms of elliptic functions [by solving Eq. (43) with one
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k =K (co/k)=4Ir+ f dw — F"(w) . (46)
qa 1 d

&la w dw

This expression can be written in a more familiar form by
replacing F"' on the right-hand side with the full distri-
bution functions F and introducing the principal value,
in which case the odd parts I' "of the distribution func-
tions do not contribute to the integrals. Upon reverting
to the variable u =v +w and recalling that v =m/k, we
then find

F' (u)

a a
(47)

which is the dispersion relation obtained by Vlasov, Eq.
(13). Thus we conclude that the Vlasov dispersion rela-
tion does indeed apply —Vlasov's somewhat ad hoc de-
velopment notwithstanding —to an important class of
plasma waves. Equation (47) correctly gives the relation-
ship between co and k for spatially periodic BCsK waves
in the limit of small amplitude.

In the preceding discussion we considered the simple
case g"'=6"' in which the variable functions h" were
taken to be identically zero. More generally, however, we
can write g"'=6"+h"'. This more general represen-
tation scheme presents no obstacles to the mechanical po-
tential formalism, the mechanical potential merely de-
pends now on the functions h" as well as on the phase

more term retained]; thus they contain components at the
harmonics of the basic wave number K(v). Correspond-
ing to the translational invariance of Eq. (44) there is ac-
tually an infinite set of solutions having the same arnpli-
tude yo, distinguished only by the value of the boundary
condition y(0). Physically, however, these waves differ
from one another only by an inconsequential spatial shift.

It is informative to represent these spatially periodic
traveling wave solutions as trajectories in an abstract
two-dimensional phase space where (If1, II2& dy/——dg) are
the phase variables and g plays the role of the indepen-
dent timelike parameter. The phase Aow is determined
by Eq. (37), which can be rewritten as a pair of first-order
equations

G
(45)

dip

The structure of the How for the case ~ & 0 is shown in
Fig. 2(b), where the stable fixed point located at
(q&, y&)=(0,0) corresponds to the velocity-shifted field-
free Vlasov equilibrium F'(w)=F (v+w). Each of the
closed periodic orbits surrounding this point corresponds
to a spatially periodic equilibrium solution in the wave
frame or to a spatially periodic traveling wave in the orig-
inal frame. The perspective o6'ered by viewing the solu-
tions in the ((I(),y&) phase plane will be particularly useful
when considering aperiodic traveling wave solutions in
Secs. VB—VD to follow.

The condition k =K( v ) ( =Q A „'
'
) leads to a disper-

sion relation for spatially periodic BGK waves in the
small amplitude limit. Using the definition of K (v) in Eq.
(36), we have

+ —(A ")+5 A ")
)q

'
V

+—(A' '+5A'4')y +o((I2 ),1

4~ V

where the 5 A "are given by

d(i —1)h v, e

5A"=4Irg q' J dw .. .)
( —,'m w ) .

a a

(48)

(49)

Using this mechanical potential in Eq. (37) then gives the
di6'erential equation

d2 = —5A"' —[ ( )+5A' ']qr ——(A,' '+5A' ')y

——(A' '+5A' ')Ip +o(lp ) .
V (50)

If the above coefficients 5A" are made arbitrarily
small by an appropriate choice of functions h", then
when K (v) & 0 a simple calculation shows that A, h(q&)

now has a local minimum at

(P ( l /K2)5A (1)
( A„3 /2K6)(5A (1))2

+(1/K )5A"'5A' '+O(5A ),
where 5A signifies quantities that are third order in the
coefficients 5A". The curvature of A, h(y) at the loca-
tion of this minimum is

d A„h g (3)
=K'(v)+5A(') —,' 5A")+o(5A')

')( min K (v)

(52)

which is positive when the 5A" are sufficiently small.
Therefore, there exists a well of finite depth centered at
p;„and, as before, periodic trajectories y(g) trapped in
this well correspond to traveling waves of velocity v, al-
though for these solutions the electric potential is cen-
tered about the nonzero value y;„. For each choice of
the small functions h" (provided that the 5A" are also
small) we thus obtain a set of small amplitude periodic
traveling wave solutions of velocity v, which may be la-
beled by the mechanical energy Ah =

—,'(d(I()/dg)
+ A, h(y). When h "'=0 we of course recover the solu-
tions discussed previously.

The variability of the functions h"' allows the con-
struction of branches of small amplitude solutions of
diverse properties. For instance, if the h" are increased
continuously from zero, then for each set of h" the
mechanical potential has a certain specific form and one
may choose the energy A&, or equivalently the amplitude
yp, in order to select a definite solution y(g). Choosing
yo carefully in correspondence with the functions h"*',
i.e., yp=yp(h ' ) yields 8, Pal'allletl'Ized blallcll of solll-

velocity v and thus we write it as A, h(y), where h
denotes the entire set of functions h "'. To consider small
amplitude solutions we again expand A„h(qr), now ob-
taining

A„),(y)=5A("y+ —,'[K (v)+5A' )]y
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~(v) . ~ qa, co2 2

k' k'

(53)

Setting the real and imaginary parts of this expression
separately equal to zero yields two independent condi-
tions

1 —~ (v)/k =0 (54)

and

tions that are continuously connected to the equilibrium.
That is, q&(g) —+0 and f (g, w)~F" (w) as it"'~0. Thus
the Aexibility introduced by the variable functions h"'
leads to the existence of a broad class of small amplitude
spatially periodic wave solutions of velocity U near the
equilibrium F~(u). Holloway and Dorning [13,15] have
used a procedure similar to that just described to con-
struct small amplitude plasma waves with speci6c
tailored properties.

As an important illustrative example of these methods,
we construct in Appendix B a branch of wave solutions
for which the space average of the particle density for
each species is the same as that in the underlying equilib-
rium. If a plasma equilibrium is subjected to a perturbing
inhuence that does not introduce particles into the plas-
ma or remove particles from it, such as an externally ap-
plied electrostatic field, then the plasma must at all times
contain the same number of particles of each species (or
same space-average particle density for an unbounded
plasma) as it did initially. Neither the constant ampli-
tude, spatially periodic traveling waves reported previ-
ously in Refs. [12] and [13]nor those discussed earlier in
this section have this property; thus such waves cannot
be excited by a plasma perturbation that leaves the num-
ber of particles unaltered. Since plasmas in the laborato-
ry and in many natural environments are subjected
predominantly to perturbing influences of this type, it is
perhaps appropriate to question the physical relevance of
these nonlinear wave solutions. However, similar waves
for which the particle number density is the same as in
the underlying equilibrium do exist, as we demonstrate
explicitly in Appendix B. These waves are clearly physi-
cally relevant and the analysis through which they are
obtained in Appendix B is a special case of the general
analysis outlined above.

Before proceeding to describe small amplitude BGK
waves that are not spatially periodic, such as solitary
waves for instance, we shall make a few further com-
ments concerning the relationship of these periodic waves
to those familiar from the linear theory. Not surprising-
ly, the function a (v), which plays such a critical role for
the nonlinear waves, appears also in the Landau disper-
sion relation D~(tv, k)=0. Written so as to explicitly in-
clude a (v), for the case of real co (no damping), this rela-
tion becomes

4m ~a F' (u)
D~(tv, k)=1 — g P f du

m u —co lk
2~u, CO

l

F' (to/k)=0 . (55)

B. Small amplitude solitary waves

We shall now extend the preceding results on small but
constant amplitude spatially periodic waves to include
small amplitude traveling solitary waves, as well as trav-
eling double layers, sometimes called "kinks, " which are
moving transition regions between parts of the plasma
that exist at difFerent constant values of the electric po-
tential. The mechanical potential formalism proves very
convenient for this task; the solutions are discovered
quite naturally by considering the general changes that
occur in the shape of A„(y) as the important parameter
~ (v) passes through zero. For any plasma equilibrium
with distribution functions F (u), we shall define a plas
ma critical Uelocity as any velocity v, at which the param-
eter a. (v) vanishes, i.e., ~ (v, )=0. In Sec. VII we shall
demonstrate that virtually any physically relevant plasma
equilibrium will possess at least one such critical velocity.
Typically, at v =v„both the derivative (da. /dv)(v, ) and
the parameter A„' ' will be nonzero. For definiteness, we

C

consider the case in which (da /dv)(v, ))0 and 2,' ') 0,
as shown schematically in the inset in Fig. 3(a).

We first examine the case in which the variable func-
tions h " of the BGK representation f ' (g, w)
=6"(@ )+ii "(6 ) are identically zero, so that
f '(g, w) =6"(6 ) and the definition of the mechanical

The first of these relations requires a (v) =k &0, which
shows that the necessity (though not the sufficiency) of
a. (v) & 0 for small amplitude undamped waves follows al-
ready from the linear analysis. The second condition
F' (to/k)=0 indicates that within the linear description
undamped waves are possible only if the equilibrium dis-
tribution functions F (u) have the rather special proper-
ty that their velocity derivatives vanish at the phase ve-
locity of the wave. The solutions of the linear theory in
this case have been discussed in some detail by Van Kam-
pen [8] and Case [9] and correspond to roots of the Lan-
dau dispersion relation that are imbedded in the continu-
ous spectrum of the linearized operator (which occupies
the imaginary axis). Together Eqs. (54) and (55) are
sufhcient for the existence of undamped waves according
to the linear theory.

Conversely, if Eq. (55) is not satisfied for real co, then co

must be complex, which leads to the exponentially
damped or growing waves most familiar in the linear
theory. For waves that are weakly damped, however, i.e.,

~

im(co)/Re(cv)
~
((1,it is known [2] that the linear theory

yields the Vlasov dispersion relation as the correct rela-
tionship between Re(tv) and k. Since the Vlasov disper-
sion relation also describes nonlinear spatially periodic
BGK waves in the small amplitude limit, there thus exists
a general correspondence between the weakly damped
waves of the linear theory and small but constant ampli-
tude, spatially periodic BGK waves. Namely, to eUery
weakly damped wave solution of the linear theory there
corresponds an exact nonlinear and undamped spatial/y
periodic BGK waue that has, in the small amplitude limit,
the same frequency and wave number
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(s)
A

/C~v v

(a)

x SO

FIQ. 3. (a) Local form of the mechanical
potential A, (tp) for v =v, (dashed curve) and
for v & v, (solid curve), where v, is a critical ve-

locity satisfying sc (v, ) =O. As suggested in the
inset, the case considered here is A„' ' & 0. The

C

curves for A„' ' & 0 are obtained from those in-
C

dicated by re6ection about the A„axis. (b}
Phase portrait in the (q, y&) plane for the case
2(v) SO.

(b)

Solitary Wave Solution

potential is that given by Eq. (40). We shall demonstrate
that a small well always exists in A, (y) as v~u, from
below and, furthermore, that one of the trajectories q&(g)

for "motion" in this well corresponds to a traveling soli-
tary wave. To see this, first consider the shape of A, (p)
in the neighborhood of y=O when v =v, . Since we are
considering the case in which ~ (u, ) =0 and A,' ' )0, the

mechanical potential has the form
——~ic (v)~qP+ —A,' 'y +O(p )=0,

2 dg' 2 3!
(57)

Now with each trajectory y(g) in the mechanical po-
tential A, (y) we may associate, from Eq. (39),
served mechanical energy A= ,'(dy/dg)i+ g—,(~). For
the A=O separatrix trajectory in the well with turning
point yo, this energy expression gives the equation

2

(56)

in which the lowest-order term is cubic. Thus A, (y) has
C

the local form indicated by the dashed curve in Fig. 3(a).
For u ~ u, on the other hand, A, (y) contains, in addition
to the cubic term, a quadratic term with small negative
coefficient since s (u)(0 but small for u ~u, . Clearly,
this weak negative quadratic term modi6es the dashed
curve of Fig. 3(a) into the solid curve, where a small well
has formed to the right of qv=O. The turning point yo
certainly exists for u sufficiently close to u, since s. (u),
the coeKcient of the quadratic term, goes to zero as
v —+v, . The formation of this well for v close to v, de-
pends only upon the condition A,' '%0, though to which

side of +=O 1t forms depends on the sign of Aq

where ~ii (u)
~

is small. Upon rearrangement and omission
of the fourth- and higher-order terms, Eq. (57) becomes

=+y(g)+~a (u)~ —
—,
' 3„' 'y(g) . (58)

Integrating this equation once then gives the solution of
Eq. (57) to lowest order in ~, which when shifted back
into the original frame of reference by making the re-
placement g=x ut becomes the sol—itary wave

qr(x —ut) =go(u)sech [—,
' ~~(u)~(x vt)], —

(59)

qo(v) = —3
K (u)

"C

Thus the above discussion demonstrates that a branch of
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traveling solitary waves, parametrized by the phase veloc-
ity u, bifurcates from an equilibrium F (u) as u passes
through any critical velocity u, that is a root of K (v) =0.
The condition A„' '%0 is also required and is satisfied ex-

cept in special cases. The bifurcating solutions are
refiected in Fig. 3(b) which shows the phase fiow near the
origin in the (y, p&) plane for K & 0 and A „'

' & 0 I.n this
C

case the saddle point at (tp, y&) =(0,0) corresponds to the
velocity-shifted equilibrium F (w +u) and the homoclin-
ic orbit corresponds to the traveling solitary wave solu-
tion that is described by Eq. (59) in the small amplitude
limit. These solutions satisfy v~~v, corresponding to
dK /dv~, &&0, since they exist for K &0 and sufficiently

small.
The even parts (with respect to the velocity of the

wave) of the distribution functions corresponding to these
solitary wave solutions are

f'(g, w)=G "(—,'m w +q p(g}}
dF" q=F"'(w)+ — (w) q&(g)+O(y ) .

w dw m

As for the periodic waves, suitable corresponding odd
parts of the distribution functions can be constructed us-
ing the BGK functions g" defined in Appendix A and
setting h "=0 (or, equivalently, p =0 in Appendix A).
Equation (59) gives the form of these solitary waves only
in the small amplitude limit; finite amplitude waves may
be expressed in terms of elliptic functions that reduce to
Eq. (59) in the limit of small yo. The sech form of these
small amplitude solitary wave suggests a possible connec-
tion with the Korteweg —de Vries (KdV) equation, and
such a connection has indeed been previously demon-
strated for processes characterized by weak nonlinearity
and weak dispersion [16,17]. If the condition A„' '%0 is

C

not satisfied, then the bifurcating small amplitude waves
take a different form, to be discussed later in this section,
since then the coefFicient A,' ' is important in determining

the small p form of A, (p) when K (v) is small.
The foregoing discussion applies to the simplest case

h "'=0, for which there is only a single branch of bifur-
cating solitary waves associated with each critical veloci-
ty v, . However, with each v, there is associated not just
one but in fact a continuous infinity of similar but distinct
bifurcating branches of solitary wave solutions. To show
this, we now choose the functions h"' in the particular
form h" =5 r"', where the 5 are variable real parame-
ters and the r" are fixed functions. The BC+K functionsg"'=G" are thus modified to g"=G"+5 r". Let
the r" also depend continuously on the phase velocity v

in such a way that r"'~, =, =0. With these additional
C

functions the important parameters K (u) and A„' ' be-
come

-2 2
2

K (u)=K (u)+4m. g f dw r"'(——,'m w ), (61)
a~a I d

m~ w dw

U U
r

fiat

1 d 1 d

a ma w dw w dw

(62)

C. Small amplitude traveling double layers

Plasma equilibria typically satisfy the condition
A„' '%0. It is possible, however, that A„' ' =0, in which

C C

case the bifurcating small amplitude solutions take a
slightly different form. An illustrative and physically
relevant example occurs when A„(y) is strictly an even
function of y, a feature obtained, for instance, via the
charge-conjugation symmetry of a two-species plasma in
which the particles have identical mass but opposite
charge (e.g. , an electron-positron plasma). In this case,
since in general A,' '%0, the mechanical potential in the

neighborhood of y=0 changes, as v passes through v„
between the dashed and solid shapes shown in Figs. 4(a)
and 5(a) for A,' '&0 and A„' '&0, respectively. To de-
scribe the changes that occur as v passes through v, it is
useful to consider the fixed points of the dynamical sys-
tem described by Eq. (45}, which are determined by the
conditions y&=0 and dA, (p)ldy=O For small y. and
u =u„and when A„(y}=A, ( —p), the latter condition is

dA, (y)
=tp K+ A p +o(p ) —0.

dp 6 c
(63)

Neglecting the term o(g ) and solving for q& gives the
three fixed-point branches as functions of K (u),

(o)

tp =++0=++ 6K (U)/AU +O(K(U))
(64)

In either case A„' '&0 or A„' '&0, as v passes through v,
and K (u) passes through zero, one fixed point suddenly
becomes three, or vice versa, in a pitchfork bifurcation.
The fixed points are of course associated with the local

where K (u, }=K (v, ) and A,' '= A„' ' since r" has been

chosen to vanish (i.e., become the zero function) at u =u, .
Now by choosing each of the constants 5 very small,

we ensure that K (u) and A,' ' differ only slightly from
K (u) and A,' ' at any particular value of u. In this case
the arguments made previously still hold and demon-
strate the existence of a small well in the mechanical po-
tential in the neighborhood of y=0 for v sufBciently close
to v„and an associated bifurcating branch of solitary
waves as v passes through v, . Thus any set of small func-
tions r" satisfying the above properties leads to a bifur-
cating branch of solitary waves for which the electric po-
tential and the even parts of the distribution functions are
given in the small amplitude limit by Eqs. (58) and (59)
with K (u) and A„' ' replacing K (v) and A,' '. That there
is an uncountably infinite set of such branches follows im-
mediately from the great freedom we have in choosing
the functions r"'.
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(a)

(b)

(4)
x &0; A )0

c

2e (Q

litary Wave Solutions

2

——~~'(u) ~q'+ —~„"'q'+O(q ')=0,
2 dg 2 4!

where ~a (v)~ is small. This leads to the approximate
equation

(65)

maxima or minima of the mechanical potentials in Figs.
4(a) and 5(a).

The small amplitude solutions of Eq. (45) take one of
two possible forms depending upon the sign of A,' '. If
A,' ' &0, then the solutions are quite similar to the soli-

tary waves obtained previously for A,' '%0. The two

symmetrically located wells in Fig. 4(a) exist for x. SO
and the trajectories that begin (as g~ —ac ) and end (as

g —++ ~ ) upon the central local maximum correspond to
solitary waves. The electric potential corresponding to
these waves is found from the expression for the con-
served quantity A= —,'(dy/dg) + A, (qr), which, in the
particular case A=O, is

de =+y(g )Q le'(u)
I

—
—,', &,"'y'(g), (66)

FIG. 4. Nongeneric case (A„' '=0) with A„' ') 0. In (a) the
C C

local shape of A, (y) is shown for ~ & 0 (dashed curve) and for
sc SO (solid curve) where two symmetric wells have formed. In
the latter case the phase portrait in the (y, q&) plane has the
form shown in (b), where the trajectories corresponding to soli-
tary waves are labeled.

y(x ut) = +—yosech[ ~x(u)
~
(x —vt) ],

K (v)
VO ~ (4)

V

(67)

which can be easily integrated. The resulting solitary
wave electric potential in the laboratory frame is, in the
small amplitude limit,

(b)

x &0; A &0
2 {4)

C

A & 0
V

C

2tc)0

One obtains elliptic integrals, of course, if more terms are
retained in Eq. (65}. The phase flow on the three-branch
side of the bifurcation is shown for this case in Fig. 4(b),
where the two labeled homoclinic orbits correspond to
solitary waves of opposite sign, the small amplitude limits
of which are given by Eq. (67}.

If, on the other hand, A,' ' (0, then the bifurcating
C

solutions have the appreciably different form of translat-
ing double-layer waves (or kinks, as they are known in
the context of nonlinear wave equations) in which the
electric potential makes a smooth transition from one
value to another while remaining essentially constant out-
side the transition region. Referring to the sohd curve in
Fig. 5(a), these solutions are generated, through an analo-
gy with single-particle motion, by the trajectories that
start atop either of the local maxima and end atop the
other. These local maxima are ensured to exist for a (u)
positive but suKciently small, in which case the small am-
plitude limiting form of these waves is, in the laboratory
frame,

Double-Layer Solutions q)(x —vt) =ky tanh (x ut)—K(v)
0 (68)

FIG. 5. Nongeneric case (A„' '=0) with A,' ' &0. In (a) the
C C

local shape of A„(y) is shown for sc &0 {dashed curve) and for
~ ~0 (solid curve) where two symmetric maxima have formed.
In the latter case the phase portrait in the (tp, y&) plane has the
form shown in (b), where the trajectories corresponding to
double-layer waves are labeled.

where yo is the same as in Eq. (67).
As for the spatially periodic waves and solitary waves,

the variable functions h" can be exploited to demon-
strate that there exists not one but a continuous infinity
of these branches of undamped traveling double-layer
waves or nongeneric ( A„' ' =0) solitary waves. These



52 NONLINEAR ELECTROSTATIC WAVES IN COLLISIONLESS PLASMAS 3027

solutions can also be connected, in the context of weakly
dispersive nonlinear processes, to a nonlinear wave equa-
tion, although in this case the relevant equation is the
modified KdV equation [17].

D. Generic and nongeneric bifurcations

As discussed in Secs. VA and V B, the analysis of the
nonlinear Poisson equation, Eq. (37), using the simple
mechanical potential formulation, leads directly to spa-
tially periodic, traveling wave solutions as well as solitary
wave solutions that are of small but constant amplitude.
These solutions are connected through a formal generic
(A,' '%0) transcritical bifurcation, which occurs when

K (U) decreases through zero, as u passes through a criti-
cal velocity U, . In this bifurcation the center at
(p, y&)=(0, 0), which is associated with the Vlasov equi-
librium and is surrounded by small amplitude periodic
wave solutions, becomes a saddle point with a homoclinic
orbit corresponding to a small amplitude solitary wave
solution. A summary of this transition is depicted
schematically in the bifurcation diagram of Fig. 6, which
exhibits the trajectories in the two-dimensional phase
space (y, (p&) as a function of the bifurcation parameter
K (U).

Analogously, the related analysis of the nongeneric
case (A„' '=0) of a charge-symmetric plasma described

in Sec. V C leads for 3,' ' )0 to a transition from a center

A

x &0

FIG. 7. Phase portraits in the (y, y&) plane for ~ 2 0 and for
K &0 in the nongeneric case A„' '=0, A„'4'&0. The single

C C

fixed-point branch (y, y&) = (0,0), which exists for sc ( v ) & 0,
meets the three fixed-point branches (y, y&) = (0,0) and

(qr, y&) =(kQ —6K (v)/A„' ',0), which exist for K (U) &0, in a
C

supercritical pitchfork bifurcation as K (U) passes through zero,
i.e., as v passes through a nongeneric critical velocity v, .

ic &0

A

FIG. 6. Phase portraits in the (tp, (p~) plane for ~ ~ 0 and for
~ ~0 in the generic case 2,' 'WO. The fixed-point branches

C

((p, y~) =(0,0) and ((p, (p&) =(—2v (v)/A, ' ',0) intersect and ex-
C

change stability in a transcritical bifurcation as ~ (v) passes
through zero, i.e., as v passes through a generic critical velocity
vc

FICx. 8. Phase portraits in the (y, y&) plane for ~ ~ 0 and for
K &0 in the nongeneric case A„'3'=0, A„' ' &0. The single

C C

fixed-point branch (y, y&)=(0,0), which exists for ~ (v) &0,
meets the three fixed-point branches (y, y&) =(0,0) and

(p, (pr)=(+Q —6K'(U)/A„' ',0), which exist for K (u) &0, in a
C

subcritical pitchfork bifurcation as ~ (v) passes through zero,
i.e., as v passes through a nongeneric critical velocity v, .
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at (y, y&) =(0,0) surrounded by small amplitude periodic
wave solutions for a (v) &0 to a saddle point with two
symmetric homoclinic orbits corresponding to a pair of
solitary wave solutions of opposite sign. Again, the bifur-
cation parameter is a (v). This transition is a supercriti-
cal pitchfork bifurcation, as shown in the bifurcation dia-
gram of Fig. 7. Finally, in the nongeneric case ( A,~ ~ =0)

C

when 2,' ' (0, also discussed in Sec. VC, the analysis
C

shows that the transition from the center to the saddle
point is a subcritical pitchfork bifurcation. Hence, as in-
dicated in the bifurcation diagram of Fig. 8, the two
heteroclinic orbits corresponding to a pair of small ampli-
tude traveling double-layer or kink solutions of opposite
sign exist for a(v) )0, as do the small amplitude periodic
waves. Figures 6—8 qualitatively summarize the general
form of the main results obtained here using the simple
mechanical potential formulation, although they of
course do not indicate any of the complicated details in-
volved in the construction of the related particle distribu-
tion functions that were described above.

VI. EXAMPLE: e -p+ THERMAL PLASMA

We shall now illustrate the foregoing developments ex-
plicitly in an important practical case: a thermal
electron-proton plasma. In this case the even parts of the
velocity-shifted distribution functions are

1/2

FIG. 9. The solid curve shows the dependence of the parame-
ter ~ on the phase velocity v for a thermal e -p+ plasma with

T, = T~. Small amplitude nonlinear periodic waves exist for ve-

locities v & v,"'=1.3v„where ~ (v) & 0, and small amplitude sol-
itary waves exist for v ~ v,' ', where a (v) &0. If
T~ (PT, =0.28T„ then the shape of sc (v) changes at lower ve-

locities, as indicated by the dashed curve, in which case small
amplitude nonlinear periodic waves also exist for v,"'& v & v,' ',

where v (v) &0 also, and small amplitude solitary waves exist
for v ~ v,"' and v & v,' ', where ~ (v) ~ 0.

noE"'(w) =
a

Pl a

mkT

ma
X exp — (w +v)

a

+ exp — (
—w+v)

2kT
(69)

where a=e and p for electrons and protons, no is the
density, k is Boltzmann's constant, and T is the temper-
ature of each species. To apply the results of Sec. V, we
first calculate the function a (v )—:A,~ ~ defined in Eq. (36).
The results are depicted in Fig. 9.

For the case T, = T~ (solid curve in Fig. 9) we find that
a (v))0 for v &v,' '=1.3v„where v, is the electron
thermal speed. Thus, from the results above, there exist
undamped periodic wave solutions of arbitrarily small
amplitude over this velocity region only, i.e., there is a
cutoff' velocity v, below which these waves do not exist (a
feature already familiar from the linear theory). For
U ~ v,' ', which implies a small wave number, these waves
are undamped nonlinear electron-acoustic waves, which
satisfy the approximate dispersion relation co-1.3v, k
and correspond to the strongly damped electron-acoustic
waves of the linear theory. For large U, on the other
hand, the relationship between co and K becomes the
Bohm-Gross relation ro —Q+ 3v, k for Langmuir
waves. This correspondence between undamped periodic
waves and Langmuir waves of the linear theory was not-
ed previously [12,13].

When T (PT, =0.28T„ that is, for cold ions, a (v) is

also positive over the region v,"'(U (U,' ', as indicated
schematically by the dashed curve in Fig. 9, where

v,"'=1.3v and v,' '=C, =+kT, lm, v denoting the
proton thermal speed and C, the ion-sound speed. For
v 5 C, the corresponding waves are exact nonlinear but
undamped analogs of the weakly damped fast branch of
ion-acoustic waves of the linear kinetic theory, the rela-
tionship between co and k being the familiar co- C, k. For
U & v,"' there exists another acoustic branch of undamped
nonlinear waves that satisfy the approximate dispersion
relation m —1.3U k and correspond to the strongly
damped slow branch of ion-acoustic waves of the linear
theory. Both the fast and slow branches of ion-acoustic
waves also can be derived within the context of the non-
linear fiuid theory of plasmas [19], where they are of
course undamped since, as is well known, the effects of
the resonant wave-particle interaction are not manifest in
the Auidlike treatment. It is common practice, however,
to add artificial damping to the solutions thus obtained so
as to give behavior consistent with the expectations of the
linear kinetic theory of plasmas; however, the exact non-
linear but undamped periodic waves discussed here indi-
cate that such modifications are not always warranted.

Now let us turn to solitary waves. According to our
general results, a generic branch of solitary waves bifur-
cates from every velocity v, for which a. (v, ) =0 and
A,' '%0. Again referring to Fig. 9, which shows I~ vs v

for a two-species plasma of thermally distributed elec-
trons and protons, we see that when T = T, there is only
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one such velocity, v,' '=1.3v, . Since x &0 for v (v,' ' in
this case, a branch of solitary waves of the form of
Eq. (59) exists for u in the neighborhood of, but less than,
u,' '. When Tz &PT, =0.28T, there are two additional
roots of ~, or critical velocities, one at v,'"=1.3v and
the other at the ion-sound speed v,' '=C, . The solitary
waves bifurcating from C, exist for v ~ C, and are exact
nonlinear but undamped kinetic theory analogs of the
well-known ion-acoustic solitary waves. Those solutions
are usually obtained in the fiuid approximation [18,19]
and, in fact, the mechanical potential arising in that
analysis (sometimes referred to as the Sagdeev potential)
is obtained in the present formalism as the lowest-order
term in an asymptotic expansion of A„(g) in the ternper-
ature ratio r=T&/T, . There is of course a third branch
of solitary waves associated with the root of a (v) located
at 1.3v .

Since the Quid theory does not include wave-particle
resonance effects, it is common practice, as in the case of
periodic waves, to add artificial damping to the solitary
waves obtained within the Quid approximation so as to
obtain the properties expected from Landau's linearized
kinetic theory analysis of periodic waves. While this
leads to accurate results in many instances, such as when
the initial perturbation does not appreciably alter the
background distribution, the foregoing developments
show that it is not always appropriate. The existence of
small but constant amplitude ion-acoustic solitary waves
has been suggested previously by Meiss and Morrison
[20].

VII. DKPKNDKNCK OF sc (u}
DN THE UNDERLYING EQUILIBRIUM

We have seen that small amplitude solitary waves or
double layers can exist in a collisionless plasma if their
velocity is near a critical velocity given by a root of the
condition z (u)=0. A natural question then is: Do such
roots exist for physically reasonable Vlasov equilibria'7
That the answer is "yes" was indicated in Sec. VI, where
we displayed x (v) for the specific and important e -p+
thermal plasma. It is possible, however, to formulate a
more general statement. Recall that the parameter a. (v)
is calculated from the Vlasov equilibrium distribution
functions F (u) as

q 1
dI'"'

v (v) =4m. g f dw-
am — w dw

(70)

Integrating this expression over all values of the phase
velocity v gives an interesting result

(71)

=0.
Now since a (u) is a continuous function of u (and is not
identically zero), we may immediately conclude from Eq.

2

f du ~ (u)=4m. g f du f dw F"'—(w)
00 m W dW

=4m. g f du f div F"(w)—qa d 1

m dv w

(71) that ~ (u) takes on both positive and negative values
and therefore passes through zero at least once. From
this result, in conjunction with the condition derived in
Sec. V A, it follows that small amplitude traveling period-
ic waves, which neither damp nor grow, exist near a very
broad class of Vlasov equilibria. Furthermore, as shown
in Secs. VB and VC, the existence of a velocity v, at
which a (v) vanishes implies, in general, the existence of
small amplitude traveling solitary waves or traveling dou-
ble layers with velocity v approximately equal to v, .
Thus the above result implies that most physically
relevant plasma equilibria support spatially periodic trav-
eling waves as well as traveling solitary or double-layer
waves of small but constant amplitude.

VIII. NONLINEAR LANDAU DAMPING

In the previous sections we have described a broad
spectrum of constant amplitude near-equilibrium BGK
plasma waves. So far, however, we have not presented
any evidence that such waves are truly relevant in physi-
cal plasmas, nor have we discussed possible dynamical
processes through which such waves might be formed.
One such process is the collisionless damping of a finite
amplitude plasma wave, so-called nonlinear Landau
damping, which was first analyzed by O' Neil [21]. Con-
sider the evolution of an electron plasma (neutralized by
a homogeneous background of positive charge) from an
initial state given by

f ( x, u, 0 ) = [ 1 —
( kE; /4rren o ) cos( kx ) ]F( u ),

E (x,0)=E;sin(kx),

(72)

(73)

where E; is the initial amplitude of the electric field and
F(u) is a linearly stable electron distribution satisfying
no= Jdu F(u). O' Neil showed that the evolution of the
main wave (wave number k) depends crucially upon the
ratio yr /co~, where yI is the damping coefficient calcu-
lated from linear plasma kinetic theory and
co~ =(ekE;/m)'~ is the "bounce" frequency for trapped
electrons, i.e., the oscillation frequency for electrons lo-
cated near the bottom of the potential wells of the wave.
For yl /m~ &&1, the wave damps away completely as
predicted by the linear theory; conversely, if yz /co~ && 1,
the linear theory breaks down after a time of the order
~=2m/co& due to particle trapping. In this latter case,
the wave amplitude exhibits damped osci11ations and
eventually saturates at a finite final amplitude. Impor-
tantly, in the limit yL ~0 the condition yI /co& && 1 can
be satisfied even for an arbitrarily small initial field ampli-
tude E;; O'Neil's analysis therefore implies that the linear
theory can fail even for plasmas that are arbitrarily close
to equilibrium.

In the case yL /mz &(1, the plasma evolves toward a
state containing finite amplitude waves. If the equilibri-
um F(u) is symmetric in velocity, then the time-
asymptotic state cannot contain only a single wave, since
this would violate the space-reQection symmetry of the
initial conditions Eqs. (72) and (73), which is preserved by
the dynamics of the Vlasov-Poisson system. In fact, re-
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cent numerical simulations [22,23] strongly suggest that
the plasma evolves toward a state containing a superposi-
tion of two counterpropagating BGK waves of the type
developed here. For instance, in simulations of the
Vlasov-Poisson system with periodic boundary condi-
tions, Demieo and Zweifel [22] chose k in order to stimu-
late the longest wavelength mode for the system, which,
when F ( u ) is Maxwellian, is also the most weakly
damped. Using an initial amplitude suf5ciently large for
particle trapping to predominate before wave damping is
complete, their results show that, while a small quantity
of energy leaks into other modes, the main electric field
mode has much larger amplitude than any other
throughout the entire process. After initially damping in
agreement with the linear theory and then exhibiting the
damped amplitude oscillations predicted by O' Neil [21],
the field finally settles into a standing wave pattern,
which indicates a superposition of two counterpropagat-
ing waves of equal amplitude and speed. The simulation
also shows that the electron distribution function forms
two phase space vortices centered at velocities +U,
where v is the wave phase velocity. Such vortices ap-
pear to correspond to particles that have become trapped
in the electric potentials of the two counterpropagating
waves. In fact, all the numerical evidence suggests
strongly that the asymptotic state is well described by
two superimposed small amplitude undamped BGK
waves that propagate in opposite directions with equal
speeds and amplitudes. Moreover, we recently have also
reported analytical solutions representing such superposi-
tions of small amplitude spatially periodic BGK waves
[17,24,25]. The simulation described in Ref. [22] was fol-
lowed for a long time without any significant further
change apparent in the state of the plasma suggesting
that the final state to which the plasmas evolved corre-
sponded to a superposition of the spatially periodic wave
solutions discussed here in Sec. V A.

IX. SUMMARY AND CONCLUSIONS

In this paper we have studied the Vlasov-Poisson-
Ampere system of equations that provides the most ap-
propriate theoretical model for one-dimensional electro-
static processes in collisionless plasmas under nonrela-
tivistic conditions. Any set of distribution functions
F (u) that yields vanishing charge and current densities
characterizes a spatially uniform field-free equilibrium
solution of this model —a Vlasov equilibrium —and cor-
responds, insofar as binary collisions are neglected, to an
equilibrium state (stable or unstable) of the physical plas-
ma.

As reviewed in Sec. III, much of what we know about
small amplitude processes near Vlasov equilibria follows
from Landau's classic analysis of the Vlasov-Poisson sys-
tem linearized about an equilibrium F (u). It is generally
accepted that the description offered by the linear theory
is incorrect for a plasma that is su%ciently far from equi-
librium. In many cases, however, the linear theory does
not give an adequate description even for plasmas that
are arbitrarily close to equilibrium. Clearly, the validity
of the linear approximation rests upon the condition

lah /»1«ldF /d&l, (74)
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where h =f F—. But, as we have seen, this condition
is not an automatic consequence of the smallness of either
h or y. In fact, there exist nonlinear traveling wave
solutions of arbitrarily small amplitude that do not exhib-
it damping or growth, even when the linear theory sug-
gests that they should. These nonlinear wave solutions
were first discussed by Bohm and Gross, although we
have called them BGK waves to agree with the prevailing
literature where they are associated with the later work
of Bernstein, Greene, and Kruskal. The existence of un-
damped waves arbitrarily close to Vlasov equilibria is
also implicit in O'Neil's seminal work [21] on nonlinear
Landau damping. The distinctive feature of BGK waves,
as opposed to those described by the linear theory, is that
some of the plasma particles are trapped within the po-
tential wells formed by the electric potential y(g).

A close analysis [13] shows, in fact, that the linear
theory has no implications concerning the properties of
these waves. Due to particle trapping, the distribution
functions f =F +h must necessarily satisfy the condi-
tion (Bf /Bu ) l „,=0, or equivalently (Bh /»)

l „
(dF /d—u)l„„, which violates the condition of Eq.

(74) for the applicability of the linear approximation even
as the wave amplitude approaches zero. The theory of
undamped waves has previously been treated with in-
creasing detail, rigor, and generality by Bohm and Gross;
Bernstein, Greene, and Kruskal; and finally by Holloway
and Dorning. In Sec. V, after introducing the mechanical
potential formalism, which greatly simplifies much of the
required analysis, we then used this formalism to investi-
gate methodically the types and properties of small am-
plitude BGK waves, both spatially periodic and aperiod-
ic, that can exist nearby a plasma equilibrium character-
ized by a given set of distribution functions. This
analysis showed that, in addition to spatially periodic
waves that satisfy the original dispersion relation of
Vlasov in the small amplitude limit, there also exists a
broad class of solitary BGK waves of arbitrarily small
but constant amplitude. Specifically, we found that any
collisionless plasma is characterized by a discrete set of
critical velocities U,",i =1,2, . . . , which are the veloci-
ties at which BGK solitary waves of vanishingly small
amplitude can propagate through the plasma. These crit-
ical velocities are determined as the roots of the funda-
mentally important function ~ (v), which is determined
uniquely by the distribution functions F (u) of the under-
lying equilibrium. In addition, we also showed that
charge-symmetric plasmas such as the electron-positron
plasma can support slightly more exotic types of
solutions —traveling double layers or kinks —which
represent traveling transition regions, or buffer zones, be-
tween different homogeneous portions of the plasma with
unequal electric potential.
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APPENDIX A: ODD FUNCTIONS g"'

As mentioned in Sec. IV B, the definition of g"' given
by Eq. (32) is in general not suitable since the trapping of
particles in the electrostatic potential of the wave re-
quires the distribution functions f (g, w) to be even func-
tions of the velocity w in the neighborhood of w =0
(u =v). Therefore, the definition must be modified so as
to satisfy

g"'(8 )=0, 6" «Q =~q g~ (A 1)

which means that the odd parts of the distribution func-
tions depend upon the amplitude parameter qv0 and van-
ish over the trapping regions. In this paper we only con-
sider cases in which the variable components h" of the
even parts of the distribution functions are chosen in the
particularly simple from h "=p 6"', where the p are a
set of real parameters. For any branch of solutions
(q&(g;yo), p (yo)) of Eqs. (15) and (16) obtained by the
methods of Sec. V, a prescription for the modified func-
tions g"' has been given in Ref. [13]as

g."(@.q'o) = [I+p.(q o)][1—R (@./Q. ) l

X [[1—P (qro)]G"'(6 )

+P (qo)G "(8 )J,
where

(A2)

1, q~1

R (i))= — 1 —tanh
1 3 —2'
2 2(i) —1)(i)—2)

0, g~2

1~q~2

(A3)

and the quantities P (yo), the importance of which is dis-
cussed below, are constants for any particular value of y0.
Since the function R(i)) is infinitely differentiable, the
factor 1 —R (6 /Q ) cuts off g"' in a smooth way so that
it satisfies Eq. (Al) above. When g" is substituted into
Ampere's equation, Eq. (18), we then have

0=8m gq J dw wg"'( —,'m w +q y(g)), (A4)
0

which is a zero current constraint in the wave frame. It
is straightforward to verify that if the functions P~(yo) in

Eq. (A2) are defined as

f o
16' R (6' /Q~)G "(8 )

(qo)= f "dC [1—R (6 /Q )][G "(6' )
—G"(4' )]

(A5)

then the above constraint is satisfied, while, in addition,
the overall distribution functions f =f' +f' are non-
negative. Furthermore, the odd parts of the distribution
functions f' (g, w) =g"'( 6~) uniformly approach the odd
parts of the velocity-shifted equilibrium F"(w) as yo or,
equivalently, the wave amplitude goes to zero. The
prescription for g"' given above is not unique; on the
contrary, there is an infinite number of ways to define the
g"' so as to satisfy both Eqs. (Al) and (A4). Importantly,
however, this result establishes the fact that correspond-

ing to any near-equilibrium solution of Eqs. (15) and (16)
is at least one and usually many physically reasonable
solutions of Eqs. (17) and (18).

APPENDIX B: WAVES
WITH CONSTANT PARTICLE DENSITY

In this appendix we shall construct a branch of wave
solutions for which the average particle density is the
same as that of the underlying equilibrium [17]. We con-
sider waves at phase velocity u for which a (u) & 0. Once
again, the nonlinear differential equation to be solved for
the electric potential is Eq. (37) where A, (p) = A„ i, (p)
depends parametrically upon the variable functions h"'
as indicated in Eqs. (48) and (49). The final equation to
be solved then is Eq. (50) in which the mechanical poten-
tial is expanded for small y(g). For this example we
again use the particularly simple form for the functions
h", namely, h"=p 6",where each p is an indepen-
dent real variable. We shall find that by varying these p
appropriately with the amplitude of the wave solution we
can construct a family of undamped waves of velocity U

for which the average particle density of each species
remains constant irrespective of the (small) wave ampli-
tude. We demonstrate the calculation only through
second order in the wave amplitude, although it is
straightforward to continue to higher orders.

When p =0 for all species we have by construction
a. (v) &0 and thus A, (y) has a local minimum at p=0
that guarantees the existence of small amplitude periodic
solutions of the approximate form yocoskg, correspond-
ing to boundary conditions [y(0)=go, (dq/dg)(0) =0],
where y0 is the small wave amplitude. The wave number
k depends in general upon yo, i.e., k =k(po), as do the
spatially averaged particle densities

(n )= J dgfdwG" —m w + y(g)
2% 0 2 Pl~

(B1)

As q&o~0, k(yo) approaches ~(v) while the densities
(n ) approach their equilibrium values n

Now suppose that the parameters p are no longer
zero, in which case the mechanical potential depends
upon the p as well as y and takes the form of Eq. (48).
As a result, the wave number k and the average particle
densities (n ), which correspond to a periodic solution
of amplitude y0, now also depend upon the p, i.e.,
k =k(yo, p ), (n ) =(n )(pro, p ). By varying the p
appropriately along with y0, we can force the densities
( n ) to retain their equilibrium values n o independent-
ly of y0. To see this, at least for small y0, we shall write
the connection between the p and y0 as

p =p" 'go+ p' 'pro+ 0 (yo ) and determine the constants
p'" and p' ' by calculating (n ) and then requiring
(n )=n

We first must solve Eq. (50) for the electric potential
p(g) of the small amplitude wave solutions. When the
quantities 5A ~'~ appearing in Eq. (50) do not vanish, the
solutions q(g) will be centered about the nonzero value
p;„given in Eq. (51). It is convenient therefore to
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rewrite Eq. (50) in terms of a new variable y(g'), which is
equal to q)(g) less the quantity q2;„, y(g) =q)(g) —q);„. It
is then easy to show that the new variable y(g) satisfies
the equation

where ( ) denotes the spatial average,
n o= Jdw G"'(m w l2) are the equilibrium particle
densities, and we have introduced the quantities

d'X
2

= —[K (u)+0(5A)]y —
—,'[A,' )+0(5A)]y D, (u)= f dw = f dw — F"(w)

dG" 1 1 d
771 a l8 dM

(BS)

——,[A„' )+0(5A)]y +0(y ), (B2) and

( A (3) )2
+ q)o3 cos(3k)) +0 (q)o),

192K (u)
(B3)

where the wave number k also depends upon the ampli-
tude parameter as

r

1 3
k =K(u)+

2K( v) 24

( A (3))2

q'o+0(qo) .
K (u)

(B4)

Thus p(g) =y(g)+q);„gives a branch of small amplitude
periodic wave solutions (traveling waves of velocity v in
the original frame of reference) parametrized by the am-
plitude yo.

We now use the distribution functions corresponding
to these waves to calculate the average particle densities

(n )= f deaf dw f'(g, w), (85)

where 0(5A) denotes terms of order 5A" and
0(5A )=0(q)o) by virtue of the assumed form

P =P~')yo+P~ )q)o+0 (po) and the definition of Eq. (49).
The explicit solutions to Eq. (82) can be obtained via

the method of Poincare and Lindstedt, a standard tech-
nique in perturbation theory [26]. Denoting the (small)
amplitude parameter as yo, then the solution correspond-
ing to the zeroth order boundary conditions [q2(0)=q)o,
y&(0) =0] may be developed in series form, resulting in
the expression

g (3)

y(g) =q)o cos(kg) — tpo[1 —
—,
' cos(2k/) ]

4K v

d2G v, e

D 2(v)= f dw
dA

1 1 d 1 d
2

dN F"(w)
m dw w dm

(B9)

( ~) 477 (&)
Pa ao 2 'qa a ) XgaPa nao

K a
(B10)

which, being homogeneous in the parameters p"', can be
satisfied trivially by choosing p"'=0 for all a. This
reflects the fact that the average density n o has only a
second-order dependence on the wave amplitude yo.

At second order in yo we find, when p" ' =0,

(2) & 2,

pa na o+ 4qaDa 2

—
q D

g (3)

g q p' 'n o+ =0 . (Bl 1)

The spatial averages (q)(g) ) and (y (g) ) may be cal-
culated from Eqs. (B3), (51), and (41). Inserting those
averages and the above expressions along with

P (q)o)=P'"tpo+P' )q)o+0(q)o) into Eq. (B7) gives the
final result for (n ) explicitly as a function of q&o, from
which we can determine P'" and P' '. If (n ) is to be
equal to n o independently of yo, then the coeKcients of
the terms in ( n ) proportional to q)o and q)o must vanish.
By setting each of these coefficients equal to zero, we
therefore obtain two conditions involving p'" and p' '.
The first of these is

where, as indicated, ( n ) depends only on the even parts
of the distribution functions f'

( g, w ). Since these are
given in the BGK representation as
f'(g, w)=(1+p )G"(6 ), wehave

(n )=(1+p ) f "

deaf

du) G"'(—,'m w2
2& 0

+q q(g)) .

Upon expanding the integrand in this expression in
powers of tp(g) and performing the indicated integrations,
we obtain

( ) =[1+p (p )][ +q D, ( (gq')))

+—,'q~ (Ip'(g) )+0(Ip')],
(87)

By inspection this has the solution P' '= qD 214n-
since in this case the term in large parentheses vanishes
as a result of the equality g q P' 'n o= —,'g q D 2—
= —A,' ) /16m, which follows from Eq. (B9) and the
definition of A,' '. Thus, if we choose the variable func-
tions h"' as h" =P (q)o)G"', where P (po)

(q D 2/4—n o))po+0 (q)o) then the small amplitude
spatially periodic wave solutions with electric potential
q)(g)=g(g)+q&;„, where y(g) is given in Eq. (B3) and
q);„by Eq. (51), describe plasma states that, to second
order in yo, have the same average number of particles of
each species as the equilibrium that they are near. In the
original frame of reference these are traveling waves that
could be excited by a plasma perturbation, such as the
application of an electrostatic field, which does not alter
the number of particles in the plasma through second or-
der in yo. It is straightforward to continue the above
procedure to higher orders.
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