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Two-temperature frequency-dependent electrical resistivity in solid density plasmas
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A model of the plasma resistivity, or equivalently the electron-ion collision frequency v, which can be
used to describe absorption of ultrashort laser pulses in solid density plasmas has been constructed. Us-

ing kinetic theory based on a memory function formulation and a projection operator method, we have
derived an analytical expression for v, which is valid in strongly coupled plasmas, properly accounts for
the laser frequency dependence, and can be applied to plasmas with different electron and ion tempera-
tures.

PACS number(s): 52.25.Fi, 52.20.Fs

I. INTRODUCTION

Transport theory of strongly coupled plasmas plays an
important role in the understanding of physical proper-
ties of matter under extreme conditions found in astro-
physical objects and laboratory experiments. In recent
years, rapid development of technology related to the
generation of ultrashort laser pulses has led to a number
of innovative experiments [1] examining basic properties
of solid density plasmas on time scales short (& 1 ps)
compared to the hydrodynamic expansion time. When
subpicosecond laser pulses are focused on a solid target,
the absorbed energy is conducted away by the cold
matter underlying the absorption region, which is a skin
depth (a few hundred angstroms in extent). Solid density
plasmas thus created by ultrashort laser pulses can pos-
sess low temperatures (less than 100 eV) and be strongly
coupled with respect to particle-particle interactions [2].
An important part of the absorption process is related to
inverse bremsstrahlung, which in turn is completely de-
scribed by the electrical resistivity incorporating the
electron-ion collision frequency. Thus the knowledge of
plasma transport properties is central to the problem of
laser pulse absorption. Because of high densities where
absorption takes place, the transport model must account
for the strongly coupled nature of the plasma. In addi-
tion, since the laser light is absorbed at a specific frequen-
cy, the transport coeKcients resulting from the model
must incorporate this e6'ect, i.e., the electrical resistivity
must include proper dependence on a laser frequency.
Moreover, simulations have predicted that the plasma
may not be in equilibrium for much of the absorption
time, i.e., the electron and ion temperatures may be very
different [3,4]. Typically the electron temperature is
higher. In addition to nonequilibrium within the absorp-
tion time, it has been shown that hydrodynamics cannot
be ignored. Dharma-Wardana and Perrot, who employ
density functional theory in a,quantum mechanical calcu-

lation, have noted that the inclusion of time-dependence
and two-temperatures may be necessary in order to de-
scribe many short pulse experiments [5]. Ng et al. have
observed that even for pulse lengths of a few hundred
femtoseconds, hydrodynamic modeling is required for
proper interpretation of experimental results [6]. As a
practical matter, in order to describe inverse bremsstrah-
lung in a hydrodynamics code, it is convenient, and often
necessary, that values for the electrical resistivity be easy
to calculate; an analytic formulation is, of course, pre-
ferred. Thus three fundamental issues —strong coupling,
time dependence, and nonequilibria, and one practical
issue —ease and generality of calculation must be ad-
dressed when describing absorption in short pulse laser
interactions with solids. We have constructed a transport
model [7—9] for strongly coupled plasmas which has
given results consistent with experimental observations
[10] and compared well with the results of numerical
simulations [11] as well as other theories. The model is
based on a memory function kinetic formulation and
solved by a projection operator method in momentum
space [7].The derived transport coefficients are expressed
in terms of static correlation functions and interparticle
potentials. In particular, the choice of analytic potentials
and correlation functions may allow the derivation of
transport coefFicients which are themselves analytic.
Here, we have extended this model [7] to explicitly in-
clude frequency dependence. We have also introduced
two-temperature correlation functions and interparticle
potentials. The solution is a two-temperature ac electrical
resistivity p(co) suitable for use in a strongly coupled plas-
ma. Because of simple functions incorporated into the
model, p(co) can be presented in an analytic form. In the
following section we summarize the theoretical model
and approximations involved in deriving p(co). An expli-
cit expression for p(co) for two temperatures is shown in
Sec. III. Section IV contains numerical results, compar-
ison, and discussion.
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II. THEORETICAL MODEL

The starting point for the calculation of transport
coefBcients in strongly coupled plasrnas is a kinetic model
which has been described previously [7]. We summarize
below the procedure which allows the solution of a kinet-
ic equation by the moment expansion method, and then
describe extensions to the model to account for both

I

different electron and ion temperatures and frequency-
dependent effects. As we show in Sec. III both effects
significantly modify the transport coefBcients and are
particularly important in ultrashort pulse laser produced
plasmas. The starting point for the calculation is the

equilibrium averaged phase space density correlation
function,
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kinetic description in terms of the equilibrium averaged
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can be expressed in terms of the equilibrium correlation
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satisfies an exact kinetic equation of the following form
[12],
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The memory function C) (k,p&,p2, t) consists of three
1 2

parts

namely, a free streaming term,

=i (k.p, /m )5(p, —
p2 )5 5(t),

a mean field term,

i (k p, —/m )n f~'(p, )CD' '(k)5(t),

and the time-dependent collision operator N . Above,
CD' ' is the direct correlation function. The form of the
collision term + underpins the transport coe%cients we
will derive. Since N contains correlations of all order in
the particle number, approximations must be made. One
particular form due to Mazenko is the disconnected ap-
proxirnation [12,13].This form of C) rigorously "discon-
nects" two-particle functions from those of higher order,
revealing 4 in terms of products of two-particle func-
tions plus other terms and resulting in a form which is
amenable to calculation. The disconnected approxima-
tion has been shown to be effective in describing proper-
ties of plasmas with strong coupling [8,13]. Employing
this approximation, we obtain the operator form of N
(cf. Eq. (12), Ref. [7])
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In Eq. (5), V&
' ' is the Fourier transform of the interpar-

ticle potential between species a& and a2.
The kinetic Eq. (4) can be solved by expanding

C ' '(k,p&,pz', t) in moments of momentum (see, e.g. , the

I

monograph by R. Balescu [14], for a discussion of the
moment expansion method). Equation (4) then reduces to
the system of transport equations for hydrodynamic
correlation functions. These equations have the form of
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the Navier-Stokes equations; comparison of the two sets
reveals the transport coefficients in terms of momentum
moments of the collision operator [15,16]. The expansion
can be easily carried out using a projection operator ap-
proach [7,14]. Choosing the Maxwellian as a natural
weight function, one can use Hermite polynomials to
construct an orthonormal set of momentum states. The
projection operator P contains those states describing hy-
drodynamics (conservation relations); the complementary
operator Q =I Pco—ntains the remainder of the momen-
tum states. A measure of the completeness of the solu-
tion is the number of states retained in Q. The hydro-
dynamic momentum states and a summary of the
momentum expansion solution are given in the Appen-
dix. Retaining only the first nonhydrodynamic state in Q
produces a solution which is equivalent to the Grad 13-
moment solution to transport coefficients [17]. These are
known [14] to be factors of 2—3 different from the classi-
cal results obtained by Braginskii [18] for weakly coupled
systems; calculations like the one described herein are
necessary for more highly coupled systems. In order to
include most of this di6'erence, it is necessary to also re-
tain in Q the next contributing state, which produces the
equivalent of Grad's 21-moment solution. (For accura-
cies of a few percent, it is sufficient to stop here [14].) Us-
ing the projection operators P [Eq. (A2)] and Q [Eq. (A5)]
on the Laplace transformed kinetic Eq. (4), reveals a sys-
tem of transport equations having the following form:

( iz P4—P)PF —' ' P@Q — Q@PPF ' '
iz —Q—@Q

=Pn fM'S ' '(k), (6)

where,

F ' '= fd'p, C ' '(k,p„p„t),

ala2and S ' '(k) is the static structure factor. Comparing (6)
with the Navier-Stokes equations reveals the transport
coefficients in terms of combinations of matrix elements
of memory functions.

III. ELECTRICAL RESISTIVITY

We are interested in the momentum transfer between
electrons and ions. By comparing Eq. (6) with the
Navier-Stokes equations we can identify the friction
coefficient g proportional to the generalized collision fre-
quency v

g=m, n, v

—(H„'~i4& Q[ iz+iQ@—Q] 'Qi4 ~H~)),

(7)

where ~iH') are the momentum states (the Appendix)
and z describes frequency dependence of the transport
coefficient. Note that (7) reduces to the general dc result
for g [Eq. (28) from [7]] in the limit of z~O. From Eqs.
(5) and (7), we see that in order to obtain the collision fre-
quency v and related electrical resistivity, we must speci-
fy the form of two body correlation function
C ' '(k, p„pz, t). To do this rigorously would require the
exact solution of the original kinetic equation, Eq. (1), so
several approximations must be made.

The free particle form of C ' '(k,pi, pz, t)

dz, C(k,p „pz )
(8)

c2m z —kp /m1 a)

is a solution of Eq. (4) with N =N =0. Substituting
Eq. (8) into (5) and taking the Markovian (t =0) and lo-
cal (k =0) limits, we obtain
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We will use Eq. (9) in calculations of the nonhydro-
dynamic moments in Eq. (7). Taking the Markovian lim-
it of Cc is not inconsistent with using Eq. (7) to find a
time-dependent result if (7) is applied in the overdense re-
gion, where the local plasma frequency m, is higher than
the laser frequency co. In subpicosecond laser-solid in-
teractions, the dominant absorption indeed takes place in
the overdense region.

Because of screening, the major contribution to the I
integration in Eq. (9) comes from the distances less than
roughly a Debye length k& ', i.e., for l & kD. The Debye
length is defined by

kD=4mn, e /T, +4mn;Z e /T; . (10)

Thus Eq. (8) will contribute to Eq. (9) only for k )kD, or,
setting z =~, when

co k p, /m, =kD(T, /m, )' =co~, .

Equation (11) is satisfied in underdense plasma; however,
when co, »~, we can neglect z compared to k.p & /m, in
Eq. (8) and use the collisional memory function P in the
Markovian form (9). (In solid density aluminum irradiat-
ed by 800 nm light, for example, co, /co= 10.) Even when
co, =co, including co in (8) gives rise to only a 10% and
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—2MpqM „M „], (12)

where the momentum matrix elements M are, except for
the generalization to two temperatures, identical to Eqs.
(36)—(41) of Ref. [7],

D =( ic—o+M )( ic—o+M„„)—M „.
The matrix elements are defined in the Appendix. The dc
collision frequency can be recovered from Eq. (7) by let-
ting co~0. The corresponding expression for ac electrical
resistivity is

complicates the result, which we want to be analytic [9].
Inserting Eq. (8) into (9) and expanding the projection
operators in Eq. (7) we obtain the ac collision frequency,

v(co) =M~~ ——[( i—co+M„„)M~ +( —ico+M )M „
1

where
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Using Eq. (17) in Eqs. (18) and (19) we obtain
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The matrix elements Eqs. (A8) and thus v in Eq. (12) are
explicitly defined in terms of the following expressions
which contain static correlations and two body poten-
tials:

where
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To obtain explicit results, it now remains to choose the
interparticle potentials and the static correlations which
appear above. Recall that one motivation for this work is
to obtain an expression for v which has a simple enough
form to be used inside hydrodynamics simulation codes.
With this in mind, we choose the analytic Debye-Huckel
(DH) form for the static correlations. While it may seem
surprising that we employ weak coupling statics with the
intention of retrieving a strong coupling result, compar-
ison with more sophisticated static forms has shown that
DH screening may be a reasonable approximation even
for strongly coupled plasmas when the screening is ap-
plied inside a more complete theory [8,19]. This choice,
while allowing a straightforward result, wi11 introduce
limitations when the coupling becomes very strong. This
will be discussed in Sec. IV. The two-temperature
Debye-Hiickel total correlation functions can be written
[2o]

e i

Y=kD, kD;(1 —R) .

(24)

(25)

V 1 2(&)—

where

1 exp
1 2

(26)

p is the reduced mass. If Eqs. (18)—(26) are inserted
1 2

into Eqs. (14)—(16), the latter equations can be solved
analytically. By inserting these results into the matrix
elements [Eqs. (A8)], analytic, though quite lengthy, ex-
pressions for the two-temperature ac electron-ion col-
lision frequency v (12) and electrical resistivity p(m) (13)
are obtained [22].

Above, P = 1/T .
To complete the model, we use an extensively em-

ployed interaction potential [21], which, while having a
Coulomblike form at moderate distances, is modified at
short range to approximate quantum diffraction effects
[7,11,19],

h ' '(k)= (n n —)' 4m.Z Z eP, (17)
1 2

Ta a
1 2

m T +m T
1 2 2 1

ma +m
1 2

Neglecting terms of order m, /m;, the two-temperature

where a„n2=e, i, Z is the charge of species a, , and

P =1/T

IV. RESULTS AND DISCUSSION

In Fig. 1(a) we compare the single temperature dc
electron-ion collision frequency v, Eq. (12), with the
well-known model of Lee and More (LM) [23] as well as
two versions of v found from the Spitzer theory [24]. v
has been normalized to the electron plasma frequency,
co~, . The material is aluminum. The density is 2.7 g/cm,
solid density. Temperatures up to 200 eV are considered.
The LM model incorporates the results of several models
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b2
lnA =—' ln 1+

b min

(28)

where b,„ is the greater of the Debye length kD
' and

the ion sphere radius, a =(4mn;/3) ' and b;„ is the
greater of the classical turning point, (Z )e /T, and the
thermal de Broglie wavelength (27). The ion charge

0.5 10

believed appropriate for distinct regions of density-
temperature space. The curve labeled "NRL" is taken
from Ref. [25]. The curve labeled "Spitzer" used the lnA
prescription

(Z ), taken from [26] is included on the right hand verti-
cal scale.

As expected, the Spitzer-type models are not at all in
agreement with the LM or our model. Each of these
weak coupling formulations shows large disagreement
with the models for solid density for temperatures less
than about 400 eV. In general, the LM model predicts a
larger v, and thus higher absorption, than our theory.
The differences are difBcult to reconcile as the two mod-
els are very difFerent. For temperatures less than 6 eV (at
solid density), the two models diverge. The coupling be-
comes too strong for our approximation of static correla-
tions by their Debye forms. This limits our application of
the model to temperatures greater than this value. Alter-
natively, the LM model is tied to a prescription thought
to be accurate near the aluminum melting point. The
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FIG. 1. (a) The single temperature (T;=T, ), dc (co=0)
electron-ion collision frequency v from Eq. (12) in units of the
electron plasma frequency co~, for solid density aluminum (2.7
g/cm') compared to the model of Lee and More [23]. A weak
coupling model employing two difFerent definitions of lnA is
also plotted: "NRL" from the Naval Research Laboratory [25]
and "Spitzer" from (28). The right hand vertical scale shows the
values of average ionization (Z) used for all models. (b) The
corresponding dc electrical conductivity (divided by co~, ). The
right hand scale shows I, the ion-ion coupling parameter.

0.0 ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~

50 100 150
Temperature (eV)

200

FICi. 2. (a) The single temperature (T; =T, } ac electron-
collision frequency v(co) from Eq. (12) in units of the electron
plasma frequency for solid density aluminum (2.7 g/cm ) for
selected wavelengths. (b) Same as (a) but for one-tenth-solid
density aluminum.



TWO- TEMPERATURE FREQUENCY-DEPENDENT ELECTRICAL. . . 2979

largest difference between our expression and LM (not
quite a factor of two) occurs round 35 eV. The models
are in better agreement near 10 eV and rapidly converge
for higher temperatures. The dc electrical conductivity,
cr =co&, /4vrv is shown in Fig. 1(b). The ion-ion coupling
parameter, I =(Z) e /aT, is .given on the right hand
scale. We note that a smaller v than LM is consistent
with some recent low intensity, low temperature absorp-
tion data [27].

In light absorption, allowing oscillations of the elec-
trons in the presence of the radiation field within the lim-
its set by the surrounding particles (via interparticle
correlations) increases the collision rate and thus light ab-
sorption. This is shown by plotting ac collision frequency
(12) in Fig. 2. In Fig. 2(a), the collision frequency, divid-
ed by co, for solid density aluminum is shown as a func-
tion of temperature for several wavelengths. A, = ~ is the
dc rate. The plasma frequency ~, is about 4—20 times
the laser frequency for these cases. The v(co) increases as
the frequency increases, but since co/co, is relatively
small, the increase is not dramatic. However, v(A, =400
nm) is about 20—25%%uo larger than the dc value, which
can be important in describing absorption. Figure 2(b)
shows the same information for aluminum at one-tenth-
solid density. Here the fractional increase in v is
30—50%. Choosing 800 nm as a wavelength, v(co) for
several solid density materials is shown in Fig. 3. The re-
sults are dependent on the values of (Z). Interestingly,
the range of v(co)/co, is within a factor of two for most
materials at solid density over a large range of tempera-
tures. We have seen that the inclusion of dynamics can
increase the rate of light absorption by near-solid density
plasmas.

The two curves in Fig. 4(a) show v(A, = ~ )/co~, vs elec-
tron temperature in solid density aluminum for the single
temperature case ( T, = T; ) and a two temperature exam-
ple where T; is fixed at 10 eV. As the temperature dispar-
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ity grows, so does the difference in collision rates and,
thus, absorption. The reduction from the single tempera-
ture result is about 20% at 20 eV, 40% at 50 eV, and
55% at 100 eV. The reason for the reduction is increased
screening. Screening of particles by other particles of the
same kind (e.g., ions by ions) is governed mainly by the
Debye length for those particles kz ' where a=e, i. How-
ever, electron-ion screening is determined by kD . The
lower ion temperature dominates kD and thus determines
the screening. The disparity is less significant at lower
densities because, overall, screening is less important.
Figure 4(b) shows the same curves for one-tenth density
of solid aluminum. Figure 5 presents full ac two-
temperature curves of v(co) for solid density aluminum (a)

~ ~ I I ~ ~ ~ ~ I s l 1 ~ I ~ ~ ~

Aluminum
Ks

0.15

3
0.2

0.05

0.1
~ sz ~ z ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ s ~ I

I

20
I I I

40 60

Electron Temperature

I

80 100

I I ~ I I I ~ I ~ 5 I ~ ~ ~ ~

50 100 150
Temperature {eV)

200

FICz. 3. The single temperature (T; = T, ) ac electron-ion col-
lision frequency v(co) from Eq. (12) in units of the electron plas-
ma frequency for selected solid density materials for a wave-
length of 800 nm. For all cases co~, /co & 10.

FIG. 4. (a) The two-temperature ac electron-ion collision fre-
quency v(co) from Eq. (12) in units of the electron plasma fre-
quency for solid density aluminum at a wavelength of 800 nm as
a function of electron temperature. The ion temperature is fixed
at 10 eV. The single temperature calculation is included for
comparison. (b) Same as (a) but for one-tenth-solid density
aluminum.



2980 R. CAUBLE AND W. ROZMUS 52

and one-tenth-solid density aluminum (b). The ion tem-
perature is fixed at 10 eV. In comparing the curves of
difFerent frequencies, the observations made above for the
single temperature model (discussion of Fig. 2) can be re-
peated here. The higher the frequency, the greater the
increase in the collision rate with roughly the same frac-
tional change as with one temperature.

We have developed a model for the frequency depen-
dent electron-ion collision rate in a strongly coupled, two
component, two-temperature plasma. This is equivalent
to the ac resistivity in such a system. The collision rate
governs the inverse bremsstrahlung coefficient and thus
the dominant absorption mechanism in ultrashort pulse
laser interactions with solids. Emphasis in the model was
placed in four areas: strong coupling, time dependence,
two temperatures, and ease of use. Use of the disconnect-

Al 2.7 g/cm [T.
,
= 10 eV]

0.2

ed approximation in the kinetic equation for time-
dependent correlation functions assured a formalism
which has given results for plasma transport coefficients
in good agreement with computer simulations of strongly
coupled systems [8,13].The kinetic equation was formally
solved by a projection operator method which incor-
porated sufficient number of terms so that the result is
not subject to arbitrary multipliers based on weakly cou-
pled systems. Time dependence was included by explicit-
ly retaining frequency dependent terms in the solution.
One approximation made at this juncture was to assume
that co, &co, a situation normally obeyed in ultrashort
pulse laser irradiation of solids. Nonequilibria were in-
troduced with two-temperature static correlation func-
tions. In order to produce an easily used, indeed analytic,
result, the static correlations were approximated by their
Debye forms and the bare interparticle potential by an
approximate model potential [21]. This has the effect of
limiting our results to I (3 for aluminum. It was al-
ready known that weak coupling treatments of transport
in strongly coupled plasmas would not provide estimates
accurate enough for use in experiments or simulation
codes [9,19,23]; see Fig. 1. We have shown quantitatively
that inclusion of frequency dependence increases the
resistivity, and thus absorption, by 20—50% for wave-
lengths of short pulse lasers now operating. If the elec-
tron and ion temperatures are not in equilibrium, the rate
will be reduced due to enhanced ion screening. This
reduction can be as much as 50%%uo.
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20 40 60 ao
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APPENDIX: MOMENTUM STATES

This appendix contains the definitions of the momen-
tum states used in the solution of Eq. (5). The five hydro-
dynamic momentum states can be defined [16]by

H ' = 1/(n )'i
n a&

0.1
(Al)

0.0 I

20
I I

40 60

Electron Temperaure (eV)

I

80 100

FIG. 5. (a) The two-temperature ac electron-ion collision fre-
quency v(co) in units of the electron plasma frequency for solid
density aluminum for selected wavelengths. The ion tempera-
ture is fixed at 10 eV. (b) Same as (a} but for one-tenth-solid
density aluminum.

H, ' =(p Inl T —3)l(6n )'~' .

The hydrodynamic subspace projection operator P is
then

a=e, i j=1
For electrical resistivity, only vector moments contribute
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(cf. [7,14]). They consist of one of the three momentum

components H r'(y =x,y, z) (Al) and some of the nonhy-
drodynamic states. Since our model approximates the
electrical resistivity with accuracy to zero order terms in
mass ratio m, /m;, only electron moments are taken into
account. The first nonhydrodynamic vector set of elec-
tron momentum states, describing heat conduction, is
given by

= (1/10n, )'/ [p /(m, T, ) ]'/ (p Im, T, —5 ), (A3)

where y is an index representing the three spatial direc-
tions. The next set of contributing states, fifth order vec-
tor momentum states, are

H„' = ( 1/280n, )'/ [p /( I,T, ) ]
'/

where the matrix elements are defined by

M„„=& H'„~ t C '~H'„& .

The matrix elements are

M =~-'P'"a
pp 6 ei

M =2 P'"0"+ P'"0"
ff 28 e 1680

Pl /2' ee+ Pl /2' ei

qq l5 e 60

Pl /2~ee+ Pl /2' ei

5&14 ' 20&28

(A7)

(AS)

X [p /( m, T, ) —14p Im, T, + 35 ],
where y =x,y, z. Our definition of Q is

Q= g (IHq &&H; I+IH„' &&H„' I) .
y=x, y, z

(A4)

(A5)

p'"(a+ n")
pq 8~5 ei

M „=/I —P,'; (6+0")
16&35

The operator iQ4 Q in Eq. (7) can then be built from a
two-dimensional representation

where 2 =n; /7r"(/ 2am„P = .1/T, P =1/T, and

iQ&b Q=
T/) 712

=q

(A6) Ta a
1 2

m~ T~ +m~ T~
1 2 2 1

m +m
1 2
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