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Nonlinear excitations in two-dimensional molecular structures with impurities
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We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-
dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear
Schrodinger equation with a varying coefficient. The latter represents the inhuence of the impurity.
Transforming the equation to the noninertial frame of reference coupled with the center of mass we in-
vestigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transforma-
tion we show that the soliton width is governed by an Ermakov-Pinney equation. We also investigate
bound state of the soliton with impurity and show that in addition to the radially symmetric bound state
a dipolelike state can exist if the number of excitations in the soliton does not exceed some threshold
value. We study both the equilibrium states and the dynamics of the dipolelike excitations. Analytical
results are in good agreement with numerical simulations of the nonlinear Schrodinger equation.

PACS number(s): 87.15.—v, 68.55.Ln, 34.30.+h, 33.90.+h

I. INTRODUCTION

The study of energy transfer in various types of mesos-
copic molecular structures, from molecular clusters and
small molecular aggregates (J aggregates) to thin molecu-
lar films (Langmuir-Blodgett films) is an area of intense
current interest. The field derives its importance from be-
ing a part of the general area of energy transfer in con-
densed matter [1,2] and from its connection with biologi-
cal problems such as photosynthesis [3,4], muscle con-
traction [5], etc. Langmuir-Blodgett (LB) films of dyes
have also found technological applications as sensitizers
in the photographic industry [6] and in photoelectronics
[7]. LB molecular films with their well determined
molecular arrangements are particularly suited to energy
transfer studies (see review articles by Kuhn, Mobius,
and Bucher [8], Blinov [9], and Tredgold's monograph
[10]). Scheibe aggregates are specially ordered compact
molecular LB structures of dyes [11]that manifest them-
selves as redshifted narrow bands in the absorption spec-
trum, which were first discovered by Scheibe [12] and Jel-
ly [13]. Studying the fiuorescence of a monolayer of oxa-
cyanine dye doped with a thiacyanine dye, Mobius and
Kuhn observed [14,15] at room temperature very efficient
electronic excitation energy transfer from host molecules
to acceptor molecules. The host

fluorescence

is
effectively quenched by guest molecules even at a molar
ratio host:acceptor of 10 . In Ref. [14], hopping and
coherent excitons are discussed as possible mechanisms
for energy transfer and it is found that the coherent exci-
ton approach provides an adequate description of the ex-
perimental results. The crucial role of the coherent prop-
erties of the electronic excitations in small molecular ag-
gregates was emphasized in Refs. [16,17].

To explain the highly ef5cient energy transfer in LB
monolayers, two theoretical models were proposed. A
pure quantum-mechanical approach to the problem has
recently been advocated in a series of papers [18]. It was

assumed that the exciton-phonon interaction is weak and
may be treated as a perturbation. The quantum-
mechanical calculations were carried out both for one-
and two-dimensional molecular assemblies and it was
shown that the planar geometry of LB-Scheibe aggregates
plays a special role in the remarkable efficiency of energy
transfer. Huth, Gutmann, and Vitiello [19] proposed a
nonlinear dynamical model for energy transfer in LB-
Scheibe aggregates. They assumed that in the system un-
der consideration the exciton-phonon interaction is
strong and reduced the problem to the nonlinear
Schrodinger equation (NLS). The model was formulated
in one dimension where the NLS equation has soliton
solutions. Christiansen, Pagano, and Vitiello [20] investi-
gated the model in the case of two spatial dimensions us-
ing ring wave solutions [21]. It is known (see, e.g. , [22])
that the two-dimensional NLS does not have stable soli-
ton solutions: Nonlinear excitations either collapse or
disperse. In Ref. [20] ring solitons were considered and
their collapse time was identified with the exciton lifetime
in Mobius and Kuhn's experiments. Temperature effects
in the nonlinear model of monolayer Scheibe aggregates
were studied quite recently by Bang et al. [23]. Thermal
Auctuations of the phonons were included and the result-
ing equation for the excitations was the two-dimensional
NLS equation with noise. The temperature-dependent
nonlinear coherence time (i.e., the time during which a
nonlinear excitation maintains its shape) was estimated
from numerical simulations. A temperature interval
where this time is in correspondence with the lifetime of
the Mobius and Kuhn excitons was found (see also
[24,25]).

It is worth stressing that while the nonlinear model
developed in Refs. [19,20] is intended to explain an ener-

gy transfer from host molecules to impurity (acceptor)
molecules, the model does not directly take impurity
effects into account. But impurities can drastically
inQuence the soliton dynamics. In the one-dimensional
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case, it was shown both for the continuum NLS equation
(see the review paper [26]) and for its discrete analog [27].

The purpose of the present paper is to investigate the
behavior of the nonlinear excitations in two-dimensional
molecular structures with impurities. In Sec. II we
present a model and derive equations of motion for the
electronic excitations. Using the approach that was pro-
posed in Ref. [23], we show that the dynamics of the elec-
tronic excitations in molecular system with impurities is
governed by the two-dimensional NLS equation with a
linear potential. The former describes the inAuence of the
impurity molecule. Section III deals with soliton dynam-
ics in the close vicinity of the impurity. We consider the
impurity potential in the parabolic approximation and
show that a lens transformation can reduce the problem
to an Ermakov-Pinney differential equation. It is shown
that the analytical results are in good agreement with the
results of numerical simulations that were carried out for
the NLS equation. Section IV is devoted to an investiga-
tion of a new dipolelike stationary state that arise as the
result of interaction between the nonlinear excitations
and the impurity. To study analytically these stationary
states, we use the method of collective coordinates and
check the results by means of numerical simulations.
Qualitative agreement between both approaches was
found. In Sec. V the model parameters are estimated for
the case of oxacyanine dye monolayer. The relevance of
nonlinear excitations is shown.

gies of the impurity molecule (E, ) and the host molecule
(Eh). We assume that the impurity is placed at the
zeroth site. The second term in Eq. (2.2) characterizes the
change in the host excitation energy caused by the pres-
ence of an impurity in the system. Its general form is
given by

(2.3)

where & ~&~ &. l
W

l ~&~ z, & is the matrix element of
the interaction between sites n and n ', one of which is in
the state described by the wave function ~ &

and the oth-
er in the state g„-, &,. A, =e (A. =g) corresponds to the ex-

cited (ground) state of the molecule, ~o is the wave
O, g

function of the ground state of the impurity. It is seen
that the absolute value of 6-„has a maximum at n =0 and

b.-—+0 if ln l
~ ao. The general expression for b; is very

complicated because the interactions of different types
(dipole-dipole, dipole-quadrupole, quadrupole-
quadrupole, etc. ) contribute to it. The contribution 5-„
of the dipole-dipole interaction looks the simplest:

. [dh(ex) —dz(gr)] [d;(gr) —dz(gr)]tl l-+!3

II. MODEL AND EQUATIONS OF MOTION

Let us consider a two-dimensional molecular system in
which one of the sites is occupied by an impurity mole-
cule. We shall assume that the impurity molecules and
host molecules are sterically very similar. Therefore, the
impurity molecule substituting for the host molecule does
not distort significantly the lattice in which the host mol-
ecules are arranged.

We shall investigate nonlinear excitation dynamics in
this two-dimensional molecular system and assume that
the density of excitations is low and that the nonlinear
character of the excitation dynamics is caused by an
exciton-phonon interaction. The derivation of the non-
linear equations of motion is a straightforward generali-
zation of that for an ideal molecular system (see, e.g., [23]
and the Appendix for details). As a result, we obtain that
the excitation dynamics is governed by the following
effective Harniltonian:

(2.1)

—3,dq(ex) —d„(gr}
n

(2.4)

where dh(gr) [d;(gr)] is the dipole moment of the host
(impurity) molecule in the ground electronic state. dz (ex)
is the dipole moment of the host molecule in the excited
electronic state. We see that the magnitude and sign of

depend not only on the characteristics of the elec-
n

tronic states [dz,.(gr), dz(ex}] but also on the arrange-
ment of the molecules in the system. We shall assume
that different types of intermolecular interactions acting
together make the function 6-„smoother and in what fol-
lows we shall consider 6-„as a function of the distance

l
n l

from the impurity.
The Hamiltonian Eq. (2.1) conserves the number of ex-

citations in the crystal. We shall assume that there is only
one excitation. Thus the normalization condition for the
excitation function +(t) becomes

Here, ~(t) is the excitation function of the molecule at
site n, J~ is the matrix element of the excitation transi-
tion from the molecule n to the molecule n', and Vis the
nonlinearity parameter. E- is the on-site excitation ener-

gy. It depends on the molecule position n in the layer
and may be represented in the form

The equations of motion for +(t) are

(2.5)

(2 6)

E„=(E, EI, )5-„0+b;„. — (2.2)

Here E, —EI, is the difference between excitation ener-

Thus the discrete self-trapping (DST) equation, which
takes into account inhomogeneity effects, is obtained. It
is well known that even in the one-dimensional case the
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iA'P, + I V /+I Vlgl $=E(r)$, (2.7)

where lP(r, t)l = l+l /I is a probability density

fdrlP(r, t)l =1, (2.8)

and l is the lattice constant. E(r ) is the continuum limit
of the on-site excitation energy E-„. It determines an en-

ergetic profile for an excitation in the vicinity of the im-
purity molecule. As mentioned above, in real systems this
profile may have a very complicated form. It depends on
the symmetry of the lattice and on the type of excitation
(singlet, triplet, dipole active or quadrupole active, etc.).
In the present paper we want to consider some general
features of soliton dynamics in the vicinity of an impurity
molecule. Therefore, for the sake of simplicity we shall
assume that E (r ) is an axially symmetric Gaussian func-
tion

r 2

E(r)=E exp
r0

(2.9)

where E is the strength of the impurity and r0 is the ra-
dius.

Introducing dimensionless variables p = r /r 0,
r=(zl Jt)/(Zrafi), and f=[(2Vr0)/(Jz)]' P, Eqs. (2.7)
and (2.9) are replaced by

iP +V g+ gl Q=U(p)g,

U(p)=eexp( —p ),

(2.10)

(2.11)

where the dimensionless parameter e=(2Era)/(zJl )

characterizes the power of the impurity and

f dpi/I = =N . (2.12)

interplay between nonlinearity and inhomogeneity makes
the DST problem very complex and dificult [27]. In the
case of two-dimensional aggregate, the discrete equations
(2.6) are impractical to study. Therefore, we restrict our-
selves to the continuum limit of Eq. (2.6). Taking only
the nearest neighbor excitation transfer J into account
and making the gauge transformation +~+exp(izJt
/A') (z is the number of nearest neighbors), Eq. (2.6) may
be approximated by the two-dimensional nonlinear
Schrodinger equation (NLS) with a spatially variable
coefticient

The two-dimensional NLS equation is not integrable
and possesses unstable solutions that may either disperse
or collapse. These two types of solutions are separated
by the so-called ground state (GS) solution whose width
does not change in time. The GS solution [to Eq. (2.10)
with U=0], approximately given by [28], is

f, =A, sech e" (2.13)
S

in the case of zero initial velocity and center at p=0. The
GS amplitude A, and the GS width B, are given by

' 1/2
12 ln2

4 ln2 —1
(2.14a)

' 1/2
2 ln2+ 1.

6 ln2
(2.14b)

Insertion of Eqs. (2.13), (2.14a), and (2.14b) into Eq. (2.12)
yields

X =%,=11.7 . (2.15)

For initial conditions, g=g(p, O), with N larger (smaller)
than the N, the solution, P=f(p, r) of the two-
dimensional NLS equation, collapses in finite time
(disperses).

III. SOLITON MOTION IN THE CLOSE
VICINITY OF IMPURITY

Let us consider the motion of a soliton in the neighbor-
hood of the impurity. We shall assume that the radius r0
of the impurity is large compared with the width of the
soliton. In this case we can expand the impurity poten-
tial U(p), keeping only terms of second order
U(p)=e(1 —p ) and in this way the problem reduces to
the investigation of soliton motion in a parabolic poten-
tial. Therefore, we shall consider the soliton motion in
two-dimensional parabolic potential

U(p, r) = —e(r)p', (3.1)

where e(r) is an arbitrary function of time. The soliton
motion in the one-dimensional parabolic potential was in-
vestigated by Chen and Liu [29] and quite recently by
Nogami and Toyama [30].

Introducing the transformation to the noninertial
frame of reference in which the center of mass of the ex-
citation is at rest,

~ ~

g(p, r)=p(p, r) exp Rp i f d7[ 4—[R(r)—+e(r)R—(7)]I
0

(3.2a)

where

R =—f dr. rig(r, r)l
N

(3.2b)

~ ~

R 4e(r)R =0, —

tq), +V .qr+ lyl q)+e(r)p' tp=O .

(3.3)

(3.4)

is the center of mass and p =p —R (r) is the coordinate in
the new frame of reference. We obtain

Equations (3.3) and (3.4) show that in the parabolic po-
tential, external (center of mass R) and internal [y(p, r)]
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degrees of freedom are separated. It is worth noting that
such a separation takes place only in the case of the har-
monic potential. Anharmonic terms in U(p) lead to cou-
pling between the external and internal degrees of free-
dom of the solitons. The soliton center of mass behaves
like a time-dependent oscillator. To consider the internal
motion of the soliton in the impurity field we introduce
the change of variables called the lens transformation:

E= f ding. —
—,'I@l'+g'I@ I'+~ '"I@l'

As a trial function we use the function
1 /2

1—sech
2m ln2 a a

(3.13)

(3.14)

y(p, r)= C&(g, T)exp i T+ p'1 b

b r 4b
(3.5)

Ip'I

b(r)
is a new space variable, while

(3.6)

(3.7)

te + + — @+I@Ie—ag C —@=0, (38)B 1 B 2 2

g Bg

where

,'b b e(—r)b— (3.9)

Note that a transformation similar to Eq. (3.5) was used
by Manassah [31] in his study of collapse in optical fibers
with a parabolic profile of the index of refraction. But he
investigated only the case which corresponds in our nota-
tion to b.=0 and e(r)=constant. Karlsson, Anderson,
and Desaix [32] also studied this problem applying the
method of collective coordinates. We are interested in lo-
calized solutions (4~0 for g~ ~) of Eq. (3.8). When 6
is a positive constant we can put AT=0 and Eq. (3.8) be-
comes

a' 1 a+— e—sg ++I+I e—e=o.2 2

g ag
(3.10)

For b, &0 Eq. (3.10) has localized solutions and in this
case the wave function Eq. (3.5) describes a noncollapsing
soliton. Exact solutions of Eq. (3.10) are unknown. We
therefore apply a variational approach to obtain the
dependence of the parameter 5 on the excitation number
N. It is convenient to rescale variables

is a new time variable. As seen from Eqs. (3.5) and (3.6),
the function b (r) is the soliton width. Inserting Eq. (3.5)
into Eq. (3.4) gives

where a is a trial parameter. Inserting Eq. (3.14) into Eq.
(3.13) and minimizing with respect to a we get

4 g 4
&

X 1 +2 ln2
27 X, g(3)

N
2m ln2

sech' . (3.16)

The soliton dynamics in the parabolic potential Eq. (3.1)
is governed by Eq. (3.3) for the center of mass and Eq.
(3.9) for the width of the soliton. Equations (3.3) and
(3.9) belong to the class of so-called Ermakov-Pinney
equations [33,34] and, as was shown by Pinney [34], the
solution to Eq. (3.9) can be written in the form

1/2

b (t) = u (t) + v (t) .4b,
W2

(3.17)

where 8'=tv —uv is the Wronskian and u, v is the fun-
damental set of solutions of the respective linear equation

y 4e(t)y =—0, (3.18)

which coincides with Eq. (3.3) for the center of mass
motion.

Special cases

Qo

4

2IElr 0 =const .
zJl

(3.19)

In this case the impurity is an acceptor of excitations
and, as seen from Eq. (2.9), the quantity IEI characterizes
the depth of the well. Inserting Eq. (3.19) into Eqs. (3.3)
and (3.17) yields in physical units

where g denotes the Riemann zeta function and
N, =4m ln2(2 1n2+1)/(41n2 —1)=11.7 is the number of
excitations in the ground state. Returning to the original
variables, we obtain that at X & N, the soliton solution of
Eq. (3.4) is represented by the function Eq. (3.5) with

1/2

R (t) =Ra costo(t +to), (3.20)
g —i /4g @ pl /4@

and we obtain instead of Eq. (3.10)

(3.11)
b z(t) =8 z coszco(t + t, )+ sin co(t + t i ) .zJl 6

a2 +— c+(Iel —
g )e=b. ' e

ag'
(3.12)

Equation (3.12) is the Euler-l. agrange equation for the
functional

Here RO, B,to and t, are arbitrary constants,

2zlsls
'"

CO=
ro

(3.21)

(3.22)



52 ONLINEAR EXXCITATIONS IN O-DIMENS IONAL

b, 8—is the frerequency of the c
width b (t) of the so

'
e soliton oscill t

'
e

'
a es with the

do h
P yep El of the

'

1

y co depends

J 'f 'h
d bo at, as me

0

ove our a
a i rity o exceeds th

aking into accoun
'

n t at theine uua ity

2955

IElro

2zJl
(3.23)

must hold. Insertin
co dition Eq. (3. 3

d h th

u filled in the. ....b...
lue N

ii
S'

nsin niscose

Q
e(~) = — 11 +A, cosQ'r ) (3.24)

This mmeans that the accepo'h h f q

motion. Th
t}1 t 1 t'

e parameter
s ational or ib rational

llto . I '
g q. (3.24) into

I

FIG. 1. Com
'

e

8 10

omparison of the

h dl' } dE
anting of th d

ext.
e epicted quantit

'
y is discussed

'
ln

R+Qo(1+A, COSQ1. )R =0 (3.25)

which chara taracterizes th of
is quantity is

which is Mathieu' q
) plane is d'ivided into

ounded as r te d) b
( rametric resonance).

iQ 2Q, i
(—

2
(3.26)

From Eq. (3.25 we g o owing a rpp oximate

(~)—RR —
Q &Le cosQ(~+r )+ r' ' ~+e r'sinQ(v+

(3.30)

2
bo a5-
b(t)

30—

V(t) =b'b
O t},

where bo=b(0) . In Fi . 1

h 1 i 1 approach with e(~ c [
otte '

s e result for e(/or e r given by Eq.

nk '
2

1/2

—(Q —2Q ) (3.28)

w
f h lit'n 'nd itit ve ocit .

1

it
'

ve
'

y. y is given as

y

20—

(3.29)

It is's seen from E . .2
olecule o 'll

qs. (3.2

int eran e
i num posit

n acceptor

ge given by E . (3
tude ofearn li

q. .26}, it c

p nentially with
e oscillations

wit the aamphfication

e split-step Fou '

d E . (2.10ve . . numerically with (

( .24). Figure 1

e r) ive

of the
'

e quantity
ese two

V t)= fdrip(r, t i r,drip(r, 0 i

10—

FIG. 2. Com
'

e

6 8

'd1 ) nd th

e resonance effe e ect develops fast



2956 GAIDIDEI, RASMUSSEN, AND CHRISTIANSEN 52

0.20—

0.15—

0.05—

0.00

—0.05—

—0.10—

—0.15—

—0.20—

cause of a coupling between external and internal degrees
of freedom of the soliton. We shall therefore assume that
the center of mass of the soliton is immobile and that it
coincides with the position of the impurity molecule
(R (t) =0). It is our goal now to consider nonlinear sta-
tionary states of the two-dimensional system with an im-
purity which is an acceptor of excitation. Rose and Wein-
stein [37] proved that when the linear part of the Hamil-
tonian supports a bound state, the NLS equation has a
stable nonlinear ground state when the excitation number
is less than some critical value. In this section we are go-
ing to investigate the possibility of the creation of a di-
polelike soliton state with an impurity. We shall treat the
problem analytically, applying the method of collective
coordinates. We introduce the test function

p(p t) eii t /I (t)ei(s(t)/2)p p
b

FIG. 3. The center of mass motion obtained from Eq. (2.10)
(solid line) and the solution to Eq. (3.3) (indicated by triangles). (t)e

—i (s(t)/2]y r p (4.1)

(3.24), while the solid lines indicate the results of the nu-
merical solution of Eq. (2.10) with the above mentioned
e(r) dependences. It is seen that the analytical approach
agrees quite well with the numerical simulations. Only
near the maxima of the curves, where the excitations are
very narrow, is there a small discrepancy.

In the case of e(r) given by Eq. (3.24), the parameters
(see figure captions) are chosen such that parametric reso-
nance appears. The increasing amplitude indicates that
this is the case. To investigate this further, we show in
Fig. 2 a comparison of the numerical simulation (solid
line) of Eq. (2.10) with e(r) given by Eq. (3.24) and the
analytical approach for parameters that gives fast devel-
opment of the parametric resonance. It is clearly seen
here that the resonance appears as predicted by the
analysis.

Figure 3 shows (solid line) the motion of the center of
mass in the numerical simulation of Eq. (2.10) with e(r)
given as in Eq. (3.24). The triangles indicate the analyti-
cal results. The agreement is in this case even better than
in the case of V(t), the reason being that the center of
mass equation is derived without use of the self-similarity
assumption.

IV. DIPOLELIKE EXCITATIONS

As pointed out above, the soliton dynamics in the pres-
ence of an impurity is very complicated, in particular be-

I

XF(x)=exp
2

(4.2)

Such a choice of trial function g(r, t) signifies that we as-
sume that the distance p between pulses and their widths
b does not depend on time and we therefore restrict our-
selves to the study of alternating shapes of the excitation.
Inserting Eqs. (4.1) and (4.2) into the normalization con-
dition Eq. (2.12) yields

+A 2
n.b (1—cosgcos5e ~ )

where g=p/b, and the new variable

Aig= ——+2tan
2 A2

(4.3)

(4.4)

describes relative motion of the pulse maxima. Introduc-
ing Eq. (4.1), (4.2), and (4.3) into the Lagrange function

L =f~palm(@'P. )+ I &@I'+-,' I@I' U(p) I
g—l'] (4.5)

from which Eq. (2.10) can be derived, we obtain the
e6'ective Lagrangian

where p is the nonlinear frequency, p is the position of
the pulse, b is its width 2„, (n =1,2) is the amplitude of
the pulse, 5(t) is the phase difference, and F(z) is the
profile function. We shall use the Gaussian profile func-
tion

L c. . . . ~ c 2

2
—=)M+ —(5sing —gsin5e ~ )+ ' [1—(1—g' ) cosgcos5e & ]b2

CX 2 2[2—cos g+cos g(1+2cos 5)e ~ —4cosgcos5e ' ~ ') '2 —22 322
8m

(e ~'" +"—cosgcos5e ~ ),Ielc 2

(b +1) (4.6)
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where the abbreviation

2
1 —casg cos5e

(4.7)

av(g, b)

BV(g, b)
b

(4.10)

(4.11)

is used. It was also taken into account that the impurity
is an acceptor of excitation (e= —le!). First of all, let us
consider static solutions 5=/=0. From Eq. (4.6) we see
that there are two types of solutions:

where

V(g, b)= '
1 —(1—g' )e

and

/=0, 5=m. (4.8)
4

—(3g' /2)+3 —2g

8a 1 e
/=0, 5=0. (4.9)

It is seen from Eq. (4.1) that the first of them, Eq. (4.8),
represents a symmetric state and at p =0 it describes a ra-
dially symmetric bound state; this case was studied in
[37]. We are here interested in dipolelike nanb~ear exci-
tations given by the second type of solution, Eq. (4.9).
The stationary distance g between pulses and their sta-
tionary width b are the solutions to the equations

! P(b I—b +1)
b2+ 1

2
1 —e

(4.12)

is an e8'ective potential function which is the Lagrange
function Eq. (4.6) at 5=/=0.

From Eqs. (4.11) and (4.12) we get

2 g2 b4 g2
(e~ —1 )(1—n)+g —2n tanh = le! (g +b +1)exp

4 (b +1) b +1 (b +1)— (4.13)

(1—e ~ ) 1 ——sech
n 2

2 4

2 b2
2 2

2

/+2—n tanh = lel4 (b +1) (b +e &—}exp +(b +1)
b +1 (4.14)

where the abbreviation n =N/(Sm) was used. Eliminat-
ing lel from Eqs. (4.13) and (4.14), one can obtain an
equation that connects g, b, and n An ana. lysis of this
function n (g, b) shows that it is a monotonous function
of both variables n» 1 (N» Sm). It is worth noting that
in the framework of the Gaussian test function Eq. (4.2)
the collapse in the nonimpurity case occurs when the
number of excitations exceeds 4~. Thus the inequality
N~8m. means that without the impurity the pulse will
disperse. To consider the possibility of collapse, one has
to modify the function Eq. (4.1) taking into consideration
the time dependence of the width b. This we will consid-
er in a future paper. Here we restrict ourselves to the case
where the pulses cannot collapse.

When the distance between pulses is small (g» 1), one
can expand Eqs. (4.13) and (4.14) in powers of g and get

I

and from Eq. (4.16) we obtain an approximate expression
for the equilibrium distance between the pulses

3n
4

' 1/2

+2 1 — (b +1)
8 4

—1 /2

(4.18)

It is seen from inequality equation (4.17) that the dipole-
like bound state can exist if the strength of the impurity
exceeds some critical value e, which depends on the exci-
tation number N. From Eq. (4.15) we see that the equilib-
rium width b monotonically decreases when the impurity
strength increases. At large lel we have

—1/4

(4.19)

1 4n+ —,'(1—n—)g = 1+—
(b+1) 4b+1

l elb (b —1)
1 ——— 1 ——,'n—

(b +1)' 3 ' (b +1)

(4.15)

(4.16)

The distance between pulses Eq. (4.18) increases when the
excitation number increases but for N close to 8~ we can-
not use Eqs. (4.15) and (4.16). To obtain the solution of
Eqs. (4.13) and (4.14) in a wider range of excitation num-

bers, we assume that lel »e, . In this case the widths of
the pulses are small and one can expand Eqs. (4.13}and
(4.14) in powers of b . Taking inta account only leading
terms of the expansion, we get

Omitting in Eq. (4.15) small terms proportional ta g2, we
obtain that Eq. (4.15) has solutions when I el b4= (e~ —1)(1—n)+g 2n tanh(g' /4)—

(g +1)e~ —1

(4.20)

lel &e, = 1 n- —=27 3
4 4

(4.17) and the equilibrium distance g is given by the implicit
function
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2

(e~ —1) —g (e~ —1)+2 g e& +2(1—g e & ~
) sinh

2

2
.n

2
=(e~ —1) —P(e~ +1)+4sinh

2
(4.21)

Note that in this case (
~
e~ &&e, ) the equilibrium distance

between pulses does not depend on the impurity strength.
The dependences of the pulse width as well as of the dis-
tances between pulses that follow from Eqs. (4.20} and
(4.21} are shown in Fig. 4. The widths of the pulses be-
come equal to zero when N~8m. . The distance between
the pulses p =gb is a nonmonotonic function of N; when
N~O it tends to zero according to Eq. (4.18). When
N ~8m. , g is increased as V' —ln(1 n)—but the widths of
the pulses decrease more rapidly.

We have checked numerically the existence of a thresh-
old value of the impurity strength for the creation of a di-
polelike bound state. The results are shown in Fig. 5. It
is seen that the quantity V (t) [see Eq. (3.29)] that charac-
terizes the size of the excitations tends to zero at small

~ e~

(it means that the excitation disperses). When ~e~ exceeds
some critical value [in the case N N, this critical value
is around 4.5, which is also the order of magnitude pre-
dicted by Eq. (4.16)] V(t) becomes finite after some tran-
sient period.

Based on the results of the numerical simulations, we
calculated the mean-square deviations

((&V)'& = ( V'& —( V&' . (4.22)

Here
T+to(f&= I— d& f(t)

7 lo
(4.23)

is the mean value of the function f (t) on the interval
[to, to+ T ]; to was chosen equal to 1.0 and T =30. The
result of this is that ~e~ &e„((b,V) &=3X10 . We can
then draw the conclusion that in this case the dipolelike
nonlinear excitation exists as a stationary state.

Figure 6 depicts the distribution of the real part and
imaginary part of the wave function P( r, t ) for

~
e

~

=5.0,
%=11.7, and t =30. I.et us now consider dynamical
properties of the dipolelike excitation. We shall consider
small oscillations and expand the Lagrangian Eq. (4.6)
taking into account only small deviations from the equi-
librium position given by Eq. (4.9). In this case we obtain
from the Lagrangian Eq. (4.6)

g2 $2
L =N (5g —$6e —~ )

—B~ Bs—
2 &2 '2 (4.24)

0.75— Here

0.50—

0.25—
1.5—

0.5

0.50— 0.5—

FICx. 4. The pulse width b, according to Eq. (4.20), of the sta-
tionary dipolelike excitation as a function of the normalized
number n (upper part). The distance p=gb between pulses as
obtained from Eq. {4.21) of the stationary dipolelike excitations
as a function of the normalized number n Oower part ).

I

12

FICr. 5. The inverse width squared obtained by numerical
solution of Eq. (2.10). % =11.7 and from the bottom we have
@=4.0, 4.2, 4.4, 4.5, 4.6, 5.0. The dashed line indicates the aver-
age of the curve for @=5.0.
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B(=, pe ~+1

b(1 —e )
( 1 2e

—
g 2e

—(5/2)g 3e
—2/+ 2e

—(3/2)g
)

1 —e

-g'(1, -(b2/(b2+1) )$2)

b +1
(4.25)

Bs=, pe ~+1

b2(1 e
—g~)2

2n
( —e &'+2e ""'&'—2e '&'+2e ""'&'—e '&')

2
1 —e

+ lelb', p(1 —[b /(b+, )]g)
b +1

(4.26)

4B~B~5+5 , =o
(1+e & )

and consequently

2+B~Bb5(t)=50cos, t .
1+e

(4.27)

(4.28)

It means that the components of the dipolelike excitation
take part in two types of oscillations. The first one
occurs with the nonlinear frequency p whose value de-
pends on the energy of the system. The relative motions
of the pulse maxima are described in Eq. (4.28). It is seen
that the period of these oscillations depends on the exci-
tation number N, impurity strength lel. For example, for

l el =5 and N =N, the period of the relative oscillations is
of the order of 1. This estimation is in agreement with
the results of the numerical simulations, which are
presented in Fig. 7.

Thus, one can conclude that as a result of the interac-
tion between the nonlinear excitations and impurity, a di-

are the elastic coefficients. The equilibrium distance g and
width are given by Eqs. (4.17) and (4.18). It is seen that
both coefficients are positive for the excitation number X
under consideration.

From the Lagrangian Eq. (4.24) we get that the equa-
tion of motion for the phase difference 5(t) has the form V. ESTIMATION GF MODEL PARAMETERS

There are two dimensionless parameters that deter-
mine the behavior of solitons in the presence of an impur-
ity: the number of excitations X and the power of the im-
purity e. The parameters X characterizes the nonlinear
properties of the system. As it follows from Eq. (2.12),
(A18), and (A19), it can be written in the following form:

a2 z

Mc J (5.1)

Here D =D-„~l-„~ b, where D-„~ is the change in

Re(y) a) j~(q)

polelike nonlinear bound state can exist. The stability of
this state and its dynamical properties depend on the re-
lation between the strength of the impurity lel and the
excitation number N.

I

—10 —5 0
X

10 —10 —5 0
X

10

1.5-I
1—

0.5 —,

O-I
—0.5—

—1.5

x
I

—5

Re(0) I~(q)

1.5
l

1—
0.5—

0—
—0.5—

—1.5

I

—10 —5 0
X

10

n~
—10 —5 0 5

X
10

FIG. 6. The real and imaginary parts of the stationary state
at N =11.7 for @=5.0 at t =40.

FIG. 7. Illustrating the relative oscillations, we show the ab-
solute value of the real part and the imaginary part at time
t =30 (a) and t =31 (b). The parameters are N=11.7 and
e= 5.0.
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the interaction energy between the molecules n and n ' in
the transition of one of them to the excited state, the pa-
rameter a characterizes the dependence of this matrix
element on distance between molecules

d lnD~ o
(5.2)

where AE is the excitation energy of a dye monomer and
AE' is the excitation energy of a dye dimer. We estimate
the values of the parameters appearing in our theory for
the oxacyanine Scheibe aggregates studied by Czikkely,
Fosterling, and Kuhn [11]and Mobius and Kuhn [14,15].
It was shown in Ref. [11] that the typical value of the
monomer to dimer band shift is 0.2 eV. It means that

D 3X10 J (5.4)

The remaining parameters entering Eq. (5.1) were es-
timated in Refs. [14,15,23] from the monolayer oxacyan-
ine Scheibe aggregates:

M=1 2&(10 4 kg, J=3 6X10 ' J, c =10 m/s .

(5.5)

Inserting Eqs. (5.3) and (5.4) into Eq. (5.1) yields

N =0.1a~z (5.6)

Thus if we assume that the interaction D-~ has a van der
Waals character (a=6) and the number of nearest neigh-
bors isz =4, we get

N =14.4, (5.7)

which exceeds the threshold number N, =11.7. It is
worth noting that according to Eq. (5.1) the number of
excitations N is proportional to the square of the gas to
crystal absorption band shift D. Thus one can expect
manifestations of nonlinear effects in such molecular sys-
tem where this shift is significant.

Another dimensionless parameter that determines the
soliton behavior is the power of the impurity e. As seen
from Eq. (2.11), it depends on both the strength of the
impurity E and its radius ro. The impurity strength can
roughly be estimated as the distance between the max-
imum of sensitized (acceptor) fluorescence and the max-
imum of the host fluorescence. Using the data of Mobius
and Kuhn [14,15], one can obtain that, for instance, in
the case of a monolayer oxacyanine dye Scheibe aggre-
gate doped with a thiacyanine dye,

E=0.36 eV=6X10 J . (5.8)

Thus, from Eqs. (2.11) and (5.5) we get

In accordance with the theory of molecular excitations
[1], the quantity zD =g-D-o is the change of excitation
energy of a molecule in a crystal with respect to the gas
phase. One can also say that the quantity D is approxi-
mately equal to the difference

(5.3)

32
2

To 7O

I l
=8

2

(5.9)

where the assumption z =4 was used. As regards the ra-
dius of the impurity, we cannot estimate it using available
experimental data. It is interesting to note, however, that
in the case of an oxacyanine dye monolayer where the
number of excitations is given by Eq. (5.7), the condition
for the existence of dipolelike bound states Eq. (4.17)
reads

q& )0 45(& (5.10)

Thus one can expect that even relatively short range im-
purities can bound a nonlinear excitation and create a di-
polelike stationary state.

VI. SUMMARY AND CONCLUSIONS

In this paper, we developed a theoretical framework
for investigating nonlinear dynamical properties of elec-
tronic excitations in two-dimensional molecular struc-
tures with impurities. The equation governing the dy-
namics of the excitations is the two-dimensional NLS
equation with a variable coe%cient that represents the
inhuence of the impurity molecule.

Transforming the NLS equation to a noninertial frame
of reference coupled with the center of mass of the soli-
ton, we investigate the soliton motion in the close vicinity
of an impurity when the impurity potential can be con-
sidered as parabolic. Using the so-called lens transforma-
tion, we show that the problem under consideration may
be reduced to Ermakov-Pinney equations. Comparison
between the results that were obtained by solving the or-
dinary difFerential equations (Ermakov-Pinney equations)
and the original NLS equation show that the approaches
are in good agreement.

We study bound states of the solitons with the impuri-
ty and show that when the number of excitations in the
soliton N is less than 2N, (N, is the number of excitations
in the ground state soliton), a dipolelike soliton appears.
It exists even at N & N, when the symmetric bound state
collapses. We also consider dynamical properties of the
dipolelike bound state and derive an effective Lagrangian
that describes the alternation of the shape of the solitons.
Analytical results are in qualitative agreement with the
results of the numerical simulations.

The theory contains two dimensionless parameters:
the number of excitations and the power of the impurity
e. We estimate them for oxacyanine Scheibe aggregates
studied by Mobius and Kuhn [14,15] and by Czikkely,
Fosterling, and Kuhn [ll] and show that in a previous
paper [23] we underestimated the role of the interaction
of excitons with acoustic phonons. But it may be impor-
tant particularly in molecular systems with a large gas to
crystal absorption band shift (the D-term in the theory of
molecular excitons [1])and rapidly decaying intermolecu-
lar interactions. Our estimations show that in the case of
oxacyanine Scheibe aggregates, the nonlinearity parame-
ter caused by the exciton —acoustic-phonon interaction is
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large enough for the nonlinear properties of the electron-
ic excitations to become significant.

Estimation of the impurity power cannot be done be-
cause of lack of experimental data, but preliminary re-
sults show that, for instance, the creation of the dipole-
like bound state of a soliton with the impurity is likely.

iAp„-„=g (J-„~o-, „—J„,p„—,)

+ Qx-, ,(P;, +0=', , }
q, S q, S q, S

Pqn e|q n
) (A5)
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APPENDIX

In our recent paper [23], the efFective nonlinear Hamil-
tonian Eq. (2.1) was derived taking into account interac-
tion of the electronic excitations with optical phonons (it
was assumed that the displacements under consideration
are characterized by a finite frequency co0 and in this way
they correspond to rotational molecular vibrations). In
this Appendix, we want to show that the interaction with
acoustic phonons in planar molecular systems may con-
tribute significantly to the nonlinear properties of the
electronic excitations. For the sake of simplicity we shall
consider a nonimpurity case. According to the theory of
molecular excitons [1] the exciton-phonon Hamiltonian
of the molecular system can be written as follows:

H = g (E„5„~ J~~)B„B„—++%co,(q )b-, b-,
q, s

+ ggy-, e'q'"B-„B-„(b-,+b -, ) (Al)

Here B-„(B-„)is the creation (annihilation) operator of
the electronic excitations on the molecular n, b- (b ) is

q, s q, s
the creation (annihilation) operator for the acoustic pho-
non of the branch s with the wave vector q and the fre-
quency co, (q ). No is the number of molecules in the sys-
tem. The exciton-phonon coupling function has the form

1/2

(1 —e'q'")e, (q ). D-o, (A2)
Pl

fi

2Mco, (q )

P-, (t) =Trf p(t)b-, I, (A4)

where D~ is the change in the interaction energy of the
nth molecule with the n'th molecule in the transition of
one of these molecules to the electronic excited state,
e, (q ) is the unit polarization vector, M is the mass of a
molecule. It is convenient to use the same approach as in
Ref. [23]. Introducing functions

p-„„(t)=Tr jp(t)B-„B„], (A3)

i'-, =fuu, (q )P- gy-', e 'q'"p -, (A6)

p-„„=~(&)~(t),
where the wave function +(t) satisfies the equation

i~~+ yJ-„-„~+y~-„-„l~l'~=0,

(A9)

(A10)

where the nonlinearity matrix element

2lx-, , I'
n, n

q, s

(Al 1)

Let us now estimate the nonlinearity matrix element
V-„~ for the case where the matrix element of the inter-
molecular interaction D-„~ depends only on the distance
between rnolecules and can be modeled in the form

a
lD-~ =D

n, n
(A12)

where D and a are the parameters of the interaction. In-
serting Eq. (A12} into Eq. (A2) yields

Xq, = —a
]/2 -+

es q n

2M', (q } -„n
(A13)

In the following we shall assume that the interaction
D-~ is short-range (e.g. , a=6 for the van der Waals in-

S

teraction) and we can take into account in Eq. (A13) mol-
ecules in the first coordination sphere. We shall assume
also that our lattice may be approximated by an isotopic
elastic system. This means that we consider lattices where
the number of atoms in the first coordination sphere is
large enough (e.g., in the trigonal lattice the number of
the nearest neighbors z is 6 but together with the next
ones it is 12) and the relation

where the decoupling

Tr [p(t)B-„B~(b-,+b" -, ) ] =p-„„(t)(P-, +P -, } (A7)

was used. Considering the steady state solution to Eq.
(A6). (P-, =0), we get

lq 'n
1 q, s

+NO -„A'co, (q )

From Eqs. (A5) and (A8), it follows that p-„~ may be
written as a product

where p(t) is a nonequilibrium density matrix and Tr
denotes the trace, we obtain from the Harniltonian Eq.
(Al) that

f d8
z 2' 0

(A14)
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5= ( l c os8, 1 sin8) . (A1S)

Using Eqs. (A14) and (AlS), we obtain that for small q
the exciton-phonon coupling function Eq. (A13) can be
written as follows:

will be used, with 5 being the vector that connects a mol-
ecule with molecules of its first coordination sphere (in
2D) of the radius l:

that in the long wave limit the frequency of the longitudi-
nal acoustic phonons can be represented in the form

(q)=cq, (A17)

where c is the speed of the longitudinal sound in the lat-
tice, we obtain that the nonlinearity matrix element
caused by the interaction of excitons with acoustic pho-
nons as given by

=i+a
q, s —,$(q.@[e,(q ).~ l2M', (q ) l n, n + n, n

where

(A18)

. 1 fi=i—zaa [e,(q) q] .
2M', (q )

(A16) a (zD)
V, (A19)

It is seen from Eq. (A16) that in this approximation only
longitudinal acoustic phonons (s =~~) with e(q)~~q con-
tribute to the exciton-phonon coupling function, Eq.
(A2), and to the nonlinearity matrix element V-„~ given

by Eq. (Al 1). Transversal phonons can contribute to the
nonlinear matrix element only in anisotropic lattices. In-
serting Eq. (A16) into Eq. (All) and taking into account

is the nonlinearity parameter. Thus, from Eqs. (A10) and
(A18) we draw the conclusion that the effective Hamil-
tonian for electronic excitations has the form

(A20)

[1]A. S. Davydov, Theory of Molecular Excitons (Plenum,
New York, 1971).

[2] V. M. Agranovich and M. D. Galanin, Electronic Excita
tions Energy Transfer in Condensed Matter (North-
Holland, Amsterdam, 1988).

[3] R. S. Knox in Primary Processes of Photosynthesis, edited
by J. Barber (North-Holland, Amsterdam, 1977).

[4] A. S. Davydov, Biology and Quantum Mechanics (Per-
gamon, Oxford, 1982).

[5] G. Feher and M. Y. Okamura, in The Photosynthetic Bac
teria, edited by R. Clayton and W. Sistrom (Plenum, New
York, 1978).

[6] P. B.Gilman, Photogr. Sci. Eng. 18, 418 (1978).
[7] Y. Wang, Chem. Phys. Lett. 126, 209 (1986).
[8] H. Kuhn, D. Mobius, and H. Bucher, in Physical Methods

of Chemistry, edited by A. Weissberger and B. Rossiter
(Wiley, New York, 1972), Vol 18.

[9] L. M. Blinov, Russ. Chem. Rev. 52, 713 (1983).
[10]R. H. Tredgold, Order in Thin Organic Films (Cambridge

University Press, Cambridge, England, 1994).
[11]V. Czikkely, H. D. Fosterling, and H. Kuhn, Chem. Phys.

Lett. 6, 11 {1970}.
[12]G. Scheibe, Angew. Chem. 50, 212 (1937).
[13]E. E. Jelly, Nature 10, 631 (1937).
[14]D. Mobius and H. Kuhn, Isr. J. Chem. 18, 375 (1979).
[15]D. Mobius and H. Kuhn, J. Appl. Phys. 64, 5138 (1988).
[16]S. De Boer and D. A. Wiersma, Chem. Phys. Lett. 165, 45

(1990).
[17]F. C. Spano and S. Mukamel, J. Chem. Phys. 91, 683

(1989).
[18]E. A. Bartnik and K. J. Blinowska, Phys. Lett. A 134, 448

(1989); E. A. Bartnik, K. J. Blinowska, and J. A.
Tuszynski, Phys. Lett. A 159, 67 {1991);E. A. Bartnik and

J. A. Tuszynski, Phys. Rev. E 48, 1516 (1993).
[19]G. C. Huth, F. Gutmann, and G. Vitiello, Phys. Lett. A

154, 381 (1991).
[20] P. L. Christiansen, S. Pagano, and G. Vitiello, Phys. Lett.

A 154, 498 (1991).
[21] P. S. Lomdahl, O. H. Olsen, and P. L. Christiansen, Phys.

Lett. A 78, 125 (1980).
[22] J. Juul Rasmussen and K. Rypdal, Phys. Scr. 33, 481

(1986).
[23] O. Bang, P. L. Christiansen, F. If, K. g. Rasmussen, and

Y. B.Gaididei, Phys. Rev. E 49, 4627 (1994).
[24] O. Bang, P. L. Christiansen, F. If, K. S. Rasmussen, and

Yu. B.Pxaididei, Appl. Anal. 57, 3 {1995).
[25] K. 9. Rasmussen, Yu. B. Gaididei, O. Bang, and P. L.

Christiansen, Physica D {tobe published).
[26] Y. S. Kivshar and B. Malomed, Rev. Mod. Phys. 61, 763

(1989).
[27] R. Scharf and A. R. Bishop, Phys. Rev. A 43, 6535 (1991).
[28] D. Anderson, M. Bonnedal, and M. Lisak, Phys. Fluids

22, 1838 (1979).
[29] H. H. Chen and C. S. Liu, Phys. Fluids 21, 377 (1978).
[30] Y. Nogami and F. M. Toyama, Phys. Rev. E 49, 4497

(1994).
[31]J. T. Manassah, Opt. Lett. 17, 1259 (1992).
[32] M. Karlsson, D. Anderson, and M. Desaix, J. Opt. Soc.

Am. 17, 22 (1992).
[33]V. P. Ermakov, Univ. Izv. Kiev 20, 1 (1880).
[34] E. Pinney, Proc. Amer. Math. Soc. 1, 681 (1950).
[35] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon,

Oxford, 1960).
[36] R. T. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203

(1984).
[37] H. A.. Rose and M. I. Weinstein, Physica D 30, 207 (1988).


