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An information theory based method for the training of perceptrons is presented. Our technique
guarantees an errorless learning process for learnable mappings with just a minimum amount of
examples. The only requirement is that the transfer function must possess an inverse. Some illus-
trative results are presented. The method can be considered to yield another tool for feedforward

training.
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I. INTRODUCTION

Over the past years a great deal of effort has been in-
vested in the development of training algorithms for feed-
forward neural networks [1,2]. Neural networks have ex-
hibited remarkable properties for the storage of patterns
and for data processing, having found use in a wide vari-
ety of environments. Of particular interest is the appli-
cation of statistical mechanics techniques in the analysis
of the process of learning a rule (on the basis of selected
examples), the case of a student perceptron trained by a
teacher perceptron having been studied in great detail.
The associated learning curves have been calculated on
the basis of several (distinct) training schemes [3-5].

Most trained networks are able to predict, i.e., to pro-
duce outputs corresponding to new inputs (that are not
included in the training set) on the basis of an adequately
selected working hypothesis. This hypothesis is, of course,
represented by a set of synaptic weights W; that, when
appropriately implemented, yields good results for the
examples of the training set. Much effort has conse-
quently been devoted to the task of developing suitable
training algorithms that are able to adjust the synaptic
weights so as to enable the network to infer the correct
answer when presented with a new input. Of course,
one wishes for algorithms that accomplish such a goal
within a reasonable (CPU) time and with a not too large
number of examples. The most popular learning meth-
ods involve minimization of an energy (or cost) function
that depends upon the set of training patterns. Diverse
approaches to this end include simulated annealing [6],
genetic algorithms [7], and gradient methods [1,8,9]. A
cost function is minimized by recourse to an algorithm
that incorporates a degree of randomness, as represented
by a “temperature” or by “mutations.” In order to im-
prove upon the learning process, diverse energy forms
have been proposed [10].
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In the present effort we also wish to introduce improve-
ments upon the learning process. However, we shall con-
centrate our efforts on the selection of the working hy-
pothesis. This is to be accomplished according to Ock-
ham’s razor, i.e., with the miminum number of assump-
tions compatible with the available input. Our tools will
be those pertaining to the information theory (IT) ap-
proach to statistical mechanics as embedded in the max-
imum entropy principle [11-13]. We shall take advantage
of a rather recent advance in this field: the pseudoinverse
technique [14]. A learning protocol will be developed in
this fashion and applied to the simplest layered network:
the perceptron. The paper is organized as follows. A
brief review of basic IT concepts is given in Sec. II. The
present formalism is developed in Sec. III and illustrated
with reference to some simple examples in Sec. IV. Our
results are discussed in Sec. V.

II. BRIEF REVIEW OF ELEMENTARY
INFORMATION THEORY CONCEPTS

A. Generalities

For the sake of completeness we briefly review here
some elementary IT concepts. The reader acquainted
with them is advised to skip this section. Information
theory dates from the pioneering work of Shannon et al.
[11,15] and is by now an established branch of mathemat-
ics, with multiple applications in most areas of scientific
endeavor. Its main purpose is that of providing one with
the best possible inference method, that is, the one that
uses all available data while explicitly avoiding the in-
troduction of any unnecessary hypothesis. In this sense,
it can be asserted that it is philosophically founded on
Ockham’s razor, to which it gives an explicit imiplemen-
tation algorithm. It is convenient to be aware of the in-
ductive character of any process of gaining knowledge by
recourse to IT tools. One is always proceeding from par-
ticular instances (in most cases, specific pieces of data)
toward more general recipes encompassing a variety of
situations. This inductive aspect of IT procedures is to
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be emphasized in any physical discussion because a sub-
stantial portion of the concomitant theoretical research
endeavor is of a deductive character and one proceeds
thereby from a few principles (i.e., Maxwell’s equations)
to develop involved applications to specific (and mostly
complex) environments. The essential IT idea is that of
quantifying our ignorance in a given situation in such a
way that one can afterward measure it and formally deal
with it in mathematical fashion [15]. In applications to
the physical sciences there is an intimate connection be-
tween IT and probabilistic environments, the essential
IT result being that a definite amount of ignorance is to
be associated to any given probability distribution {p;}.
This ignorance is measured by Shannon’s entropy [11]

S = —Zpiln[m]s 1)

where, if logarithms are expressed in base 2, S is given in
bits. From a historical point of view, the first application
of IT ideas to physics consisted in the elegant reformula-
tion of statistical mechanics achieved by Jaynes [12].

B. IT implementation of Ockham’s razor

We now describe the orthodox IT algorithm [15-19].
Visualize the following scenario. We are dealing with
a system X with v internal states labeled by an index
i (¢ =1,...,,v). X can be found in the state k£ with prob-
ability py. Let Ao (@ =1,...,N) be a set of random vari-
ables that characterize the system. Of course, these vari-
ables adopt specific (and known) numerical values A, ;
with probabilities p;. We assume that our knowledge
concerning X is limited to the set of expectation values

(Aa) =Y Pidas, a=1,...,M, M<KN.
=1

(2)

It is obviously desirable to be in a position to ascertain
which is the probability distribution {p;} since this would
be tantamount to knowing everything that is to be known
concerning X (one could predict the result of any mea-
surement of the A,). But, regrettably, this distribution
is unknown. All our a prior: information is that of the
M figures (A,).

The main question is, consequently, the following:
What can we assert with respect to the probability dis-
tribution {p;}?

Of course, many such distributions are compatible with
the amount of information provided by (2). Information
theory claims (following Ockham) that the “best” (or the
least-biased) one is that which maximizes Shannon’s en-
tropy (1). We are thus led to an extremalization problem
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(p:} [— > pilnp; — Ao {Zp,- - 1}

M
- Z Aa {ZpiAa,i - (Aa)} =0 (3)

a=1 7
in which the Lagrange multiplier A\¢ guarantees normal-
izations and the remaiming A,’s ensure compliance with
the set of relations (2) (the input information).

Luckily, the variational problem (3) can be solved in
an analytical fashion and easily yields the recipe for con-
structing the “one and only” {p;},

M
pi = exp (— 1+ Ao) - Z AaAa,i) . (4)

From the normalization condition we now immediately
cast \g in the form

v M
Ao = lnz exp [— Z AaAqi
i=1 a=1

=InZ (A1, .0y AM), (5)

where Z is the (generalized) “partition” function and,
introducing (4) and (5) into (2), we are led to

dnZ (A1, ..., \ng)
e

which provides us with a set of coupled equations for the
Lagrange multipliers Aj,...,Ap. By solving the system
(6) we find the “canonical” IT probability distribution
(4)-

It can be proved that p; always exists and is uniquely
determined by (5) and (6) [15] provided the input in-
formation on the right-hand side of (6) is not of a self-
contradictory character. Moreover, with a little addi-
tional work (see, for instance, [15]) one is easily convinced
that S is actually maximized and not merely extremal-
ized. A standard well-known algorithm is available that
yields the Lagrange multipliers [20].

Often, in addition to (2), some additional piece of in-
formation is available. One frequently knows beforehand
that p; is of the form

=—(As), a=1,.,M, (6

Pi = 91,i 92,4 (7)

with g; ; known and g2 ; unknown. The way to go in such
a case is to maximize [instead of (1)] the so-called relative
entropy

S = - ZP:’ In[p;/g1,], (8)

which produces no essential change in (4)—(6), except for
the fact that one should place the unknown function g, ;
on the left-hand side of (4).

III. PRESENT FORMALISM

Consider a student perceptron (SP) with IV input units
S; connected to an output unit ¢ whose state is deter-
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mined according to ¢ = g (h), where g (z) is the transfer
function and h = S-W is membrane potential of the
output neuron. For each set of weights W the SP maps
S on (. We train the SP with a set of P inputs S#, with
pu= 1,..., P, and the corresponding appropriate outputs
Co (S), as provided by a teacher perceptron (TP) with
weights Wy. Of course, the SP and the TP share an
identical architecture. It is obvious that

971 (¢8) =8+ W, (9)

where S* is an input patterns matrix and g—1 (¢}§) is a
vector of components [g™* (¢§),...,g7 (¢F)], given by
the output patterns, which constitute our available infor-
mation. The idea is now to employ here the IT approach
described in Sec. II [11,12,16] in order to determine the
weights W on the basis of an incomplete information sup-
ply [in the present situation, the range of S* is less than
N, in general]. In order to infer weights consistent with
Eq. (9) we shall assume that each set of weights W is re-
alized with probability P(W) (the esential IT ingredient).
In other words, we introduce a (normalized) probability
distribution over the collection of conceivable (possible)
sets W. This is quite reasonable on the basis that in-
deed many such sets are compatible with our incomplete
information. Of course,

/ P(W)dW = 1, (10)

where dW = dW1dW, - - - dWy . Expectation values (W;)
are defined in the fashion

(W) = / P(W)W.dW (11)

and a relative entropy is, in the usual way [11-13], asso-
ciated with the probability distribution, namely,

S = —/P(W) In (2((?‘3)) aw, (12)

where Py (W) is an appropriately chosen a priori distri-
bution [see (7) and (8)] [11-13]. Following the central
tenets of information theory, as reinterpreted by Jaynes
[12], who embedded its procedural aspects within the
maximum entropy (ME) principle [12], the entropy (12)
is to be maximized subject to the constraints (9). Our
central idea is to be introduced at this point. We will
look upon Eq. (9) in the light of

971 (C8) = 8" - (W), (13)

where explicit account is taken of the fact that we are as-
sumed to be dealing with many sets of weights, each one
being realized with a given probability, and we borrow
from statistical mechanics the idea that measured data
are to be reproduced by theoretical averages [15].

As is customary [12], one is then led to freely maxi-
mizing the quantity

s =— / {P(W) In ( g] ((%VV))) +AP (W) (14)

+ (S*)! AWP(W) }dW,

where Ao and -:\+ are Lagrange multipliers associated, re-
spectively, with the normalization condition (10) and the
constraints (9). Variation of S’ with respect to P (W)
immediately gives [see (4) and (7)]

P(W) = exp[~ (1 + Ao)] exp (~T - W) Py (W), (15)

where I’ = (S“)'5 7 As explained in Sec. II, one conve-
niently defines the partition function Z [see (5)]

Z= /dWexp(—I‘-W) P. (16)

A choice is now to be made concerning the a prior:
probability distribution Py [11-13]. Following many au-
thors [19], we select here a Gaussian Py, i.e., choose it to
be proportional to exp (—W - W /2a?), with a (formally)
free parameter a. The results, however, do not depend
upon the value of a.

It is now an easy matter to explicitly evaluate the par-
tition function. We find

Z = (2a%m) /2 exp (a ;‘ ) , (17)
i=1

so that with (11) and the distribution (15) one has, for

the (W;), the convenient expression

(W) = —2a°T;. (18)

Notice that the present (pseudoinverse) IT approach [14]
entirely bypasses consideration of the set of equations (6),
which constitutes its main virtue. Both the definition of
I' and the constraints (9) allow for the elimination of the

Lsp b\+
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FIG. 1. Generalization error computed with 3000 new in-
puts and averaged over 200 networks with g (z) = tanh (z).
(a) N =40, (b) N =30, and (c) N = 20.
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TABLE 1. g(x) = z. Generalization error E (averaged over 3000 cases). P stands for the number
of training examples and R denotes the interval in which the testing procedure took place. Numbers

in square brackets indicate powers of 10.

R P=1 P=2 P=5 P=8 P=9 P =10
[=1,1] 0.165 1.02[—6] 1.85[—8] 2.64[—9] 1.30[—10] 5.08[—30]
[-5,5] 4.08 140[—6] 69.3[—8] 40[—9] 94.3[-10] 152[—30]

[-50, 50] 422 1561[—6] 1284[—8] 105[—9] 527[—10] 17434[—30]

__,
Lagrange multipliers XA. One can thus express (W;)
solely in terms of the training examples

-1
(W) = (8%)" [8#(8%)"] "7 (ct)- (19)

The most probable configuration of weights [compat-
ible with the constraints (9)] is thus given in terms
of a Moore-Penrose pseudoinverse matrix (that of S*).
This technique resembles (but is in fact distinct from)
the Personnaz et al. [21,22] projection rule for memoriz-
ing (without errors) correlated patterns in the Hopfield
model. Notice that with the choice (19) the training er-
ror vanishes. Additionally, the set of “inverse” exam-
ples {—S*, —(o(S*)} possesses an associated distribution
identical to that given by (15). Consequently, —(o(S*) is
that ouput produced by the network for the input —S*.

The above methodology cannot be applied to the
Boolean perceptron, as the transfer function g(z) =
sgn (z) does not possess an inverse. The following con-
siderations are in order, however. Since g~ ({o) = h,
knowledge of the membrane potential k is required in
order to determine the weights [cf. Eq. (19)]. Given
the examples, this becomes an impossible task whenever
g (z) = sgn(z) . An approximate treatment may perhaps
be available. If one takes into account just the sign of h,
then sgn(h) = (o, which leads to the pseudoinverse rule
of Opper et al. [23]. For this rule an overfitting obtains
in the region swrrounding @ = 1 (o = P/N), as noted
by Vallet et al. [24]. This overfitting might be attributed
to the approximation made as, from the examples, one
is learning only the sign of k. For an invertible transfer
function this difficulty does not arise: Exact knowledge of
the membrane potential (P = N examples) allows for an
exact weight inference, no matter which transfer function
we use.

A different way of approximately reconstructing the
membrane potential would take A = S - W*  with W*
weights given by some alternative algorithm. This leads
to

W = (84)" [s# (%)) 8wt = W

and no overfitting ensues.

Our results immediately generalize to networks with
several output neurons. The appropriate map is given
by 0; = g (S - W;) and the weights become

W; = (8%)* [s“ (s“)’]_lg‘1 (3B (20)

which is the ME recipe for the learning process.

IV. SIMPLE APPLICATIONS

Let us study now the performance of a perceptron
trained according to the present formalism. We define
the generalization error E as the average value (com-
puted over a set of new questions) of the quantity

E=[g(S W)-g(S- Wo). (21)
Our procedure can be illustrated with reference to a per-
ceptron that has been trained with the ME algorithm
by exposing it to a variety of examples. We do this in
a number of instances, varying each time the number of
training examples. These, in turn, are provided by a
randomly generated perceptron teacher Wy. The gener-
alization error (21) is averaged over 3000 new examples
provided by each TP (we deal here with 200 randomly
generated networks). In Fig. 1 one easily appreciates
how the generalization error falls down (to zero) when
the value of the charge parameter o = P/N approaches
unity. (This behavior obtains for any invertible transfer
function.) This behavior is invariant with respect to the
number of neurons because of the lack of normalization
of E. Another illustrative example refers to an extremely
simple problem. The task to be learned is that of finding
the coefficients of a straight line that “fits” ten experi-
mental points. The input information in these examples
is given by a set of coordinates (of ten points). The out-
put information consists of the associated least-squares
values. The examples are restricted to some fixed inter-
val of the abscissa axis. Our task can be exactly learned
with a linear tranfer function. For a nonlinear transfer
function g (z) the concomitant results cannot be exact. It
is thus appropriate to study the network’s performance in

TABLE II. g(z) = tanh(z). Additional details are as in Table I.

P=1 P=2 P=4

P=5 P=7 P =10

0.164 5.31 x 1073 3.98 x 107*

5.81 x 107* 4.99 x 10~ 1.74 x 1073
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two cases, namely, for g (z) = z and for g (z) = tanh (z).

Table I displays typical values of the generalization
error (for several P values) when the transfer function
is ¢ = z. The errors are small not only within the
training interval [—1,1] but also way beyond it. The
net was tested with reference to intervals R as large as
[-5,5],[—50,50] (the task is an exactly learnable one).

In the case of a network within g (z) = tanh (z) the
rule cannot be exactly learned: The SP and the TP have
different architectures. The associated generalization er-
ror is displayed in Table II. The network’s performance
is good only within the training interval, as illustrated
in Fig. 2, which depicts level curves for the generaliza-
tion error as a function of the coefficients that define the
straight line. A remarkable fact is to be emphasized: the
rather small quantity of examples needed for the train-
ing process. This is certainly a notable facet of our ap-
proach, which differentiates it from other, more orthodox
approaches (where a very slow convergence rate obtains
if the number of examples is small enough).

V. DISCUSSION

We have considered in this effort the learning of a rule
with a neural network of continuous units and have been
able to show that a pseudoinverse type of solution can be
derived from the maximum entropy principle. We have
illustrated our considerations with reference to simple ex-
amples and found that our procedure can be favorably
compared to standard algorithms (SAs) that minimize
an appropriate cost function (gradient descent with back-
propagation). First of all, a delicate initial adjustment of
the learning parameters is required in the case of the lat-
ter techniques (and is avoided in our case). Additionally,
a careful “fine-tuning” process is needed in order to de-
termine the parameters of the transfer function in order
to attain “convergence” in networks that minimize a cost
function. Such a process is entirely bypassed here. The
SA solution (to which the network “converges”) strongly
depends upon the initial weights and, moreover, for some
types of energy surface that are usually associated with
“small” training sets, local minima of low generalization
performance are to be regarded as inconvenient “traps”
[25]. Our method is not ‘bothered by such incoveniences.
In the SA instance, a good training performance does
not necessarily translate into a good generalization one.
Our ME algorithm, on the other hand, exactly learns
the training examples and provides one with an excellent
generalization performance when different examples are
to be confronted. We conclude then that pseudoinverse
learning is a topic worth studying.

Summing up, an alternative approach to the learning
process in a neural network has been added to the reser-

NN
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P NN

FIG. 2. Level curves for the generalization error as a func-
tion of the coefficients a and b of the straight line az +b. The
transfer function is g (z) = tanh (z). Black dots represent the
examples (straight lines employed in the training process).

voir of learning techniques. It seems to offer promising
perspectives.
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