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We present a method to predict complex structural (conformational) transitions in irregular or
disordered macromolecular systems, such as proteins or glasses, at the atomic level. Our method
aims at rare events, which currently cannot be predicted with traditional molecular dynamics (MD)
simulations, since these currently are limited to time scales shorter than a few nanoseconds. Given
an initial conformation of the system, our method identi6es one or more product states, which may
be separated from the initial state by free energy barriers that are large on the scale of thermal
energy. It also provides an approximate reaction path, which can be used to determine barrier
heights or reaction rates with the usual techniques. The method employs an arti6cial potential
that destabilizes the initial conformation and, thereby, lowers free energy barriers of structural
transitions. As a result, transitions are accelerated and may be observed in MD simulations. An
analytical estimate for the acceleration factor is given. The method is applied to two test systems,
an argon microcluster and a simpli6ed protein model. By these studies we demonstrated that our
method is capable of shortening mean transition times from 0.5 ps (argon cluster) and 1.4 ns (protein
model) to a few picoseconds. These results suggest that our method is particularly well suited to
study biochemically relevant conformational motions in proteins at a microsecond time scale.

PACS number(s): 87.15.He, 82.20.Fd, 87.15.By, 82.20.Wt

I. INTRODUCTION

Structural transitions are observed in virtually all
macromolecular systems. In polymers they determine
mechanical, thermodynamic, and transport properties; in
Quids and glasses they represent the microscopic basis for
structural relaxation. In biological macromolecules like
proteins transitions between distinct structural (confor-
mational) states have been observed [1,2].

The latter are of particular interest, since conforma-
tional motions in a protein —often fine-tuned at an
atomic level —can control, enable, or constitute its
specific biochemical function. Well-known examples are
functionally important motions in myoglobin [3], the
opening and closing of ion channels such as gramicidin [4],
allosteric interactions [5], T R transitions [5], confor-
mational transitions in sensory proteins, which initiate
signal transduction via G proteins [6], or protein fold-

ing processes (for a review on the latter subject see, e.g. ,
Ref. [7]). Recently, pathogenic conformational changes in
prion proteins have gained attention as a possible cause
of scrapie, "mad cow disease, " Creutzfeldt- Jakob disease,
and related degeneracies of the nervous system [8].

Proteins exhibit a large number of conformational sub-
states [9] which, when grouped according to transition
times or barrier heights, turn out to be hierarchically
clustered [10]. Theoretical studies [ll—15] agree with
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these experimental findings (for a review see, e.g. , [16]).
As a consequence of this hierarchical structure transition
times between substates cover a wide range of time scales,
from picoseconds [14,15] to years [8].

Conformational transitions (CT's) between substates
manifest themselves in sudden changes of tertiary struc-
ture. Some CT s are localized (e.g. , isomerizations of sin-
gle bonds inducing "ring Hips" [17]),while others involve
complex and concerted rearrangements of many atoms in
a protein. The above examples are of the latter type.

In this work we will treat CT's in a general framework,
but focus on collective CT's. Mainly due to entropic bar-
riers, these are generally slow in terms of transition rates
and occur on time scales above nanoseconds. However,
an actual event of barrier crossing may be as fast as a few
picoseconds. For a study of CT's one has (a) to search
for distinct low-energy conformations, (b) to find reac-
tion paths connecting the conformations in configuration
space, and (c) to estimate transition rates or mean tran-
sition times.

Protein models at atomic resolution, based on and
combined with an increasing amount of experimental
data on protein structure and dynamics, serve to eluci-
date microscopic details of protein motion as well as their
functional relevance. In particular, molecular dynamics
(MD) simulations [18] provide a conceptually straightfor-
ward approach. That method is of limited applicability,
however, due to the huge computational eR'ort involved.
Accordingly, at present only processes faster than a few
nanoseconds can be studied that way [19], and complex
CT's are usually not observed.

Therefore specialized methods are employed to address
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the three tasks mentioned above. For small systems, adi-
abatic mapping [20], mode following [21], variable step
MD [22], conjugate peak refinement [23], anti-force-bias
Monte Carlo methods [24], as well as various other tech-
niques [25,26] have been successfully applied to carry out
tasks (a) and (b); a variety of transition state approaches
(for a review see, e.g. , Refs. [27,28]) have been used to
compute transition rates.

More recently, various methods have been developed to
address tasks (b) and (c) also for systems as large as pro-
teins: Given educt and product conformations, path en-
ergy minimization [29], the self penalty walk method [30],
targeted MD [31],directed dynamics [32], and minimum
biasing MD [33] have been applied to determine reac-
tion paths. Once a reaction coordinate has been defined,
the method of reactive fiux [34], umbrella sampling tech-
niques [35], or thermodynamic perturbation and integra-
tion procedures [36—38] can serve to estimate transition
rates as well as &ee energy profiles along the reaction
coordinate.

We want to develop a Inethod that allows one to pre-
dict CT's without a priori knowledge of reaction paths
or product states, i.e. , we want to address task (a) for
large systems. That method, which we will term "con-
formational fiooding" (CF), should allow us to answer the
question: Given an educt conformation (e.g. , a structure
determined Rom x-ray or NMR experiments), what slow
structural rearrangements can be expected?

Despite their limitations, MD simulations could serve
to answer the above question if one could manage to
accelerate the CT's during a simulation. One way to
achieve this is to raise the temperature, thereby ac-
celerating activated processes by the Arrhenius factor.
However, high-temperature MD [39] does not describe a
protein under physiological conditions; particularly, that
method overestimates the entropic contributions TAS to
free energies. It is far &om clear whether the CT's ob-
served at high temperatures would also be observed at
room temperature.

Thus, we want to accelerate the CT's without seriously
affecting &ee energies of barriers or product states. To
that end we will destabilize exclusively the educt state
with respect to all other conformational states by mod-
ifying and generalizing the umbrella sampling idea [35]:
We intend to derive a coarse-grained description of the
educt state &om short MD simulations, &om which we
will construct an artificial potential. This potential will
be included in the Hamiltonian. It serves to destabilize
the educt state and thus should accelerate CT's. If the
acceleration factor is large enough, slow CT's may be
observed within relatively short MD simulations.

As opposed to conventional umbrella sampling tech-
niques, CF will not require assumptions on reaction paths
or product states and, therefore, should allow unbiased
prediction of atomic rearrangements. With respect to
the substate model which we will employ, CF can also
be conceived as a generalization of a class of techniques
to compute absolute free energies [40], which were moti-
vated by density functional methods.

The following section first introduces notions and as-
sumptions based on which we then describe our method.

Subsequently, analytical estimates for the expected ac-
celeration of CT's due to our method will be derived.
In Sec. III we provide sample applications for two test
systems, an argon microcluster and a simplified protein
model. Both applications will serve to illustrate the
method as well as to compare the estimated acceleration
with explicit MD simulations. To enable such compar-
isons, we had to choose test systems, which are less com-
plex than typical proteins. However, work on a globular
protein bovine pancreatic trypsin inhibitor (BPTI) and
on an ion channel protein (gramicidin A) is in progress
and will be reported elsewhere.

Conformational Qooding has a variety of applications
in several fields, e.g. , as a tool for protein structure deter-
mination or conformational search, to check the stability
of protein models, to predict functional motions, or to im-
prove estimates of thermodynamic quantities such as &ee
energies and entropies for proteins, polymers, or glasses.
We will sketch these applications in Sec. IV.

II. THEORY

A. The subcanonical ensemble

We start by defining a "conformational substate" [41]
(CS) Sq of a classical many particle system with Hamil-
tonian 'R as a confined region in phase space, in which
the system stays for a while. More precisely, the system
is required to stay in that region for a period To which
is long enough to allow the definition of statistical aver-
ages of that substate such as average structure, average
energy, temperature, etc. The statistical ensemble, &om
which these thermodynamic averages are derived, will be
referred to as the "subcanonical ensemble, " and the av-
erages will be denoted by ()s„.

A consequence of the above definition is the notion
of CS's as regions of lois free energy I" in a properly
defined subspace of configuration space [43]. These re-
gions are separated &om each other by free energy bar-
riers b,I". [In this paper, for brevity of notation, we
consider the (Helmholtz) free energy F describing con-
stant volume conditions instead of the —physiologically
more adequate —(Gibbs) &ee energy G which refers
to constant pressure systems. If needed, the latter can
be introduced; see, e.g. , Ref. [42].] We note that, since
AF = LU —TAS, these barriers may originate from bar-
riers in potential energy LU or, at finite temperature T,
from entropy wells LS, or &om a combination of both.
All these variants have been observed in proteins [44—46]
and, therefore, both energy contributions will be consid-
ered in our treatment.

The potential energy landscape of proteins is quite
complex [11,12], and so is the free energy landscape. To
reduce that complexity, we develop an e8'ective, coarse-
grained description with an adjustable level of coarse
graining. We will proceed in three steps. First, we
will introduce the notion of "conformation space" as a
subspace in configuration space. On this subspace we
will consider a &ee energy landscape. Second, we will
motivate a proper choice of linear collective coordinates.
Third, these "conformational coordinates" will serve to
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construct a substate model in terms of an efFective Hamil-
tonian.

B. Free energy in conformation space

In the canonical ensemble, i.e., for constant tempera-
ture T = 1/(k~P), the phase space density p is given by
the Boltzmann factor,

p(x, p) = Z exp[—P'R(x, p)],

with the partition function

Z:= d xd @exp —Q 3c p (2)

where x is the 3%-dimensional (Cartesian) vector of the
N particle positions which define the con6guration of the
system, and p denotes their momenta. For conservative
systems the above integral factorizes into configurational
and momentum parts. The latter can be eliminated from
an explicit description by considering the configuration
space density p:

(3)

p'(c) = f d'~2. " p" (x')b(c —f(x')),

f'rom which we derive a free energy landscape E(c),

E(c) = —p 'lnp'(c). (5)

Equations (1) —(5) refer to ergodic systems and equi-
librium conditions; the molecular dynamics of proteins,
however, is essentially nonergodic at all time scales (cf.
the Levinthal paradox [51]), particularly at the time
scales covered by MD simulations. Thus it is neces-
sary to consider the time-dependent conformation space
density p (t, c

~
to, co). Being not completely rigorous in

our notation (for a rigorous treatment see, e.g. , [52]),
p'(t, c

~
t(), c()) can. be defined as the conditional probabil-

ity of Gnding the system in a phase space element Lp at
position c and time t, given it has been near co at time
to.

In the substate scenario, starting at to and co g SA. and
proceeding in time, the region of nonzero p (t, c

~
to co)

will quickly expand within SI, . At the larger time scale of
transition times To, p (t, c

~
to, co) will gradually "leak"

out of SI, and "Bow" into other substates. If the substates
cluster hierarchically according to mean transition times

Similarly, one obtains a coarse-grained description of
p" by excluding a number 3X —m (0 ( m ( 3N)
of configurational (not necessarily Cartesian) degrees
of &eedom which are assumed not to be involved in
CT's, leaving m "important" [47], "conformational" [48],
"relevant" [49], or "essential" [50] degrees of freedom
(ci, . . . , c )—:c = f(x), which we will specify below.
On the subspace of the c,. we de6ne a "conformation space
density" p'(c) as the projected configuration space den-
sity [15]

between substates, the same picture applies to transi-
tions at higher hierarchy levels, i.e., to transitions be-
tween groups of substates.

Eventually, a range t;„&Lt & t „exists, for which

p (&o + A&, c
~
to, co) is nearly constant and independent

of co C SA, . We will denote this quasistable density as
the "conforination density pl, (c) of substate S~," which
defines subcanonical averages ( )s„.

The alert reader may have noted that the upper sce-
nario is that of well separated time scales. It is well
known, though, that in irregular systems time scales are
often not well separated [53]. As we cannot treat these
cases with rigor, we adopt a pragmatic point of view and
define pI, (c):=p'(to + At, c

~
to, co) for reasonably (and

typically heuristically) chosen At and co C SA, . In this
work, MD simulations shall serve to characterize p&.

C. Conformational coordinates, efFective
Hamilt onian

To derive a coarse-grained description of CS's we will
define an effective Hamiltonian [54], 'Rs&(c) as that po-
tential which would generate, according to Eqs. (1) and
(4), an approximate conformation density p&(c), which
serves as a model for p&(c). The key here is to find
appropriate conformational coordinates c; and a density
model p@ which is, on the one hand, suKciently simple
to allow an analytical treatment and, on the other hand,
characterizes SI, well enough. Inspired by the results in
Refs. [14,50,43], and in a similar spirit as in Ref. [55]
as well as implicitly assumed in Refs. [56,57], we first
approximate the configuration density pg(x) by a multi-
variate Gaussian centered at w,

pg(x) = g(x):= Z 'exp[ —2(x —x) A(x —x)], (6)

with partition function

Z:= d xexp —
2 w —w Aw —w (7)

A p X3~ is a symmetric, positive semidefinite ma-
trix, which defines the shape of the Gaussian. It is de-
rived from the subcanonical covariance matrix C [52],

A = C:= ((x —x)(x —x) )s, ,

with

x = (x)s.

pi, = Z ' exp[ —
2 q Aq] .

C and x are computed from MD simulations. (For the
treatment of the six eigenvectors which describe rigid
body motions see Sec. III A 1.)

Diagonalizing A = Q AQ with orthonormal Q c
R " and diagonal A = (b;iA') j—i 3iv yields col-
lective coordinates q = C}(x—x), which serve to simplify
Eq. (6):
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For our coarse grained description we select the m col-
lective coordinates c = (qi, . . . , q ) with smallest eigen-
values A;. This choice is based on the observation that
the remaining q,. with large eigenvalues describe localized,
high-&equency, nearly harmonic vibrational modes with
small amplitudes which, therefore, are not expected to
reflect CT's. In contrast, the dynamics of the m confor-
mational coordinates c, is slow, essentially anharmonic,
and it is known to dominate the collective motions in
proteins [58,14,43]. We therefore assume that our choice
captures the relevant degrees of &eedom for CT's. The
number m of conformational degrees of freedom which
are explicitly considered determines the level of coarse-
graining.

Inserting p& into Eq. (4) defines our conformation den-
sity model,

p„(c):=Z, 'exp[ —2c A,c],

more adequate representation of the situation (the one-
dimensional sketch in the figure lacks a representation of
entropic barriers, since the latter arise from the high di-
mensionality and a probably "mazelike" structure of the
energy landscape) .

We also wish to comment on the relation between Q"&
and a second order Taylor expansion VNM of the po-
tential energy at some energy minimum [dashed line in
Fig. 1(a)], which is studied in normal mode analysis. As
indicated in the figure, and due to the multiminimum
structure of the energy landscape, 'R,"&(c) generally dif-
fers &om VNM(Q c). This is particularly the case for
proteins at physiological temperatures [59]. By defini-
tion, V~M is a local description of V, whereas 'R"& char-
acterizes the system at the mesoscopic scale of a partic-
ular substate. For that reason we consider 'R,"& a more
appropriate description for CS's.

where A, = (h;zA;);~ —i, and Z, is the appropri-
ate partition function. From this density model, with
Eq. (1), the efFective Hamiltonian 'R"z(c) for substate
Sy reads

'R,"~(c) = 2P 'c A,c.

It is instructive to consider a few properties of 'R,"&.
By definition, 'R

& is harmonic. In particular, for sys-
tems with harmonic potential V(x) we have 'R,"&(c) =
V(Q c) + const (where only the first m columns of

are used). In the realistic case of highly nonlin-
ear systems, however, the relation between 'R"& and V
is complicated. Figure 1 depicts a sketch of two limit-
ing cases. If entropic contributions to the 6.ee energy
are small [Fig. 1(a)], then R,"& (bold line) represents a
smoothed approximation to V (thin, solid line) within
Sg, if entropic contributions are large compared to vari-
ations in V, R,& is not necessarily (nor is it intended to
be) a good approximation to V, and Fig. 1(b) provides a

D. Conformational flooding

The coarse-grained substate model Q,"& provides the
basis to design a "flooding" potential Vs(c), which is
to be included into 'R(x, p) during MD simulations, and
which is supposed to accelerate CT's. In agreement with
our assumption that the conformational coordinates c;
describe CT's sufBciently accurately, we define the flood-
ing potential as a function of only these m degrees of
ft. eedom.

Qualitatively, we intend to modify the free energy land-
scape E as indicated in Fig. 2. In the figure, the bold line
represents P(c) in the vicinity of a substate SA,, (well) as
a function of one particular c;. Also shown is a free en-
ergy barrier separating Sg from other substates (which
are not shown). The purpose of the flooding potential
Vfl is to raise the &ee energy within SA (thin line) so as
to destabilize that initial substate and to drive the sys-
tem into another substate. As is also indicated in the
figure, we require Vg to be short ranged, so that the bar-
rier is unaBected. VAth that assumption, the free energy
barrier height is reduced by an amount LF indicated in
the figure and defined below, and one expects a corre-

F+Vr,

FIG. 1. Sketch of potential energy V(c) (thin, solid lines),
'8 "a(c) (bold), and harinonic approximations VNM(c), as used
in normal mode analysis (dashed); the two pictures refer to
(potential) energy (a) and entropy (b) dominated situations,
respectively.

FIG. 2. "Conformational Booding" lowers free energy bar-
riers of CT's and thus should accelerate the transitions. The
figure shows a cut through the free energy landscape E(c,)
(bold line) along a particular conformational coordinate c, in
the vicinity of a CS (well). To the right, a free energy barrier
separates the substate from another one (not shown). Inclu-
sion of the artificial Booding potential Vg into the Hamiltonian
of the system reduces the barrier height by an amount AI"
(thin line).
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sponding acceleration of CT's. That process is termed
"conformational Qooding. "

For a proper choice of the Hooding potential we require
two criteria to be fulfilled, which ensure that Vg "fits"
into SA, .

(1) Locality. Only the initial substate Ss should be
affected by the artificial Qooding potential, i.e., Vg has
to vanish outside SA, . We particularly require Vg to be
sinall (with respect to Ic~T) within the transition region
of the CT under consideration.

(2) Uniforvnity. Within Ss, Vs should be smooth and
nonzero everywhere. This ensures that the system will
not "hide" in a niche within SA, and stay there, unafFected
by the Hooding potential.

To meet these requirements we chose a (multivariate)
Gaussian,

Vs(c):= Es exp[—2c Asc],

where Eg is the strength of the Hooding potential and
As describes its shape in conformation space (this is an
arbitrary choice; many other smooth, localized functions
would do equally well). To "flt" the flooding potential
into the harmonic effective Hamiltonian 'R,& we require
the principal axes of Vg to be parallel to those of 'R"&,
and the widths of Vg along these axes are set proportional
to those of 'R,&, i.e.,

+err

FIG. 3. Harmonic efFective Hamiltonian 'R s (bold line)
and Gaussian-shaped Booding potential Vg for various Qood-
ing strengths Es (thin, solid lines) as a function of one con-
formational coordinate c, . Adding Vg to the effective Hamil-
tonian of the system decreases the depth of the substate well
(dashed-dotted lines). To meet the criteria of locality and
uniformity, the width of 'R,& is increased with its height as
defined by Eq. (16).

In particular, this allows one to "focus" the flooding pro-
cedure on those m degrees of &eedom which are of inter-
est in a particular application, while leaving the others
unaffected.

As .= A, /p (i4) E. Estimate of transition rates

0 ('R,"a + Vs)
Bcq i9c~ C=C

which specifies p as

(i6)

As required, our choice of Vp reduces the depth of the
energy well uniformly without extending much into the
high-energy regions of conformation space, where barriers
are to be expected.

We would like to stress that our Qooding potential will
not push the system towards any preselected destination
in configuration space; hence no bias is included as to
which product state the system will move to. Rather,
the method is likely to follow transition paths of low &ee
energy and thus should identify those neighboring CS's
to which also the unperturbed system (Vg = 0) would
move at much slower time scales.

Additionally, the general form chosen for the Bood-
ing potential in terms of collective conformational coor-
dinates allows one to vary the level I, of coarse graining.

The constant of proportionality p remains to be spec-
ified as a function of Vg. To that end consider Fig. 3
which shows the "flooding" (thin, dashed-dotted lines) of
a harmonic efFective Hamiltonian (bold line) using flood-
ing potentials of varying strength (thin, solid lines). In
the figure, the two above criteria, locality and uniformity,
are balanced by increasing the width of Vg with Eg such
that the minimum of 'R,"&+ Vg at the substate center c
is quartic, i.e.,

What accelerations of CT's for given Hooding strength
Eg can be expected? More precisely, we want to esti-
mate the acceleration factor n:= To/Ts, where Ts and
To are the mean transition times (MTT's) out of the
initial substate SI, with and without Hooding potential
applied. With that aim we will first derive the (multidi-
mensional) canonical transition state result [60], which in
the case of harmonic well and barrier is known to lead to
the Kramers equation [61]. The transition state approx-
imation is based on several assumptions, though, which
are generally not fulfilled in our case. Therefore we will
subsequently drop two of the assumptions and study the
resulting corrections to the transition state result.

The first assumption is that a MTT can be defined.
This is strictly true only for systems with a clearcut sep-
aration of time scales and is, therefore, not guaranteed
here. We circumvent this problem by noting that, given
a dividing hypersurface S& which separates S~ &om
all other substates, a mean first passage time (MFPT)
through that surface can be defined in any case. From
the MFPT we will derive an operational —though not
rigorous —MTT [see Sec. III A I].

Secondly, transition state theory requires local equi-
librium at all times. This is a very strong assumption,
and it may often not be fulfilled. Particularly during
fast CT's the system may not be in equilibrium with
its environment which acts as a heat bath. Similarly,
the onset of the flooding potential perturbs the system,
and it may not relax towards equilibrium within a time
short compared to Tp. To quantify the inHuence of such
non-equilibrium effects, we will d.erive corrections to the
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p— Z
Tp =(d Kp

ZW
(17)

where

transition state result in Secs. IIF and II G. Readers not
interested in these details may prefer to skip these two
sections.

Finally, for the sake of obtaining an analytical estimate
for the acceleration, we modeled p by a Gaussian, which
we consider a rather crude approximation. Therefore,
comparisons of the estimate with computer experiments
(given in Secs. IIIA and IIIB) should provide informa-
tion on the quality of this simple ansatz.

With these assumptions in mind we write the transi-
tion state MTT Tp for unperturbed transitions out of SA,

as [28]

Zp

Zfl
(24)

We emphasize that in this transition state approach
no specific value for the transmission coefIicients Kp and
Kfl was required, since only rate ratios are considered;
similarly, there was no need to specify the dividing sur-
face. Hence, up to Eq. (24), our transition state approach
should be reasonably accurate as long as the equilibrium
assumption holds.

To arrive at an analytical estimate 6 for n, we have
to introduce a crude approximation, though, in that we
replace the exact phase space density p& by the Gaussian
density model p& defined in Eq. (11). Prom Eq. (24),
and inserting p& into Eqs. (18) and (21), respectively, we
obtain the acceleration estimate

Zp. = Yp d cpy c (18)
jd c exp[ —zc Aflc]

0,'~A=
J d c exp[ —zc+Aflc PVfl(c)]

(25)

is the subcanonical partition function, Using Eqs. (13), (14), and (16), and substituting r2 =
c Aflc, this estimate simplifies to

Zo ..——Yo d c pq(c)
ASk+ j dr r ' exp[—r'/2]

J' dr r~ 'exp[ —r—'/2 —ee "~~"1] ' (26)

is the partition function of the transition region (defined
by a small volume element LS& containing the divid-
ing hypersurface), w is a characteristic frequency of the
system, and Ko is the transmission coefficient [34]. Yo

and Yp are the contributions of the fast degrees of free-
dom q +q, . . . , q3N. , and of the momenta to the partition
functions. Using similar notations, the MTT Tfl for tran-
sitions accelerated by Vfl(c) reads

where s:= PEfl is the ffooding strength in units of k~T
The integral in the denominator of Eq. (26) cannot be

solved analytically. For m & 10, o, may be approximated
by replacing r exp[ —r /2] with a Gaussian of width
1/~2, centered at ro ——(m —1) ~, and by expanding
exp[ —r /(2e')] into a power series up to second order in
r —ro. Then both integrands in Eq. (26) are Gaussian,
and

(20) (m —1)g2/2 1
ln6 = eg- + —ln(1 + a/2)2+G 2

(27)

with

Zfl ~ = Yfl d c pI c exp — Vfl c (21)

with rI:= exp[ —zm/s] and a:= g(m —s)/s. Because
0 ( a ( 1/2 for s ( m —1, and with m —1 —m, Eq. (27)
reduces to the final result

and ln n = sg — mrl + —q(m— /s —1)(2 + mg ) . (28)

Zfl~ ..——Yfl~ d c p&(c) exp[ —PVfl(c)] .
as~

(22)

Tp Kfl Zfl Zp

Tfl KP Zp
(23)

Since, by construction, the fIooding potential depends
on none of the degrees of &eedom described by the Y
contributions, we assume the latter to be independent of
Vfl and drop these factors below. Then, Eqs. (17) and
(20) give the acceleration factor

A closer inspection of the three terms in Eq. (28) re-
veals that the leftmost term, eg, dominates the behavior
of the acceleration estimate n (zeroth order approxima-
tion); the second term is a 10%%uo correction, while the third
is negligible.

De6ning the &ee energies of activation for CT's with
and without ffooding potential as AEfl .——k~T ln(wTfl)
and b, l'0 ..—— k~T ln(wTo), respectively, k~T ln n
LEp LEfl can be interpreted as the destabilization
free energy AF due to the flooding potential, and we
have

Since the fIooding potential was required to be small
within the transition region (barrier top in Fig. 2), and
due to the equilibrium assumption, the dynamics of the
system near the dividing surface will be unafI'ected by Vfl,
implying Kp nf and Zp Zfl . With that approxima-
tion, Eq. (23) reduces to

AF = k~T in@, (29)

where the index denotes the transition state result. The
destabilization energy has already been introduced qual-
itatively in Fig. 2. For later use we note that the right
hand side of Eq. (25) approximates (by means of p&) the
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subcanonical average F. Adiabatic- correction to Eq. (26)

1
(e

—@Vs) (30)

and therefore

b.I' = —P ln(e ~ ") - = (Vfl)g, .

The latter approximation holds for small Huctuations,

P (((Vfl)s. —Vfl) )s (32)

which scale as m
It will be convenient to consider energies per degree of

&eedom ci, where we refer only to the m conformational
coordinates. With efl

..= Efl/m and 4f:=AI" + /m the
leading term in Eq. (28) reads

To estimate the acceleration factor n [Eq. (26)] we
assumed local equilibrium at all times and particularly
during CT's, implying Zo = Z& . However, typical CT's
are fast processes, such that the system is not likely to
be in equilibrium with the heat bath during the transi-
tion, and the acceleration estimate has to be corrected
properly. To obtain an upper limit for such a correction,
we consider the case of no energy exchange between the
system and the heat bath, i.e., we treat the CT as an
adiabatic process. Accordingly, the kinetic and potential
energies within the substate and within the transition
region, respectively, obey

( i )s. + ( + fl)s. = (@ )W+ (V+ Vfl)W (34)

(f
2efl)

(33)

Still we assume the 3% —6 degrees of &eedom of the
system (rigid body motion eliminated) to be in equilib-
rium with each other; thus, due to equipartition,

and is independent of m.
Figure 4 shows the destabilization energy per degree

of freedom, Z f, as a function of flooding strength efl, as
well as the estimated acceleration 6 for m = 100 con-
formational coordinates. The solid curve has been ob-
tained by numerical integration of Eq. (26); the dashed
and dashed-dotted curves represent zeroth and second
order approximations [Eqs. (33) and (28)], respectively.

As can be seen from Eq. (33) and also in Fig. 4, 4f
does not scale linearly with the Hooding strength. For

& 0.1 the exponential in Eq. (33) is small, and the
system does not "see" any wooding; only above values
of 0.2 are considerable acceleration rates expected. We
draw particular attention to the fact that even for Qood-
ing strengths as large as eg ——0.4, where acceleration fac-
tors of up to 10 are expected, the artificial &ee energy
increase is small (O. lk~T). As a result, the dynamics
within the initial CS should be essentially unaffected by
the Booding method.

(Eg;„)s„——2 (3N —6)/p (35)

and

(Ei,;„)g = —,'(3N —6)/Pfl~ .

ZQ

Z'
f

m

d p exp —Pfl~ ) p; /(2M;)
i=1

i

m

d p exp —Po ) p; /(2M, )
i=1

(p~l '

The latter equation defines a temperature (k&Pfl )
within the transition region. Similarly we define Po~ for
unperturbed CT's.

These transient temperatures dier from the equilib-
rium temperature 1/(k~P), and the corresponding par-
tition functions Zo and Z& have to be corrected appro-
priately due to the contribution of the conformational
momenta p, :=M;c;,

0.10

0.08—
10

10

(37)

where the M, are the appropriate reduced masses of the
c;. Combining Eqs. (34)—(37) gives the correction factor

0.06—

0.04—
10 Zfl (3N —6)/P+. AV+ b, Vfl

Z& (3N —6)/P+ AV (38)

0.02—

0.00
0.0 0.1 0.2 0.3

sn [i Y1

10

0.4

with EV = (V)&„—(V)g and AVfl = (Vfl)g„(Vfl)g.
Since Vg is by construction small within the transition
region, (Vfl)~ ——0, and from Eq. (31) b, Vfl AI'"
Furthermore we assume AV « (3N —6)/P and obtain

FIG. 4. Destabilization free energy 6,f per degree of free-
dom and estimated acceleration factor 6 as a function of Qood-
ing strength eg for m, = 100 degrees of freedom. The four
curves have been obtained by numerically integrating Eq. (26)
(solid), and by zeroth (dashed) and second (dashed-dotted)
order approximations [Eqs. (27) and (28)].

z~ ( pb, s~sl ~

!"=!1+
Zo~ 4 3N —6 2

(39)

Using Eq. (23), this result implies the adiabatic correc-
tion



HELMUT GRUBMULLER 52

Z~grad P
—1 l fl ~~TS

Z~ (40)
(I(t + oo) = . . = ( (t m oo) = (Zs/Zo) / . Using
Eq. (24) and these boundary values, Eq. (44) reads

to the transition state result, i.e. ,

LE = LETs + AE ~. (4l)

As can be seen from Eq. (40), AF d scales with the ra-
tio of conformational coordinates to the total number of
degrees of &eedom and, therefore, is usually small. It is
always positive as a consequence of the enlarged phase
space volume accessible due to the increased kinetic en-
ergy within the transition region.

1/

(,;(t) =
~ ~

l+ (~'/ —l)e —'/'
( CX

(45)

Qp Zg—= —~rs " p(t) Idt Z&(t)
(46)

which speci6es our relaxation model.
To derive MTT's &om that model we reconsider the

right hand side of Eq. 20, which describes the decay of
the probability p(t), that the system is still within the
initial substate at time t & 0,

G. Relaxation correction to Eq. (26)
where eg and Z& are assumed to be constant. The inte-
gral of the above equation reads, using Eq. (17),

Zc(t) = f d c p'(tc), (42)

(again, we dropped the contributions Y Rom the mo-
menta and from the fast degrees of freedom).

We describe the relaxation of Zs(t) as a multi-
exponential decay with m relaxation times ~i, i
1, . . . , m. With that aim we assume that Zs(t)/Zo [not
necessarily Zs(t) alone] can be split into m factors (;(t),

Zs(t)
Zp

(43)

each of which may be interpreted as describing one of the
conformational degrees of freedom c;. Each of the (, is
assumed to decay exponentially with a time constant 7;,

&'(t) = &'(t~~)+ K'(0) —&'(t~~)]e '".
The boundary values for the (; are chosen canonically.

At t = 0 we have Zs(0) = Z(), thus we set (I(0) =
(0) = l. Similarly, Zs(t -+ oo) = Zs and, assuming

equipartition for the destabilization &ee energy, we have

We now consider the second aspect of the equilibrium
approximation. For our transition state approach we as-
sumed local equilibrium within the initial substate. This
is certainly not the case immediately after the flooding
potential has been switched on; rather, the system, per-
turbed by the flooding potential, will relax towards equi-
librium. If the relaxation is as slow as the estimated
MTT or even slower, the equilibrium assumption does
not hold. This is expected to happen either for strong
flooding or, more importantly, due to inherently slow re-
laxation processes. Employing a simple relaxation model
we want to study how relaxation processes can modify
olll' tl'allsltloll state estlIIlate [Eq. (26)].

We return to the time-dependent conformation space
density p (t, c) and assume that the flooding potential is
switched on at t = 0. For t ( 0 we have p (t, c) = p (c).
For t ) 0, p (t, c) decays towards the new equilibrium
density p (c) exp[ —PVs(c)], which is modified by the
flooding potential. The time-dependent density implies
a time-dependent partition function

t

p(t) (x exp ( ——
0 0

~ ~

i=1
l+ (

I/~ l)
—I'/~;

and defines the MTT

j, dttp(t)

f dt p(t)
(48)

III. TYPO SAMPLE APPLICATIONS

Two applications presented in the subsequent two sec-
tions are supposed to serve as examples and as test cases
for our method. Both applications are computer experi-
ments. In each case we compare transition products and
transition rates obtained with CF with results from ex-
tended, unperturbed MD simulations.

The integrals within the above two equations have to
be solved numerically. We note that in the limit of fast
relaxation (~; (( To/ot for all I',) p(t) = exp( —n/To) and
Ts ——To/ot, which is the transition state result. On the
other hand, if a number m' (m' & m) of degrees of &ee-
dom relax slowly with respect to Tg, the acceleration is

I

decreased by at least the factor n /' . Typically, one ex-
pects the 7 s to be distributed over a wide range of time
scales. In this case, with increasing flooding strength and
decreasing Tg, more and more v s will become slow with
respect to Tg, and the increase of the acceleration factor
will be reduced accordingly.

We summarize the nonequilibrium results. Our simple
relaxation model suggested that slow relaxation processes
within the system will decrease the acceleration factor
even for weak flooding, whereas fast relaxation processes
set an upper limit for the achievable acceleration. If the
actual barrier crossing process is fast at the time scale of
heat exchange between system and environment, an ad-
ditional adiabatic correction is required, which scales lin-
early with the number m of conformational coordinates
used for flooding.
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A. Structural transitions in an argon cluster

Methods

The argon atoms were modeled as mass points (m = 40
atomic units); their pairwise interaction is described by

r'i ) kr;, )
(49)

where r,~ is the distance between atoms i and j, Eo ——

0.2464 kcal/mol, and B = 3.42 A [63]. The potential
energy of the microcluster is

The erst application is intended to test our estimates
for the destabilization free energy of the flooding poten-
tial [Eqs. (26), (40), and (48)]. To that end, a large
number of computer experiments is required to obtain
good transition time statistics, and thus we had to use a
simple system with few degrees of freedom. We have
chosen a microcluster consisting of eight argon atoms
with Lennard-Jones interactions [Fig. 5 (left)]. The free
energy landscape of that system has been characterized
elsewhere, and the lowest-energy minima are known (see,
e.g. , Ref. [62]).

d~(t):= c(t)~Age(t), (51)

freedom were removed in all simulations as described in
Refs. [65,43].

The center x and the covariance matrix C of the ini-
tial substate were computed according to Eqs. (9) and
(8) from a subcanonical ensemble of 125000 structures
derived from a MD simulation of 10 ns duration. In this
simulation atomic positions were monitored and com-
pared to the initial positions to ensure that no CT s oc-
curred. Due to the elimination of rigid body motions,
C has six vanishing eigenvalues and thus cannot be in-
verted, as required in Eq. (8). However, according to
Eq. (13), Vs(c) acts only in the subspace given by the m
eigenvectors of C with largest eigenvalues; hence C needs
to be inverted only in that subspace which can be done.

To obtain essentially uncorrelated initial conditions for
the 1500 flooding simulations, a set of 1500 structures
and velocities was extracted at equidistant instances in
time from the 10 ns MD simulation. For each of the
flooding simulations initial positions and velocities were
picked at random &om this set. None of the initial con-
ditions was used twice.

For each of the flooding simulations the time of escape
from the initial substate was recorded. This was done by
monitoring the multivariately scaled distance d~(t) from
the substate center of the system,

(50)

The system has been described classically, and the
equations of motion were integrated using the Verlet al-
gorithm [18] with an integration step size of 5 fs. The
system was weakly coupled to a heat bath (T = 5 K)
with a coupling constant of 0.02 ps (as defined in
Ref. [64]). Initial positions and velocities were obtained
by equilibrating a compact random structure for 100 ns.
Fig. 5 (left) depicts that initial structure (in the figure
van der Waals radii were shrunk, and nearest neighbors
were connected by lines). That structure is identical to
the conformation of lowest &ee energy given in Ref. [62].

We carried out 1500 MD simulations with varying
flooding parameter Eg, comprising a total simulation
time of 35 ps. Since Vg is not invariant under transla-
tions and rotations of the system [cf. Eq. (13)], the latter
would "escape" the flooding potential with rigid body
motion rather than CT's. Therefore these six degrees of

FIG. 5. Argon microclusters consisting of eight argon
atoms each; the leftmost cluster was used as initial structure
for the MD simulations described in the text; the other two
are among those found with the Qooding method; the lines
connect nearest neighbors.

during the simulations. Abrupt changes of dh to values
larger than a critical limit Ld were used as indicators of
CT's. We have chosen Dd = 10 A. on the basis of the fol-
lowing consideration. For Gaussian configuration space
densities, d& (t) is y2 distributed with m = 3N —6 = 18
degrees of freedom, with an expectation value of 4.18 A.

for dA, and a standard deviation of 0.70 A. . Accord-
ingly, distances that deviate &om the expectation value
by more than a few standard deviations should indicate
that the system has left the substate. To exclude pas-
sages of the dividing hypersurface without subsequent
transition we required d~(t) & 10 A. for at least 20 ps
(the latter value has been determined empirically).

2. Results and discussion

To illustrate the effect of the flooding potential, Fig. 6
shows a selection of three CT's out of the 1500 observed
ones. They differ in the employed flooding strength per
conformational coordinate, eg. The figure depicts the
time development of d~(t) for each of the three flooding
simulations. The estimates [based on Eqs. (26) and (40)]
for the adiabatic destabilization free energy per degree of
freedom, A f, are given in brackets.

The observed transition times are shorter by factors
of 706, 6200, and 56 800 than the MTT for unperturbed
CT's, which has been determined as To ——540 ns (data
not shown). Qualitatively, these examples agree with
the expectation that CF should reduce MTT's. It is also
apparent &om the figure that each individual transition
event is much faster than the relaxation with the heat
bath, which was chosen as 50 ps. Thus our adiabatic
treatment of the CT's is appropriate.
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FIG. 6. CT's induced by a Hooding potential of varying
strength. The three curves show the multivariately scaled
distance dA(t) as a function of time. At t = 0 (dashed line)
the Qooding potential is switched on. Structural transitions
are observed as jumps of d& after 765 ps (es = 0.59kiiT),
after 87 ps (es = 0.82k~T), and, almost instantaneously, after
9.5 ps (es = 0.97k&T), respectively.

drawn as a dashed line.
As can be seen, average accelerations by factors up

to 27000 can be achieved for this simple system. For
weak flooding, the computer experiment agrees well with
our t;ransition state estimate for the acceleration factor.
Admittedly, this is not too surprising, since for the small
system at temperatures as low as 5 K the fluctuations of
atomic positions are small, and thus the potential energy
surface is nearly harmonic. As a result;, p is Gaussian

which is the crucial assumption in our derivation of
Eq. (26).

For larger flooding strength the acceleration factor falls
below the transition state estimate. A fit (solid line in
Fig. 7) of the nonequilibrium result [Eq. (48), with p(t)
given by Eq. (47)] to the observed MTT's shows that
the data agree with the scenario of a hierarchy of relax-
ation times. For the fit, the m relaxation times 7; were
assumed to be related to the eigenvalues A; of the covari-
ance matrix by

(52)
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FIG. 7. Transition times (points) in units of To (logarith-
mic scale) observed in 1500 flooding simulations with vary-
ing destabilization free energy A f; the filled circles represent
averaged transition times over 50 simulations each; the adi-
abatically corrected transition state estimate, according to
Eqs. (26) and (40), is drawn as a dashed line; the solid line
shows a fit of Eq. (48) to the data (see text).

Since the observed structural transitions are stochastic
processes, individual transition times will deviate from
their average. In order to check for quantitative agree-
ment, we determined transition times for all 1500 flood-
ing simulations. Figure 7 compares the results with our
theory.

In the figure each dot represents one flooding simula-
tion. The horizontal axis measures the adiabatic desta-
bilization free energy for the flooding potential used in
that particular simulation; the vertical position indicates
the observed transition time in units of To (logarithmic
scale). The filled circles represent MTT averages of 50
simulations each; their size indicates the standard de-
viation (assuming a Poisson distribution for the transi-
tion times). The estimated transition time, according to
the adiabatically corrected transition state estimate, is

leaving w and p as two Bee parameters. Equation (52) is
a generalization of the result for normal mode frequencies
in harmonic systems derived by Go [58] (there, p = 2).
Additionally, the shortest relaxation time, ~q ——0.7 ps,
was derived from the relaxation time of the autocorre-
lation function of the atomic motions. The remaining
undetermined parameter p = 3.5 was derived from the
fit, implying a slowest relaxation constant of 7. = 20 ns.
Obviously, all relaxation times are much shorter than
T0 which explains the success of the transition state ap-
proach.

For larger irregular systems like proteins at higher tem-
peratures, which we want to study with the flooding
method, we expect slow relaxation processes. Also, p
may be structured in quite a complex manner, and its
description by a multivariate Gaussian may therefore be
crude. To estimate transition rates in such cases, con-
ventional free energy calculations have to be carried out,
which require speciflcations of product states and of re-
action coordinates. The question arises whether CF is
robust enough to provide these prerequisites and to al-
low predictions of CT's.

B. Conformational transitions in a simpli8ed
protein model

The second set of computer experiments serves to ad-
dress the above question. With that aim one would wish
to choose as a test system an atomic protein model typ-
ically used in MD simulations and an appropriate struc-
ture determined from x-ray scattering experiments. Cer-
tainly one would expect that our method would induce
some CT's; however, CT's of the unperturbed system
would be too slow to be observed —so how should we
convince ourselves that the induced CT's are the correct
ones?
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Methods

We therefore decided to start with the simplified pro-
tein model described and studied in Ref. [15] which is
known to exhibit fast CT's. The model is shown in Fig. 8
(left). It resembles a small protein of 100 amino acids
length. In contrast to detailed MD models, in which
each atom is considered explicitly, here each amino acid
is represented by just one van der Waals sphere; hence
the number of particles in the system is smaller by one
order of magnitude than in more realistic protein mod-
els. The "residues" are linearly connected by interac-
tions resembling chemical single bonds, as defined in the
cHARMm force Beld [64]. Heterogeneous long ranged pair
interactions between all residues model hydrophilic and
hydrophobic forces of a solvent and stabilize the three-
dimensional structure of the model. As described in
Ref. [15), that structure has been obtained &om a sim-
ulated folding process. For further details we refer to
Refs. [15,49].

The dynamical properties of the simplified model have
been shown to be qualitatively similar to those of the
more realistic protein models with atomic resolution [49]
with the desired exception that it exhibits relatively fast
CT's at the time scale of one nanosecond. Three con-
formational states (depicted to the right in Fig. 8) have
been identified in Ref. [15]. These properties qualify the
model as an appropriate test system.

Unless otherwise specified, the flooding experiments
have been carried out in a way similar to that described
in the preceding subsection. The simulations have been
performed at 300 K using an integration step size of 2 fs
for the numerical integration of the equations of motion.

We carried out 300 flooding simulations with varying
flooding strength Eg. The total simulation time was
50 ns. A subcanonical ensemble of 31 250 structures, de-
rived &om an MD simulation of 1 ns duration, was used
to compute the flooding potential. From that ensemble
we also extracted a set of 300 essentially uncorrelated
initial conditions for the flooding simulations.

In contrast to the argon system, we selected only m =
30 conformational coordinates to be aR'ected by Vg, i.e.,

2. Reaulta and diacuaaion

Figure 9 shows the 300 observed transition times (dots)
in units of To ——1404 ps on a logarithmic scale. As in
Fig. 7 the abscissa measures Af in units of k~T The.
filled circles represent MTT's, which have been obtained
by averaging 10 transition times each.

The experiment shows that also the complex CT's de-
picted in Fig. 8 can be accelerated by at least two orders
of magnitude. Among the six product CS's found in the
flooding simulations were the three known &om unper-
turbed simulations (rms deviation of the structures be-
low 1 A.). The other three are new; they have not been
observed in a simulation of 100 ns duration [43]. We
checked the stability of each of the 300 product states by
switching off the flooding potential 5 ps after the CT and
by subsequently monitoring structural deviations for an-
other 10 ps. More than 92$&j of the product states turned
out to be stable; these showed rms deviation below 1 A.

(data not shown). In summary, most of the simulations
predicted CT's which have been observed or are likely

I t I
(

& I I

0
= 10

1/10 of the total number of degrees of freedom. We based
our choice on the observation that these 30 degrees of
freedom contribute 82Fo to the total mean squared atomic
fluctuations within the initial substate and, therefore, are
expected to dominate the transitions.

Again, a rnultivariately scaled distance d~(t) from the
substate center [Eq. (51)] was used to detect CT's. The
appropriate y distribution with m = 30 degrees of free-
dom has an expectation value of 5.4 A. and a standard
deviation of 0.70 A. ; accordingly we used sudden distance
changes of more than 10 A as an indicator of CT's. A CT
was accepted if da did not drop below 10 A. for 20 ps. In
cases where d~ did not provide clear transition times we
additionally inspected projections of the trajectory x(t)
onto the plane defined by the two largest eigenvectors of
the covariance matrix C.
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FIG. 8. Left: simpli6ed protein model consisting of 100
van der Waals spheres, which are linearly connected by chem-
ical bonds (lines); the van der Waals surface is indicated by
the outer contour; right: three conformations are known [15];
these could be reproduced with CF.

FIG. 9. Transition times (points) in units of To (logarith-
mic scale) observed in 300 fiooding simulations with varying
destabilization free energy A f; the filled circles represent av-
eraged transition times over ten simulations each; the error
bars show the corresponding standard deviations; the transi-
tion state estimate [Eq. (26)] is drawn as a dashed line; the
solid line shows a fit of the nonequilibrium result [Eqs. (48)
and (47)].
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to be observed in unperturbed MD simulations. In this
sense, our method predicted correct CT's. This is the
main result, of this section.

In contrast to the simple argon system the transition
state estimate (dashed line in Fig. 9) for the acceleration
factor fails even for weak flooding. Recalling our assump-
tions, this failure is either due to slow relaxation pro-
cesses or due to a complex, non-Gaussian structure of p&,
or both. While it appears to be diKcult to detect signif-
icant deviations &om high-dimensional Gaussian distri-
butions with limited available data, the nonequilibrium
estimate allows one to check whether a simple relaxation
model can explain the observed transition times.

To that aim we fitted Eq. (48) to the MTT's (solid
line in Fig. 9). Again, we used Eq. (52) to relate the 30
relaxation constants ~, to the atomic fluctuations A;, and
we determined the shortest relaxation time, 7~ ——0.7 ps,
&om the autocorrelation function of the corresponding
conformational degree of freedom [43]. From the fit we
obtained 9 ( p & 11. With these parameters, 12 of the
30 relaxation times are shorter than 1 ns, 7 lie between
1 ns and 1 ps, while 11 relaxation times are longer (par-
tially much longer) than 1 p,s.

Since the fit turned out to be quite unstable, and be-
cause it is based on inaccurate MTT's, care has to be
taken in the interpretation of this result. In particular,
we can only give lower bounds for the long relaxation
times, which almost diverge in the fit. Despite these
uncertainties the analysis shows that the simple relax-
ation model is indeed consistent with our computer ex-
periments if (a) the w; are assumed to cover a wide range
of time scales and if (b) a significant fraction of the w; are
larger than To. In that respect our model study captured
prominent features of proteins and glasses.

We recall that we did not study the influence of a prob-
ably non-Gaussian conformation space density, which is
also expected to contribute to the observed limitation of
the acceleration factor.

IV. SUMMARY AND CONCLUSION

Based on a coarse-grained model for the conformation
space density, which describes conformational substates
(CS's) of proteins and other heterogeneous macromolecu
lar systems, we derived a method to accelerate conforma-
tional transitions (CT's) out of a given CS. Application
of the method, which we termed "conformational flood-
ing" (CF), involves two steps. First, the density model
is computed &om a usually short molecular dynamics
(MD) simulation. From that model an artificial Hood-

ing potential is derived, included into the Hamiltonian of
the system, and a second simulation is carried out. The
flooding potential accelerates CT's, which, therefore, are
likely to be observed during the "flooding simulation. "
We gave analytical estimates for the acceleration factor.

We provided two sample applications. First we con-
sidered a small argon microcluster at low temperature.
For that system the coarse-grained density model was
assumed to be a good approximation. Indeed, the ob-
served acceleration for varying flooding strength agreed
mell with the analytical estimate, and known lorn-energy
structures were found. This computer experiment thus

confirmed the feasibility of the method for that simple
system.

In the second application we considered the much more
complex collective transitions observed in proteins, in
which slow structural relaxations are known to occur,
and where the subcanonical configuration space density
may be non-Gaussian. Despite these complications the
flooding method proved suf6ciently robust to accelerate
also CT's of the protein model by more than two orders
of magnitude. Still, the method predicted correct transi-
tions in 92%%uo of the 300 simulations carried out.

A simple relaxation model suggested that the achiev-
able acceleration of CT's is limited mainly by the fastest
relaxation processes within the system. Based on this
finding we expect our method to bring structural transi-
tions as slow as few microseconds into the scope of MD
simulations for a wide variety of complex systems.

Several possible generalizations of the CF method
come into mind. First, more accurate conformation space
density models may be used. These can be constructed
by methods of nonlinear statistical data analysis such as
vector quantization techniques [66—68]. In contrast, if
large numbers of CS's are to be studied, e.g. , for simula-
tions of protein unfolding, further approximations to the
conformation space density are desirable. With that aim,
groups of substates may be clustered and —if needed,
recursively —approximated by one single, larger multi-
variate Gaussian. Finally, computational costs can be re-
duced by excluding those parts of a system from flooding,
which can be assumed a priori not to take part actively in
the CT under consideration. This is most likely the case,
e.g. , for solvent molecules or solvent-exposed sidegroups
of a protein. In a similar manner, among atoms which
exhibit strongly correlated motion only a small &action
may be selected for flooding.

Applications of the flooding method are abundant; we
sketch a few.

(i) Structure determination. Incomplete experimental
data on protein structure require one to search conforma-
tion space for those conformations with low &ee energy,
which agree with the experimental data. Convention-
ally, MD simulations are used for that purpose [69]. Our
method helps to escape &om local minima in that pro-
cess.

(ii) Stability of protein models. A well-established
check of a given protein model is to observe its devia-
tion &om the experimental structure during a MD sim-
ulation; large deviations indicate an unstable and hence
unrealistic model. Unfortunately, severe deviations may
develop too slowly to be detected in a conventional MD
simulation, which makes the check somewhat unreliable.
Conformational flooding provides a more rigorous test.

(iii) Conformation search When iterativel. y applied,
CF serves to explore configuration space. The method
can thus be used to find low-energy conformers as well as
to characterize the distribution of CS's in configuration
space. An example is given in Ref. [70].

(iv) Prediction of functional motions. Similarly, reac
tions involving not only one but a sequence of CT's, e.g. ,
allosteric interactions or unfolding processes, can be de-
scribed and —depending on the complexity and quality
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of the used molecular model —also predicted.
(v) Estimation of thermodynamic quantities. Finally,

methods to estimate &ee energies, entropies, or partition
functions [56,57] can be combined with CF to improve
the estimates by taking larger regions of phase space into
account.

The 8ooding method has been implemented into the
parallelized MD code Eao vj.II and is available &om the
authors [71].
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