
PHYSICAL REVIEW E VOLUME 52, NUMBER 3 SEPTEMBER 1995

Systematic analysis of coding and noncoding DNA sequences
using methods of statistical linguistics

R. N. Mantegna, ' S. V. Buldyrev, A. L. Goldberger, S. Havlin, '

C.-K. Peng~i, 3 M. Sjmons, and H. E. Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 0221$

Dipartimento di Energetica ed Applicazioni di I"isica, Universita di Palermo, Palermo, I-90228, Italy
Cardiovascular Division, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02825

Department of Biomedical Engineering, Boston University, Boston, Massachusetts OggI5
Department of Physics, Bar Ilan -University, Ramat Can, Israel

(Received 17 April 1995)

We compare the statistical properties of coding and noncoding regions in eukaryotic and viral
DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic
sequences. The data set comprises all 30 sequences of length above 50000 base pairs in GenBank
Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2
Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the
statistical properties of noncoding regions appear to be closer to those observed in natural languages
than those of the coding regions. In particular, (i) an n-tuple Zipf analysis of noncoding regions
reveals a regime close to power-law behavior while the coding regions show logarithmic behavior
over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions
have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In
contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for
viral DNA, the difFerence between the statistical properties of coding and noncoding regions is not
pronounced and therefore the results of the analyses of the investigated sequences are less conclusive.
After noting the intrinsic limitations of the n-gram redundancy analysis, we also brieQy discuss the
failure of zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for
these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the
existence of a "language" in noncoding DNA.

PACS number(s): 87.10.+e

I. INTRODUCTION

Hereditary genetic information is stored in DNA. The
sequences of amino acids for a given protein are encrypted
by the coded correspondence between codons (triplets of
nucleotides) and amino acids. This is called the genetic
code. In higher organisms, the protein coding sequences
comprise a small fraction of the total DNA (the genome)
[1]. Experimental evidence of important functions of non-
coding sequences has been reported in recent years [2—4].
Moreover, statistical analysis has shown that long-range
power-law correlations between nucleotides are present
in noncoding regions [5—7]. A fundamental question is
whether information not related to the structure of pro-
teins can be stored in these noncoding DNA sequences
[8,9].

In this paper we study long DNA sequences using tools
mainly developed for quantitative analysis of natural lan-
guages and symbolic sequences. Our analysis is per-
formed on eukaryotic and viral DNA sequences. We in-
vestigate the statistical properties of all suFiciently long
DNA sequences &om the current version of the GenBank
(Release No. 81.0) by analyzing the complete sequences
as well as their separate coding and noncoding parts.

In particular, we study the &equency of n-tuples ob-

served in each sequence in the same way that Zipf [10]an-
alyzed the &equency not of n-tuples but rather of words
appearing in texts of natural languages. We also study
the Shannon n entropy [11]of DNA sequences. In natural
languages the frequency of occurrence fof a given word is
related to its rank R (i.e., to the position of the word in a
list ordered in terms of the word frequency) by an approx-
imate power-law relation characterized by an exponent

1 [10,12]. The Shannon n entropy (i.e. , the entropy
of the n-tuples observed in a given text string) is a non-
linear function of n for natural and artificial languages,
indicating that languages are non-Markovian processes
[13,14]. The non-Markovian nature of natural languages
is also supported by the discovery of long-range correla-
tions in the binary mapping of literary texts [15,16].

We find that the linguistic properties of DNA se-
quences of diferent organisms are significantly difFerent.

(a) For coding DNA sequences a plot of f (R) can be fit
by a logarithmic function, while for noncoding sequences
a plot of f(R) may deviate significantly from a logarith-
mic behavior. In the investigated chromosomes and in
several other DNA sequences the Zipf plot of noncoding
DNA can be fitted by a power law in a relatively large
interval of ranks.

(b) In the analyzed chromosomes, the noncoding re-
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gions show a lower n-gram entropy (a higher n-gram re-
dundancy) than the coding regions. For the sequences of
vertebrate and viral DNA the difference in redundancy of

Ring and noncoding sequences is less pronounced and
less systematic.

It is known that different organisms, and even different
regions of DNA &om the same organism, may show a
nonuniform concentration of the four DNA bases. We
compare our experimental results with the predictions of
low-order Markovian processes. The checks performed
allow us to conclude that zeroth-order and first-order
Markovian processes cannot explain our experimental
findings.

The paper is organized as follows. Section II provides
basic biological background. In Sec. III we discuss the
"n-tuple" Zipf analysis and report the results of our com-
parison between coding and noncoding DNA. Section IV
deals with n-gram entropy and n-gram redundancy cal-
culations on coding vs noncoding DNA. We conclude in
Sec. V with a discussion of our findings. In particular,
we emphasize that our results by no means prove the
existence of a "language" in noncoding DNA.

II. BIOLOGICAL MOTIVATION

A. Cenetic code

The 20 amino acids that are the building blocks of
proteins are coded by 3-tuples (strings of three succes-
sive nucleotides) of DNA called codons. There are 64
possible combinations for the four bases (AAA, AAC,
AAG, AAT, . . . ). Sixty-one codons are used to code 20
amino acids, the remaining three codons (TAA, TAG,
and TGA) are the stop signals indicating the termina-
tion of a protein sequence. Since there are 61 codons
code for 20 different amino acids, more than one codon
is used to specify the same amino acid in many cases.
Thus the genetic code is degenerate.

B. Genome complexity

In our study we mainly focus attention on eukaryotic
cells (organisms in which the cells have a nucleus and the
DNA is inside the nucleus). A typical gene has its coding
information stored in "pieces" (exons) interspersed with
a number of noncoding regions (introns). The length of
an intron can vary over many orders of magnitude, e.g. ,
&om 31 nucleotides in the viral SV40 gene to over 210 000
nucleotides in the human dystrophin gene [1]. In addition
to exons and introns, genomic DNA contains intergenic
sequences that separate different genes and form more
than half the human genome.

In this paper we consider DNA as a symbolic sequence
of a four-letter alphabet. The four letters are A, C, G,
and T indicating the four bases (nucleic acids) that are
the building blocks of DNA, i.e. , adenine, cytosine, gua-
nine, and thymine, respectively. Even for very simple
organisms, the complexity of DNA sequences is remark-
able [1].

C. Two paradoxes

C par'ado'

A comparison of genome sizes from different species
reveals a surprising and important finding known as the
C paradox ("complete genome size" paradox) [17]. The

TABLE I. Sequences analyzed here.

Organism

T7
phage A

Type of sequence
Phage

complete genome
complete genome

No. of nucleotides

39 936
48 502

Coding (%)

91.7
83.0

E. coli
Bacterial

6 sequences 687 329 82.2

Herpes simplex
Epstein Barr

Viral
complete genome
complete genome

152 260
172 281

78.4
71.0

Sacc. cere. (yeast) chromosome XI
Sacc. cere. (yeast) chromosome III
C. elegans chromosome III

Invertebrate
complete chromosome
complete chromosome
complete chromosome

666 448
315338

2 176 983

71.9
67.0
29,0

Mus musculus (mouse)
Rodent

three sequences 201 894

Homo sapiens
Human

nine sequences 748 843
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paradox is that the size of complete genomes does not
seem to be correlated with the phenotypic complexity
of the species. For example, the size of the complete
genome for the species Homo sapiens is much smaller
than the one of Amoeba dubia (although it is much larger
than the one of several simple organisms such as, for
example, the Paramecium aurelia). Even after taking
into account anthropomorphic bias, it is quite improbable
that the phenotypical complexity of the lungfish (C =
1.4 x 10ii bp) is higher than the phenotypical complexity
of Homo sapiens (C = 3.4 x 10 bp).

In a specialized code, the statistical properties of the
symbolic sequences are related to the properties of the
coded objects (in our case the linear sequence of nu-
cleotides in a coding region). In a language, however,
the statistical properties reQect the underlying structure
(grammatical and semantic) of the communication sys-
tem. Quantitative linguistics and information theory
have provided two powerful tools for studying the sta-
tistical properties of natural and artificial languages: (i)
Zipf analysis and (ii) the entropy (or redundancy) of a
source of information.

2. Coding to noncoding t'agio

A second paradox concerns the coding to noncoding
DNA ratio. By analyzing the coding-noncoding ratio in
several published complete genomes, complete chromo-
somes, and very long DNA sequences, a clear pattern
emerges: The coding-noncoding DNA ratio generally de-
creases from simpler to higher organisms. An illustrative
example can be obtained from the ensemble of sequences
studied in this paper (see Table I).

III. ZIP F ANALY SIS OF CODING
VS NONCODING DNA

B. Conventional Zipf analysis vs n-tuple
Zipf analysis

In conventional Zipf analysis, the frequency of oc-
currence of words present in a given text is measured
by counting the number of occurrences of each word
throughout the text and dividing this value by the num-
ber of words. The frequency of occurrence f of each word
is then ordered from the most frequent to the least fre-
quent value. The position of each word in this ordered
list is called its rank B.

By studying log-log plots of word &equency versus
word rank, Zipf discovered a heuristic power-law relation
between them

Texts written in natural languages store information
in a hierarchical fashion. In a literary text, the mes-
sage is usually partitioned in sections, paragraphs, sen-
tences, and words. Texts in natural languages can be
interpreted as symbolic sequences with non-Markovian
statistical properties (i.e., long-range power-law correla-
tions). Long-range correlations are also present in artifi-
cial (e.g. , computer) languages and in formal languages
[13,15,16]. The discovery of long-range correlations in
noncoding DNA sequences [5,6] motivated the present
analysis to answer the following question: Are linguistic
features present in the noncoding regions of eukaryotic
and viral DNA?

A. Genetic cede and genetic language

Since DNA is the most important source of genetic in-
formation, a plausible hypothesis is that additional bio-
logical information (not directly related to the structure
of proteins) is stored in noncoding DNA. The genetic
code is very eKcient in storing the sequence of amino
acids that constitutes a given protein. The genetic code
is powerful but extremely specialized: It is usually used
to store information about protein sequences. A more
Qexible tool for storing biological information could be
a genetic language. By "language" we mean something
that could. , for example, direct biological procedures per-
formed within the cell. A sequence of procedures and/or
instructions with a well-de6ned grammar is generically
referred to as a language. Here we use the term language
in this sense.

a

The exponent g was found to be close to 1 in several texts
written in difFerent natural languages [10,12]. Equation
(1) is called the Zipf law. From the publication of Zipf's
seminal work there have been several attempts to prove,
as well as disprove, the Zipf law [12,18,19].

Zipf behavior has been universally observed in analyses
of natural and technical languages. It is important to
note that since Zipf analysis is a statistical technique, it
can be performed on texts of unknown languages (with
the only limitation of being able to recognize the basic
semantic unit: the word). Knowledge of the investigated
language is not required.

On the other hand, conventional Zipf analysis has been
criticized [12] since Zipf scaling can emerge in a purely
random symbolic sequence if one character is de6ned as a
"word" delimiter [12,19]. Hence, while the observation of
power-law behavior in a conventional Zipf analysis is nec-
essary in natural and formal languages, it is not suQci ent
to prove the existence of non-Markovian correlations in
the analyzed symbolic sequence.

Here we use n-tuple Zipf analysis to investigate the
statistical properties of coding and noncoding regions of
eukaryotic and viral DNA. The n-tuple Zipf analysis of a
symbolic text divers &om the conventional Zipf analysis
performed in natural languages. In a symbolic text, the
elementary semantic unit (the word) is not immediately
recognizable (if present). In the study of the complexity
of symbolic sequences the usual approach is to investi-
gate the statistical properties of the substrings of length
n obtained &om the symbolic text by progressively shift-
ing over the text a window of n characters (see, for ex-
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ample, [20] and references therein). Zipf scaling does not
emerge in n-tuple Zipf analysis of a pure random sym-
bolic sequence if the occurrence &equency is the same for
all symbols, while if the occurrence frequency is unequal,
a log-normal Zipf plot can emerge [21]. The practical
usefulness of the n-tuple analysis of natural languages
(in spite of the theoretical possible shallowness, which
is still also present in the n-tuple analysis) is exempli-
fied in a recent paper in which information derived &om
n-tuple &equency combined with a simple vector-space

technique allows a language-independent categorization
of topical similarity in unrestricted text [22].

C. n-tuple Zipf analysis of arti6cial
and natural languages

To study the differences between the conventional Zipf
analysis and the n-tuple Zipf analysis, we perform an n-
tuple Zipf analysis of two known "texts." The first is a
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FIG. 1. (a) n-tuple Zipf analysis of a collection of English texts comprising = 10 words. The texts are selected from
an encyclopedia. In our analysis we use a 32-character alphabet, consisting of the 26 letters of the English alphabet and 6
punctuation symbols (including the "blank" character). Characters difFerent from the chosen 32-character alphabet are not
taken into account. For n ) 3 a power-law region extending over roughly two decades is observed. When n = 6 the best linear
fit of the log-log plot gives ( = 0.57. Roughly the same value of(is obtained when n = 4 and 5. (b) n-tuple Zipf analysis of the
compiled version of the UNIx computer operating system comprising 9 x 10 characters. The alphabet is binary. A power-law
behavior is observed for a rank interval of more than two decades. In the power-law region when n = 12, the best linear Gt of
the log-log plot gives the value of(=0.77. Roughly the same value of(is obtained when n = 8 or n = 10. (c) n-tuple Zipf
analysis of a primarily noncoding (1.5%%uo coding regions) DNA sequence, the sequence HUMRETBt, as (GenBank accession code)
belonging to the genome of Homo sapiens. From top to bottom we present the Zipf plot measured for values of n ranging from
3 to 7. A power-law behavior is observed when R & 4 and the exponent of the power law is roughly constant as a function
of n. The best linear St of the log-log plot gives the value of ( = 0.34 (n = 6). A deviation from the power-law regime is
observed for R ( 10 when n = 7. The notation "log" denotes log]p.
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collection of articles taken from an encyclopedia (written
in English) and the second is a compiled file of the UNIx
computer operating system. In the 6rst case for n & 3
we observe a Zipf-like plot showing a power-law behavior
on more than two decades. In Fig. 1(a) we report the
histogram observed when n = 3,4,5,6. A power-law be-
havior characterized by an exponent —0.57 is observed
when n = 6 in the interval 10 & R & 1000. Roughly the
same exponent is observed when n = 3, 4, 5.

We found that the value of the power-law exponent g
observed in the n-tuple analysis is difFerent f om the one

obtained by performing the conventional Zipf analysis of
the real words of the same text. For the investigated
text, by performing the conventional Zipf analysis of real
words, we obtain a slope equal to —0.85, a value substan-
tially difFerent from the —0.57 observed in the n-tuple
Zipf analysis.

This test suggests that the Zipf-like analysis of the
n-tuples of a given text show a region of the Zipf plot
where a power-law behavior is observed. A more detailed
study of the n-tuple Zipf analysis of Markovian and non-
Markovian symbolic sequences has been reported else-
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FIG. 2. The log-log plot of the Zipf plot of mammalian, invertebrate, and viral DNA sequences. Coding and noncoding
DNA regions are obtained from the 14 mammalian DNA sequences (HSG6PHDH, HSMHCAPG, HUMGHCSA, HUMHBB,
HUMHDABCD, HUMHPRTB, HUMMMDBC, HUMNEUROF, HUMRETBLAS, HUMTCRADCV, HUMVITDBP, MM-

BGCXD, MUSTCRA, and RATCRYG for a total number of 1078100 bp and a number of 50687 coding DNA bp) (a)
from 4 invertebrate DNA sequences (CEC07A9, CELTWIMUSC, DRQABDB, SCCHRIII, and SCCHRXI for a total num-

ber of 1102752 bp and a number of 728998 coding DNA bp) (b) and from 11 viral DNA sequences (ASFV55KB, EBV,
HE1CG, HEHCMVCG, HEVZVXX, HS1ULR, HSECOMGEN, HSGEND, IH1CG, VACCG, and VVCGAA for a total number
of 1616928 bp and a number of 1361411 coding DNA bp). (c) The straight line (power-law behavior) is the best fit of the
Zipf plot for noncoding DNA sequences. The 6tting procedure is performed in the interval A ( 1000. The curvature of the
Zipf plot of the coding DNA is evident for the three groups. (d) An enlargement of an important region of(a). The notation
"log" denotes logyp.
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observed in the coding and noncoding regions of a com-
plete genome, a complete chromosome, and the longer
available DNA sequences. In prokaryotic DNA and in
the DNA of organelles, noncoding regions comprise usu-
ally only a very small subset of the complete sequence and
they may often actually contain still unidenti6ed coding
regions. We also investigate the DNA of two chromo-
somes published after 15 February 1994: the sequence of
complete chromosome XI of the yeast (666448 bp) [24]
and the chromosome III of the C. elegans (2.2 x 10s bp)
[25].

Here we systematically investigate the longest se-
quences of all eukaryotic and viral DNA available today.
In particular, we emphasize the analysis of chromosomes
because they are well de6ned biological units. Unfortu-

- nately, the number of complete chromosomes is still lim-
ited, but a rapid increase is expected in the near future.
A complementary approach, the investigation of the com-
plete GenBank database, has also been performed [21].
The advantage of analyzing the complete GenBank is
that one considers all the biological information avail-
able. However, the rather severe disadvantage is that
the entries in the entire GenBank are an extremely "bi-
ased" set since the choice of what to sequence is not done
at random.

A "blind" analysis of the entire GenBank database is
inevitably affected by the nature of the entries in that
database. GenBank is not a random data set, as the en-
tries are heavily biased towards coding regions; indeed,
the proportion of coding sequences in the GenBank is
much higher than in the genome. I"urthermore, there
are numerous examples of closely related sequences in
GenBank, thus further contributing to bias. Finally, the
range of species represented by their entries in GenBank
is grossly imbalanced. For example, the peculiarity of
the mouse genome (in terms of repetitive elements, codon
bias, etc.) weighs heavily on the overall data set. It fol-
lows, then, that a blind analysis of GenBank sequences,
while giving a super6cial impression of "thoroughness"
and "completeness, " is in fact biologically unsatisfactory.
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An example of the measured n-tuple Zipf plots is given
in Fig. 1(c). In this case, the n-tuple Zipf plot shows a

n —ipower-law behavior for B 4 and a rapid decrease

of the frequency for R 4" (a few n-tuples are notn —1

present in the 180000-character sequence). The expo-
nent g of the approximate power-law region is roughly
the same for different values of n (( = 0.33,0.34, and
0.34 when n = 4, 5, and 6, respectively).

Within the present accuracy of the statistical analysis

E. n-tuple Zipf analysis of DNA sequences
e
D
CXe 0

We perform an n-tuple Zipf analysis of the DNA se-
quences of our ensemble by counting the occurrence of
the set of n-tuples extracted from a source string. The
different n-tuples are obtained from the source string by
shifting progressively by one base a window of length n.
With this method from a source string of length I we ob-
tain L —n+1 different substrings. For an alphabet of four
characters (A, C,G,T) the number of possible n-tuples is
4'

We perform n-tuple Zipf analysis by varying n &om
n = 3 to n = 7. At the moment, higher values of n are
not analyzable due to the limited length of the published
sequences. In fact, the results of n-tuple Zipf analysis
are reliable only if L )) 4 [26]. In this study we al-
ways ful611 the condition L ) 10 x 4 . We note that the
same functional form of the n-tuple Zipf plot is observed
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PIC. 4. I og-log plot of the frequency of occurrence of 6-tu-
ples observed in the coding (o) and noncoding (CI) regions of
the yeast chromosome XI. The straight line is the power-law
best fit of the noncoding regions [Eq. (1)] performed in the
interval 0 & R & 1000. The best fitting value of the exponent
g is 0.39. (b) Semilogarithmic plot of the frequency of oc-
currence for the same set of data shown in (a). The straight
line is the logarithmic best fit of the coding regions [Eq. (2)]
performed in the interval 0 ( R & 1000. The notation "log"
denotes log~o.
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we do not have a reliable way to infer about the possible
functional form of the n-tuple Zipf plot for higher values
of n. It is also an open question whether the slope ( of the
power-law region is constant or monotonically increasing
with n. A detailed study of the scaling properties of ( is,
at the moment, not possible due to the limited length of
the published sequences.

hn the present study, we focus our attention on the dif-
ferences of the statistical properties of DNA sequences
in coding and noncoding regions. To this end, we sepa-
rate each long sequence (e.g. , yeast chromosome III [27])
into two sequences: the first is obtained by "stitching
together" all the known and putative coding regions,
w ereas the second concatenates the remaining regions
of the DNA sequence. The information used to perform
the separation is taken &om the heading present in al-
most all the files stored in the GenBank. By using this
procedure we obtain separate coding and noncoding sets
of DNA sequences. The results of the analysis of these
DNA strings are summarized in Figs. 2 and 3.

for
We s ow the results of the n-tuple Zipf analysis pa ysis per-

ormed on the coding and noncoding regions of mam-
malian DNA [Figs. 2(a) and 3(a), 14 sequences of our
ensemble], invertebrate DNA [Figs. 2(b) and 3(b), 4 se-
quences of our ensemble], and viral DNA [Figs. 2(c) and
3(c), ll sequences of our ensemble]. For each group of
DNA sequences, we show the Zipf plot as a log-log plot
(Fig. 2) and as a semilogarithmic plot (Fig. 3).

Our analysis of the selected sequences as well as of the
groups of the sequences investigated suggests that the
functional form of the n-tuple Zipf plot is different in
coding and noncoding regions. In the chromosomes in-
vestigated the difference is clear and statistically reliable.
In particular, the n-tuple Zipf plot of noncoding regions
is fitted better by a power law (straight line in a log-log

plot) when B 4" and the n-tuple Zipf plot of coding
regions is fitted better by a logarithmic behavior (straight

line in a semilogarithmic plot) when B 4" i. As an
illustrative example, in Figs. 4(a) and 4(b) we show the
n-tuple Zipf plots of the coding and noncoding regions
of the complete chromosome XI of the yeast S. cerevisiae
[24]. On the other hand, for vertebrates such as human
the difference between Zipf plots of coding and noncod-
ing DNA is less conclusive because the &equencies of the
n-tuples are close to each other with the exception of the
most &equent and most rare n-tuples.

It is also worth noting that the noncoding DNA se-
quences of the chromosomes investigated (yeast and
C. elegans) show a statistical property that is character-
istic of the natural and artificial languages: a power-law
regime in the Zipf plot of the frequency of occurrence of
n-tuples. This finding is not sufficient by itself to prove
that the n-tuples in the noncoding regions are words of
a given structured genetic language. To find genuine evi-

ence concerning whether or not a hierarchical language
(or more than one language) indeed is present in the non-
coding DNA a measure of complexity would be needed.
Unfortunately, it is well known that a robust measure of
complexity is still lacking. Our analysis uses the statisti-
cal tools presently available to us.
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ences among categories. (b) Same as (a), except for the 64
3-tuple codons. Note that there are larger differences among
categories. (c) Same as (b), except that the 64 codons are
arranged in rank order and a semilogarighmic plot is made.
Note the wide regime of linear behavior [see Eq. (2)]. The
notation "log" denotes log~o.
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Our analysis suggests (Fig. 3) that in the coding re-
gions, for all sequences studied the Zipf plot is well ap-
proximated by

f = b —clogio R (2)

for R 4 . This functional form, previously observed
for n = 3 in a limited number of (relatively) short se-
quences [28], seems to be also valid for n ranging from 3
to 7 in all the investigated (sufBcient long) coding DNA
sequences of our ensemble.

This result (2) is consistent with the fact that the fre-
quency of amino acids is conserved in a large ensemble
of eukaryotic proteins. In Fig. 5(a) we show the &e-
quency of the 20 amino acids measured in all the inverte-
brate, mammal, rodent, and primate sequences present
in the GenBank (June 1994). We see that the Huctu-
ations between the difFerent groups are small. In con-
trast, in Fig. 5(b) the measured frequency of codons for
the same groups shows larger fIuctuations. However, the
Zipf analysis [Fig. 5(c)] of the codons measured in the
same ensemble shows a similar functional form [i.e. , a
wide range of logarithmic behavior, see Eq. (2)]. It is
interesting to note that the distribution of letters of the
alphabets of human languages also follow the functional
form of Eq. (2).

A Zipf analysis is afI'ected by the presence of repeats
in a symbolic sequence. Repeats are inevitably present
in all natural and artificial languages; indeed, they are
one of the sources of the redundancy of languages. Re-

10
c. elegans chromosome III

I

coding regions

10

Markov control

the discrepancy between the measured and the first-order
Markovian Zipf plot of the (a) coding and (b) noncoding
regions is evident. On the basis of the observed results
we conclude that a first-order Markovian process can-
not fully explain the experimental findings we observe
in the histograms of the n-tuple Zipf plots for noncoding
and intron-rich DNA sequences. For a detailed discussion
about the efFect of higher-order Markovian processes, see
Ref. [21].

G. Role of simple and tandem repeats

F. Low-order Markovian models
10

A first-order Markovian process describes a symbolic
sequence in which the probability of occurrence of a char-
acter j is determined only by the previous character i
with a probability p(i, j). For a four-letter alphabet (such
as DNA), the p(i, j) matrix contains 16 elements.

It is known that in difFerent organisms (and within the
same organism in difFerent regions of the saxne genome)
the DNA has difFerent C+G content and difI'erent first-
order Markovian matrices [i.e. , different probabilities
P(i, j)], see, e.g. , [9]. A possible explanation of the dif-
ference in functional form observed in the Zipf plot could
be due to the differences in the CG content and/or in
the Markovian matrices characterizing the investigated
sequences and their coding and noncoding regions. To
check this hypothesis, we measure for each investigated
sequence the experimental first-order Markovian matrix.
By using this matrix, we calculate the probability of a
given n-tuple under the hypothesis of Markovian process.
For example, we calculate the probability to observe the
6-tuple AACTGA by using the relation
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For all the analyzed sequences, we compare the
measured Zipf plots with the corresponding first-order
Markovian process. The results are illustrated by the
following example. In Figs. 6(a) and 6(b) we show the
Zipf plot measured in the (a) coding, and (b) noncod-
ing regions of the longest DNA sequence available to-
day (chromosome III of C. elegans). From the figures

FIG. 6. Comparison between the measured Zipf plot and
the corresponding first-order Markovian approximation of the
full C. elegans chromosome III, (a) coding and (b) noncoding
regions. The first-order Markovian approximation is calcu-
lated by measuring the first-order Markovian matrix in the
studied sequences. The deviation from the first-order Marko-
vian approximation is maximal in noncoding regions.
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peated nucleotide sequences (called tandem repeats) are
a large part of eukaryotic genomes: in introns and in-
tergenic DNA, one finds many n-tuples that are simple
repeats (e.g. , poly A- and poly T-tuples) [29]. Both sim-
ple and tandem repeats are present in noncoding DNA; of
course, simple repeats do not occur in natural languages
for n) 2.

We perform a test in order to check if simple repeats
(AAAA. . . and TTTT. . . ) can be solely responsible for
the features of the Zipf plot observed in noncoding DNA.
Specifically, we delete all the simple repeats longer than
six characters and then we perform the n-tuple Zipf anal-
ysis of the new sequence. The results of our test show
that simple repeats strongly affect the most &equent n-
tuples (approximately the first decade), but do not afFect
the wide region of the Zipf plot ranging &om B 10 to
R = 4" i (see Ref. [21] for details). In summary, the
Zipf plot features cannot be ascribed solely to the known
presence of the long simple repeats present in noncoding
DNA.

0
0

mammalian DNA

e ——e noncoding regions

invertebrate DNA

(a)

XV. n-GRAM ENTROPY AND n-GRAM
REDUNDANCY OF CODING

AND NONCODING DNA

(b)

Another statistical measure giving partial information
about of the degree of complexity of a symbolic sequence
is obtainable by calculating the n-gram entropy of the an-
alyzed text. The Shannon n-gram entropy [11] (i.e. , the
entropy of the n-tuples observed in a given text string)
is defined by

C G complete sequences
o---- a coding regions
e ——e noncoding regions

H(n) = —) p, logz p'
i=1

(4)
0

0

where p; is the probability of the n-tuple labeled by index
i and A is the number of letters of the alphabet.

From the n-gram entropy one can obtain a quantitative
measure of the redundancy B present in any text. The
redundancy is defined by

H(n)B=—1 —hm
kn

viral DNA

c Q complete sequences
n ---o coding regions
e —— noncoding regions

(c)

where k = log2 A. The redundancy is a manifestation of
the flexibility of the underlying language.

We calculated the Shannon n-gram entropy H(n) for
different values of n. The maximum value of n for which
it is possible to determine H(n) is n = 7—even for
very long sequences (e.g. , C. elegans) —due to the ex-
tremely slow convergence to the final value. For shorter
sequences, reliable values of H(n) are obtainable only up
to a value of n smaller than 7. In this paper, for each
DNA sequence of length L, we report entropy values for
values of n fulfilling the condition L ) 100 x 4

In general, coding and noncoding regions of a given se-
quence (or group of sequences) are not equal in size. For
this reason the maximal value of n for which we calculate
H(n) [and then R(n)] is in general difFerent for our three
parallel analyses of complete, coding, and noncoding se-

0
0

FIG. 7. B(n) as a function of n measured in the three
groups of sequences investigated (see the list of GenBank ac-
cession code in the caption of Fig. 2): (a) mammalian, (b)
invertebrate, and (c) viral DNA. In all the three groups, the
n redundancy is higher in noncoding regions and lower in
coding regions.
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quences.
In Figs. 7(a)—7(c), we show the measured values of the

n-gram redundancy, expressed as a percent,

R(n)—:
i

1 —
i

x 100.H(n) i
2n j (6)

c. elegans chromosome ill

(a)

The values of B(n) are measured in the complete, coding,
and noncoding sequences of (a) mammalian, (b) inverte-
brate, and (c) viral DNA.

We calculate H(n) and B(n) for all the sequences of
our ensemble. We find that in the chromosomes investi-
gated B(n) is significantly higher in noncoding DNA than
in coding DNA. A typical example is shown in Fig. 8(a),
where we plot the values of R(n) measured in the com-

piete, coding, and noncoding regions of the chromosome
III of the C. elegan8. However, among vertebrate and
viral sequences we And many exceptions of this rule. As
an example, in Fig. 8(b) we plot the values of B(n) mea-
sured in one of such exceptions, the viral DNA sequence
HEHCMVCG.

It is probably worth pointing out that the severe lim-
itations on the maximal value of n presently reachable
by our analysis unavoidably limit this kind of analysis to
mainly detect the concentration and the Markovian prop-
erties of the DNA sequences. With a maximal value of
n = 7 it is impossible, for example, to take into account
the role of the long (such as short) interspersed repeat
sequences, which affects the entropy value (and then the
redundancy) of DNA sequences [26]. Our preliminary
results suggest that much of the difference in n-gram re-
dundancy between coding and noncoding sequences can
be ascribed to the difference in their CG content. A
detailed study of the role of the CG content and higher-
order Markovian properties on the n-gram redundancy is
given in [21].

V. DISCUSSION

3

C 0 complete chromosome
& —--& coding regions

——0 noncoding regions

0
0

human Cytomegalovirus

C Q complete genome
u --o coding regions
e ——e noncoding regions

(b)

1 2

FIG. 8. (a) The n-gram redundancy R(n) observed in the
longest DNA sequence today available: chromosome III of the
C. elegans (2.2 Mbp). Noncoding regions show higher redun-
dancy than coding regions. (b) R(n) for one of the exceptions
encountered in our ensemble of DNA sequences. The virus
human Cytomegalovirus Strain AD169 shows a higher redun-
dancy in the coding regions than in the noncoding regions.

The central finding of the present study is our discov-
ery of a difference in the statistical properties of coding
vs noncoding sequences of the largest DNA sequences
currently available. In particular, by adapting statistical
methods developed for the analysis of natural languages
and symbolic sequences, we observe that, in coding se-
quences, the n-tuple Zipf plots can be well approximated
by a logarithmic function. In contrast, noncoding regions
have qualitatively different Zipf behavior, displaying in
the case of the chromosomes investigated and in several
other long DNA sequences power-law scaling over a wide
interval.

These findings raise some intriguing biological specu-
lations about the role of noncoding DNA, since in some
cases noncoding DNA exhibits some features found in
languages. While the function of the coding regions is
well known (coding regions store biological information
about the sequence of amino acids present in a protein),
the function of the noncoding regions is not well under-
stood. While we must emphasize that our results by no
means prove the presence of a "language" in noncoding
DNA, we nonetheless note that the hypothesis of the ex-
istence of a "genetic language" in the noncoding regions
might provide a different interpretative &amework for the
C paradox and for the observation of a variable coding to
noncoding ratio. Under the hypothesis that structured
biological information is stored in the noncoding regions,
we might conjecture that the overall size of these regions
must be related to the phenotypical complexity of the
organism. For example, the noncoding regions of verte-
brates are longer than in invertebrates and have lower
n-gram redundancy. This could mean that the amount
of information stored in noncoding regions of vertebrates
is larger than in those of invertebrates.

Finally, our present analysis shows that a erst-order
Markovian process cannot explain the experimental Gnd-
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ings observed in the noncoding regions. Higher-order
Markovian processes can mimic with increasing accu-
racy the observed statistical properties [21]. However, by
considering the present results together with the results
of previous studies performed using diferent statistical
tools [5], we can conclude that the noncoding sequences
cannot be described by a Markovian stochastic process.

ACKNOWLEDGMENTS

We wish to thank I. Grosse, H. Herzel, F. Sciortino,
and E. N. Trifonov for helpful discussions and the NSF,
the NIH, the Mathers Charitable Foundation, NASA, the
American Heart Association, and the Israel —U.S. Bina-
tional Science Foundation for support.

[1] J. D. Watson, M. Gilman, J. Witkowski, and M. Zoller,
Recombinant DNA (Scientific American, New York,
1992).

[2] L. L. Sandell and V. A. Zakian, Cell T5, 729 (1993).
[3] T. G. Kontiris, B. Devlin, D. D. Karp, N. J. Robert, and

N. Risch, N. Engl. J. Med. 329, 517 (1993).
[4] A. M. Lambowitz and M. Belfort, Annu. Rev. Biochem.

62, 587 (1993).
[5] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin,

F. Sciortino, M. Simons, and H. E. Stanley, Nature 356,
168 (1992).The difFerence in long-range correlation prop-
erties between coding and noncoding DNA sequences has
recently received confirmation from the wavelet analysis
of A. Arneodo, E. Bacry, P.V. Graves, and J.F. Mugy,
Phys. Rev. Lett. 74, 3293 (1995), and by an analysis
of the entire GenBank database [see, e.g. , S.V. Buldyrev,
A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa,
C.-K. Peng, M. Simons, and H.E. Stanley, Phys. Rev. E
51, 5084 (1995)].

[6] W. Li and K. Kaneko, Europhys. Lett. 17, 655 (1992).
[7] R. Voss, Phys. Rev. Lett. 68, 3805 (1992).
[8] R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S.

Havtin, C.-K. Peng, M. Simons, and H. E. Stanley, Phys.
Rev. Lett. T3, 3169 (1994).

[9] E. N. Trifonov, Bull. Math. Biol. 51, 417 (1989).
[10] G. K. Zipf, Human Behavior and the Principle of Least

Effort (Addison-Wesley, Redwood City, CA, 1949).
[11] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948); 30,

50 (1951);see also L. Brillouin, Science and Information
Theory (Academic, New York, 1956).

[12] B.B.Mandelbrot, The Fractal Geometry of Nature (Free-
man, New York, 1983).

[13] S. Wolfram, Commun. Math. Phys. 9B, 15 (1984).
[14] P. Grassberger, IREE Trans. Inf. Theory 35, 669 (1989).
[15] A. Schenkel, J. Zhang, and Y.C. Zhang, Fractals 1, 47

(1993).
[16] M. Amit, Y. Shmerler, E. Eisenberg, M. Abraham, and

N. Shnerb, Fractals 2, 7 (1994); W. Ebeling and A.
Neiman, Physica A 215, 233 (1995); S. Havtin, ibid. 216,
148 (1995).

[17] W.-H. Li and D. Graur, Fundamentals of Molecular Evo
lution (Sinauer, Sunderland, MA, 1991).

[18] H. A. Simon, Biometrika 42, 435 (1955).
[19] W. Li, IEEE Trans. Inf. Theory 38, 1842 (1992).
[20] G. D'Alessandro and A. Politi, Phys. Rev. Lett. 64, 1609

(1990).
[21] S. V. Buldyrev, A. L. Goldberger, S. Havtin, R. N. Man-

tegna, C.-K. Peng, M. Simons, and H. E. Stanley (un-
published).

[22] M. Damashek, Science 267, 843 (1995).
[23] A. Czirok, R. N. Mantegna, S. Havlin, and H. E. Stanley,

Phys. Rev. E 52, 446 (1995).
[24] B. Dujon et al. , Nature 369, 371 (1994).
[25) R. Wilson et al. , Nature 368, 32 (1994).
[26] H. Herzel, A. O. Schmitt, and W. Ebeling, Chaos, Soli-

tons Fractals 4, 97 (1994); H. Herzel, W. Ebeling, and
A. O. Schmitt, Phys. Rev. E 50, 5061 (1994); H. Herzel
and I. Grone, Physics A 216, 518 (1995).

[27] S. G. Oliver et al. , Nature 35T, 38 (1992).
[28) M. Yu. Borodovsky and S. M. Gusein-Zade, J. Biomol.

Struct. Dyn. B, 1001 (1989).
[29] A well-known example of a repetitive element that is not

a simple repeat is the ALU family, which appears in the
human genome.


